Home | History | Annotate | Download | only in pydoc_data

Lines Matching refs:sequences

9  'binary': '\nBinary arithmetic operations\n****************************\n\nThe binary arithmetic operations have the conventional priority\nlevels.  Note that some of these operations also apply to certain non-\nnumeric types.  Apart from the power operator, there are only two\nlevels, one for multiplicative operators and one for additive\noperators:\n\n   m_expr ::= u_expr | m_expr "*" u_expr | m_expr "//" u_expr | m_expr "/" u_expr\n              | m_expr "%" u_expr\n   a_expr ::= m_expr | a_expr "+" m_expr | a_expr "-" m_expr\n\nThe ``*`` (multiplication) operator yields the product of its\narguments.  The arguments must either both be numbers, or one argument\nmust be an integer (plain or long) and the other must be a sequence.\nIn the former case, the numbers are converted to a common type and\nthen multiplied together.  In the latter case, sequence repetition is\nperformed; a negative repetition factor yields an empty sequence.\n\nThe ``/`` (division) and ``//`` (floor division) operators yield the\nquotient of their arguments.  The numeric arguments are first\nconverted to a common type. Plain or long integer division yields an\ninteger of the same type; the result is that of mathematical division\nwith the \'floor\' function applied to the result. Division by zero\nraises the ``ZeroDivisionError`` exception.\n\nThe ``%`` (modulo) operator yields the remainder from the division of\nthe first argument by the second.  The numeric arguments are first\nconverted to a common type.  A zero right argument raises the\n``ZeroDivisionError`` exception.  The arguments may be floating point\nnumbers, e.g., ``3.14%0.7`` equals ``0.34`` (since ``3.14`` equals\n``4*0.7 + 0.34``.)  The modulo operator always yields a result with\nthe same sign as its second operand (or zero); the absolute value of\nthe result is strictly smaller than the absolute value of the second\noperand [2].\n\nThe integer division and modulo operators are connected by the\nfollowing identity: ``x == (x/y)*y + (x%y)``.  Integer division and\nmodulo are also connected with the built-in function ``divmod()``:\n``divmod(x, y) == (x/y, x%y)``.  These identities don\'t hold for\nfloating point numbers; there similar identities hold approximately\nwhere ``x/y`` is replaced by ``floor(x/y)`` or ``floor(x/y) - 1`` [3].\n\nIn addition to performing the modulo operation on numbers, the ``%``\noperator is also overloaded by string and unicode objects to perform\nstring formatting (also known as interpolation). The syntax for string\nformatting is described in the Python Library Reference, section\n*String Formatting Operations*.\n\nDeprecated since version 2.3: The floor division operator, the modulo\noperator, and the ``divmod()`` function are no longer defined for\ncomplex numbers.  Instead, convert to a floating point number using\nthe ``abs()`` function if appropriate.\n\nThe ``+`` (addition) operator yields the sum of its arguments. The\narguments must either both be numbers or both sequences of the same\ntype.  In the former case, the numbers are converted to a common type\nand then added together.  In the latter case, the sequences are\nconcatenated.\n\nThe ``-`` (subtraction) operator yields the difference of its\narguments.  The numeric arguments are first converted to a common\ntype.\n',
20 'comparisons': '\nComparisons\n***********\n\nUnlike C, all comparison operations in Python have the same priority,\nwhich is lower than that of any arithmetic, shifting or bitwise\noperation. Also unlike C, expressions like ``a < b < c`` have the\ninterpretation that is conventional in mathematics:\n\n comparison ::= or_expr ( comp_operator or_expr )*\n comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "<>" | "!="\n | "is" ["not"] | ["not"] "in"\n\nComparisons yield boolean values: ``True`` or ``False``.\n\nComparisons can be chained arbitrarily, e.g., ``x < y <= z`` is\nequivalent to ``x < y and y <= z``, except that ``y`` is evaluated\nonly once (but in both cases ``z`` is not evaluated at all when ``x <\ny`` is found to be false).\n\nFormally, if *a*, *b*, *c*, ..., *y*, *z* are expressions and *op1*,\n*op2*, ..., *opN* are comparison operators, then ``a op1 b op2 c ... y\nopN z`` is equivalent to ``a op1 b and b op2 c and ... y opN z``,\nexcept that each expression is evaluated at most once.\n\nNote that ``a op1 b op2 c`` doesn\'t imply any kind of comparison\nbetween *a* and *c*, so that, e.g., ``x < y > z`` is perfectly legal\n(though perhaps not pretty).\n\nThe forms ``<>`` and ``!=`` are equivalent; for consistency with C,\n``!=`` is preferred; where ``!=`` is mentioned below ``<>`` is also\naccepted. The ``<>`` spelling is considered obsolescent.\n\nThe operators ``<``, ``>``, ``==``, ``>=``, ``<=``, and ``!=`` compare\nthe values of two objects. The objects need not have the same type.\nIf both are numbers, they are converted to a common type. Otherwise,\nobjects of different types *always* compare unequal, and are ordered\nconsistently but arbitrarily. You can control comparison behavior of\nobjects of non-built-in types by defining a ``__cmp__`` method or rich\ncomparison methods like ``__gt__``, described in section *Special\nmethod names*.\n\n(This unusual definition of comparison was used to simplify the\ndefinition of operations like sorting and the ``in`` and ``not in``\noperators. In the future, the comparison rules for objects of\ndifferent types are likely to change.)\n\nComparison of objects of the same type depends on the type:\n\n* Numbers are compared arithmetically.\n\n* Strings are compared lexicographically using the numeric equivalents\n (the result of the built-in function ``ord()``) of their characters.\n Unicode and 8-bit strings are fully interoperable in this behavior.\n [4]\n\n* Tuples and lists are compared lexicographically using comparison of\n corresponding elements. This means that to compare equal, each\n element must compare equal and the two sequences must be of the same\n type and have the same length.\n\n If not equal, the sequences are ordered the same as their first\n differing elements. For example, ``cmp([1,2,x], [1,2,y])`` returns\n the same as ``cmp(x,y)``. If the corresponding element does not\n exist, the shorter sequence is ordered first (for example, ``[1,2] <\n [1,2,3]``).\n\n* Mappings (dictionaries) compare equal if and only if their sorted\n (key, value) lists compare equal. [5] Outcomes other than equality\n are resolved consistently, but are not otherwise defined. [6]\n\n* Most other objects of built-in types compare unequal unless they are\n the same object; the choice whether one object is considered smaller\n or larger than another one is made arbitrarily but consistently\n within one execution of a program.\n\nThe operators ``in`` and ``not in`` test for collection membership.\n``x in s`` evaluates to true if *x* is a member of the collection *s*,\nand false otherwise. ``x not in s`` returns the negation of ``x in\ns``. The collection membership test has traditionally been bound to\nsequences; an object is a member of a collection if the collection is\na sequence and contains an element equal to that object. However, it\nmake sense for many other object types to support membership tests\nwithout being a sequence. In particular, dictionaries (for keys) and\nsets support membership testing.\n\nFor the list and tuple types, ``x in y`` is true if and only if there\nexists an index *i* such that ``x == y[i]`` is true.\n\nFor the Unicode and string types, ``x in y`` is true if and only if\n*x* is a substring of *y*. An equivalent test is ``y.find(x) != -1``.\nNote, *x* and *y* need not be the same type; consequently, ``u\'ab\' in\n\'abc\'`` will return ``True``. Empty strings are always considered to\nbe a substring of any other string, so ``"" in "abc"`` will return\n``True``.\n\nChanged in version 2.3: Previously, *x* was required to be a string of\nlength ``1``.\n\nFor user-defined classes which define the ``__contains__()`` method,\n``x in y`` is true if and only if ``y.__contains__(x)`` is true.\n\nFor user-defined classes which do not define ``__contains__()`` but do\ndefine ``__iter__()``, ``x in y`` is true if some value ``z`` with ``x\n== z`` is produced while iterating over ``y``. If an exception is\nraised during the iteration, it is as if ``in`` raised that exception.\n\nLastly, the old-style iteration protocol is tried: if a class defines\n``__getitem__()``, ``x in y`` is true if and only if there is a non-\nnegative integer index *i* such that ``x == y[i]``, and all lower\ninteger indices do not raise ``IndexError`` exception. (If any other\nexception is raised, it is as if ``in`` raised that exception).\n\nThe operator ``not in`` is defined to have the inverse true value of\n``in``.\n\nThe operators ``is`` and ``is not`` test for object identity: ``x is\ny`` is true if and only if *x* and *y* are the same object. ``x is\nnot y`` yields the inverse truth value. [7]\n',
21 sequences
35 'for': '\nThe ``for`` statement\n*********************\n\nThe ``for`` statement is used to iterate over the elements of a\nsequence (such as a string, tuple or list) or other iterable object:\n\n for_stmt ::= "for" target_list "in" expression_list ":" suite\n ["else" ":" suite]\n\nThe expression list is evaluated once; it should yield an iterable\nobject. An iterator is created for the result of the\n``expression_list``. The suite is then executed once for each item\nprovided by the iterator, in the order of ascending indices. Each\nitem in turn is assigned to the target list using the standard rules\nfor assignments, and then the suite is executed. When the items are\nexhausted (which is immediately when the sequence is empty), the suite\nin the ``else`` clause, if present, is executed, and the loop\nterminates.\n\nA ``break`` statement executed in the first suite terminates the loop\nwithout executing the ``else`` clause\'s suite. A ``continue``\nstatement executed in the first suite skips the rest of the suite and\ncontinues with the next item, or with the ``else`` clause if there was\nno next item.\n\nThe suite may assign to the variable(s) in the target list; this does\nnot affect the next item assigned to it.\n\nThe target list is not deleted when the loop is finished, but if the\nsequence is empty, it will not have been assigned to at all by the\nloop. Hint: the built-in function ``range()`` returns a sequence of\nintegers suitable to emulate the effect of Pascal\'s ``for i := a to b\ndo``; e.g., ``range(3)`` returns the list ``[0, 1, 2]``.\n\nNote: There is a subtlety when the sequence is being modified by the loop\n (this can only occur for mutable sequences, i.e. lists). An internal\n counter is used to keep track of which item is used next, and this\n is incremented on each iteration. When this counter has reached the\n length of the sequence the loop terminates. This means that if the\n suite deletes the current (or a previous) item from the sequence,\n the next item will be skipped (since it gets the index of the\n current item which has already been treated). Likewise, if the\n suite inserts an item in the sequence before the current item, the\n current item will be treated again the next time through the loop.\n This can lead to nasty bugs that can be avoided by making a\n temporary copy using a slice of the whole sequence, e.g.,\n\n for x in a[:]:\n if x < 0: a.remove(x)\n',
44 'in': '\nComparisons\n***********\n\nUnlike C, all comparison operations in Python have the same priority,\nwhich is lower than that of any arithmetic, shifting or bitwise\noperation. Also unlike C, expressions like ``a < b < c`` have the\ninterpretation that is conventional in mathematics:\n\n comparison ::= or_expr ( comp_operator or_expr )*\n comp_operator ::= "<" | ">" | "==" | ">=" | "<=" | "<>" | "!="\n | "is" ["not"] | ["not"] "in"\n\nComparisons yield boolean values: ``True`` or ``False``.\n\nComparisons can be chained arbitrarily, e.g., ``x < y <= z`` is\nequivalent to ``x < y and y <= z``, except that ``y`` is evaluated\nonly once (but in both cases ``z`` is not evaluated at all when ``x <\ny`` is found to be false).\n\nFormally, if *a*, *b*, *c*, ..., *y*, *z* are expressions and *op1*,\n*op2*, ..., *opN* are comparison operators, then ``a op1 b op2 c ... y\nopN z`` is equivalent to ``a op1 b and b op2 c and ... y opN z``,\nexcept that each expression is evaluated at most once.\n\nNote that ``a op1 b op2 c`` doesn\'t imply any kind of comparison\nbetween *a* and *c*, so that, e.g., ``x < y > z`` is perfectly legal\n(though perhaps not pretty).\n\nThe forms ``<>`` and ``!=`` are equivalent; for consistency with C,\n``!=`` is preferred; where ``!=`` is mentioned below ``<>`` is also\naccepted. The ``<>`` spelling is considered obsolescent.\n\nThe operators ``<``, ``>``, ``==``, ``>=``, ``<=``, and ``!=`` compare\nthe values of two objects. The objects need not have the same type.\nIf both are numbers, they are converted to a common type. Otherwise,\nobjects of different types *always* compare unequal, and are ordered\nconsistently but arbitrarily. You can control comparison behavior of\nobjects of non-built-in types by defining a ``__cmp__`` method or rich\ncomparison methods like ``__gt__``, described in section *Special\nmethod names*.\n\n(This unusual definition of comparison was used to simplify the\ndefinition of operations like sorting and the ``in`` and ``not in``\noperators. In the future, the comparison rules for objects of\ndifferent types are likely to change.)\n\nComparison of objects of the same type depends on the type:\n\n* Numbers are compared arithmetically.\n\n* Strings are compared lexicographically using the numeric equivalents\n (the result of the built-in function ``ord()``) of their characters.\n Unicode and 8-bit strings are fully interoperable in this behavior.\n [4]\n\n* Tuples and lists are compared lexicographically using comparison of\n corresponding elements. This means that to compare equal, each\n element must compare equal and the two sequences must be of the same\n type and have the same length.\n\n If not equal, the sequences are ordered the same as their first\n differing elements. For example, ``cmp([1,2,x], [1,2,y])`` returns\n the same as ``cmp(x,y)``. If the corresponding element does not\n exist, the shorter sequence is ordered first (for example, ``[1,2] <\n [1,2,3]``).\n\n* Mappings (dictionaries) compare equal if and only if their sorted\n (key, value) lists compare equal. [5] Outcomes other than equality\n are resolved consistently, but are not otherwise defined. [6]\n\n* Most other objects of built-in types compare unequal unless they are\n the same object; the choice whether one object is considered smaller\n or larger than another one is made arbitrarily but consistently\n within one execution of a program.\n\nThe operators ``in`` and ``not in`` test for collection membership.\n``x in s`` evaluates to true if *x* is a member of the collection *s*,\nand false otherwise. ``x not in s`` returns the negation of ``x in\ns``. The collection membership test has traditionally been bound to\nsequences; an object is a member of a collection if the collection is\na sequence and contains an element equal to that object. However, it\nmake sense for many other object types to support membership tests\nwithout being a sequence. In particular, dictionaries (for keys) and\nsets support membership testing.\n\nFor the list and tuple types, ``x in y`` is true if and only if there\nexists an index *i* such that ``x == y[i]`` is true.\n\nFor the Unicode and string types, ``x in y`` is true if and only if\n*x* is a substring of *y*. An equivalent test is ``y.find(x) != -1``.\nNote, *x* and *y* need not be the same type; consequently, ``u\'ab\' in\n\'abc\'`` will return ``True``. Empty strings are always considered to\nbe a substring of any other string, so ``"" in "abc"`` will return\n``True``.\n\nChanged in version 2.3: Previously, *x* was required to be a string of\nlength ``1``.\n\nFor user-defined classes which define the ``__contains__()`` method,\n``x in y`` is true if and only if ``y.__contains__(x)`` is true.\n\nFor user-defined classes which do not define ``__contains__()`` but do\ndefine ``__iter__()``, ``x in y`` is true if some value ``z`` with ``x\n== z`` is produced while iterating over ``y``. If an exception is\nraised during the iteration, it is as if ``in`` raised that exception.\n\nLastly, the old-style iteration protocol is tried: if a class defines\n``__getitem__()``, ``x in y`` is true if and only if there is a non-\nnegative integer index *i* such that ``x == y[i]``, and all lower\ninteger indices do not raise ``IndexError`` exception. (If any other\nexception is raised, it is as if ``in`` raised that exception).\n\nThe operator ``not in`` is defined to have the inverse true value of\n``in``.\n\nThe operators ``is`` and ``is not`` test for object identity: ``x is\ny`` is true if and only if *x* and *y* are the same object. ``x is\nnot y`` yields the inverse truth value. [7]\n',
57 'sequence-types': "\nEmulating container types\n*************************\n\nThe following methods can be defined to implement container objects.\nContainers usually are sequences (such as lists or tuples) or mappings\n(like dictionaries), but can represent other containers as well. The\nfirst set of methods is used either to emulate a sequence or to\nemulate a mapping; the difference is that for a sequence, the\nallowable keys should be the integers *k* for which ``0 <= k < N``\nwhere *N* is the length of the sequence, or slice objects, which\ndefine a range of items. (For backwards compatibility, the method\n``__getslice__()`` (see below) can also be defined to handle simple,\nbut not extended slices.) It is also recommended that mappings provide\nthe methods ``keys()``, ``values()``, ``items()``, ``has_key()``,\n``get()``, ``clear()``, ``setdefault()``, ``iterkeys()``,\n``itervalues()``, ``iteritems()``, ``pop()``, ``popitem()``,\n``copy()``, and ``update()`` behaving similar to those for Python's\nstandard dictionary objects. The ``UserDict`` module provides a\n``DictMixin`` class to help create those methods from a base set of\n``__getitem__()``, ``__setitem__()``, ``__delitem__()``, and\n``keys()``. Mutable sequences should provide methods ``append()``,\n``count()``, ``index()``, ``extend()``, ``insert()``, ``pop()``,\n``remove()``, ``reverse()`` and ``sort()``, like Python standard list\nobjects. Finally, sequence types should implement addition (meaning\nconcatenation) and multiplication (meaning repetition) by defining the\nmethods ``__add__()``, ``__radd__()``, ``__iadd__()``, ``__mul__()``,\n``__rmul__()`` and ``__imul__()`` described below; they should not\ndefine ``__coerce__()`` or other numerical operators. It is\nrecommended that both mappings and sequences implement the\n``__contains__()`` method to allow efficient use of the ``in``\noperator; for mappings, ``in`` should be equivalent of ``has_key()``;\nfor sequences, it should search through the values. It is further\nrecommended that both mappings and sequences implement the\n``__iter__()`` method to allow efficient iteration through the\ncontainer; for mappings, ``__iter__()`` should be the same as\n``iterkeys()``; for sequences, it should iterate through the values.\n\nobject.__len__(self)\n\n Called to implement the built-in function ``len()``. Should return\n the length of the object, an integer ``>=`` 0. Also, an object\n that doesn't define a ``__nonzero__()`` method and whose\n ``__len__()`` method returns zero is considered to be false in a\n Boolean context.\n\nobject.__getitem__(self, key)\n\n Called to implement evaluation of ``self[key]``. For sequence\n types, the accepted keys should be integers and slice objects.\n Note that the special interpretation of negative indexes (if the\n class wishes to emulate a sequence type) is up to the\n ``__getitem__()`` method. If *key* is of an inappropriate type,\n ``TypeError`` may be raised; if of a value outside the set of\n indexes for the sequence (after any special interpretation of\n negative values), ``IndexError`` should be raised. For mapping\n types, if *key* is missing (not in the container), ``KeyError``\n should be raised.\n\n Note: ``for`` loops expect that an ``IndexError`` will be raised for\n illegal indexes to allow proper detection of the end of the\n sequence.\n\nobject.__setitem__(self, key, value)\n\n Called to implement assignment to ``self[key]``. Same note as for\n ``__getitem__()``. This should only be implemented for mappings if\n the objects support changes to the values for keys, or if new keys\n can be added, or for sequences if elements can be replaced. The\n same exceptions should be raised for improper *key* values as for\n the ``__getitem__()`` method.\n\nobject.__delitem__(self, key)\n\n Called to implement deletion of ``self[key]``. Same note as for\n ``__getitem__()``. This should only be implemented for mappings if\n the objects support removal of keys, or for sequences if elements\n can be removed from the sequence. The same exceptions should be\n raised for improper *key* values as for the ``__getitem__()``\n method.\n\nobject.__iter__(self)\n\n This method is called when an iterator is required for a container.\n This method should return a new iterator object that can iterate\n over all the objects in the container. For mappings, it should\n iterate over the keys of the container, and should also be made\n available as the method ``iterkeys()``.\n\n Iterator objects also need to implement this method; they are\n required to return themselves. For more information on iterator\n objects, see *Iterator Types*.\n\nobject.__reversed__(self)\n\n Called (if present) by the ``reversed()`` built-in to implement\n reverse iteration. It should return a new iterator object that\n iterates over all the objects in the container in reverse order.\n\n If the ``__reversed__()`` method is not provided, the\n ``reversed()`` built-in will fall back to using the sequence\n protocol (``__len__()`` and ``__getitem__()``). Objects that\n support the sequence protocol should only provide\n ``__reversed__()`` if they can provide an implementation that is\n more efficient than the one provided by ``reversed()``.\n\n New in version 2.6.\n\nThe membership test operators (``in`` and ``not in``) are normally\nimplemented as an iteration through a sequence. However, container\nobjects can supply the following special method with a more efficient\nimplementation, which also does not require the object be a sequence.\n\nobject.__contains__(self, item)\n\n Called to implement membership test operators. Should return true\n if *item* is in *self*, false otherwise. For mapping objects, this\n should consider the keys of the mapping rather than the values or\n the key-item pairs.\n\n For objects that don't define ``__contains__()``, the membership\n test first tries iteration via ``__iter__()``, then the old\n sequence iteration protocol via ``__getitem__()``, see *this\n section in the language reference*.\n",
61 sequences (such as lists or tuples) or mappings\n(like dictionaries), but can represent other containers as well. The\nfirst set of methods is used either to emulate a sequence or to\nemulate a mapping; the difference is that for a sequence, the\nallowable keys should be the integers *k* for which ``0 <= k < N``\nwhere *N* is the length of the sequence, or slice objects, which\ndefine a range of items. (For backwards compatibility, the method\n``__getslice__()`` (see below) can also be defined to handle simple,\nbut not extended slices.) It is also recommended that mappings provide\nthe methods ``keys()``, ``values()``, ``items()``, ``has_key()``,\n``get()``, ``clear()``, ``setdefault()``, ``iterkeys()``,\n``itervalues()``, ``iteritems()``, ``pop()``, ``popitem()``,\n``copy()``, and ``update()`` behaving similar to those for Python\'s\nstandard dictionary objects. The ``UserDict`` module provides a\n``DictMixin`` class to help create those methods from a base set of\n``__getitem__()``, ``__setitem__()``, ``__delitem__()``, and\n``keys()``. Mutable sequences should provide methods ``append()``,\n``count()``, ``index()``, ``extend()``, ``insert()``, ``pop()``,\n``remove()``, ``reverse()`` and ``sort()``, like Python standard list\nobjects. Finally, sequence types should implement addition (meaning\nconcatenation) and multiplication (meaning repetition) by defining the\nmethods ``__add__()``, ``__radd__()``, ``__iadd__()``, ``__mul__()``,\n``__rmul__()`` and ``__imul__()`` described below; they should not\ndefine ``__coerce__()`` or other numerical operators. It is\nrecommended that both mappings and sequences implement the\n``__contains__()`` method to allow efficient use of the ``in``\noperator; for mappings, ``in`` should be equivalent of ``has_key()``;\nfor sequences, it should search through the values. It is further\nrecommended that both mappings and sequences implement the\n``__iter__()`` method to allow efficient iteration through the\ncontainer; for mappings, ``__iter__()`` should be the same as\n``iterkeys()``; for sequences, it should iterate through the values.\n\nobject.__len__(self)\n\n Called to implement the built-in function ``len()``. Should return\n the length of the object, an integer ``>=`` 0. Also, an object\n that doesn\'t define a ``__nonzero__()`` method and whose\n ``__len__()`` method returns zero is considered to be false in a\n Boolean context.\n\nobject.__getitem__(self, key)\n\n Called to implement evaluation of ``self[key]``. For sequence\n types, the accepted keys should be integers and slice objects.\n Note that the special interpretation of negative indexes (if the\n class wishes to emulate a sequence type) is up to the\n ``__getitem__()`` method. If *key* is of an inappropriate type,\n ``TypeError`` may be raised; if of a value outside the set of\n indexes for the sequence (after any special interpretation of\n negative values), ``IndexError`` should be raised. For mapping\n types, if *key* is missing (not in the container), ``KeyError``\n should be raised.\n\n Note: ``for`` loops expect that an ``IndexError`` will be raised for\n illegal indexes to allow proper detection of the end of the\n sequence.\n\nobject.__setitem__(self, key, value)\n\n Called to implement assignment to ``self[key]``. Same note as for\n ``__getitem__()``. This should only be implemented for mappings if\n the objects support changes to the values for keys, or if new keys\n can be added, or for sequences if elements can be replaced. The\n same exceptions should be raised for improper *key* values as for\n the ``__getitem__()`` method.\n\nobject.__delitem__(self, key)\n\n Called to implement deletion of ``self[key]``. Same note as for\n ``__getitem__()``. This should only be implemented for mappings if\n the objects support removal of keys, or for sequences if elements\n can be removed from the sequence. The same exceptions should be\n raised for improper *key* values as for the ``__getitem__()``\n method.\n\nobject.__iter__(self)\n\n This method is called when an iterator is required for a container.\n This method should return a new iterator object that can iterate\n over all the objects in the container. For mappings, it should\n iterate over the keys of the container, and should also be made\n available as the method ``iterkeys()``.\n\n Iterator objects also need to implement this method; they are\n required to return themselves. For more information on iterator\n objects, see *Iterator Types*.\n\nobject.__reversed__(self)\n\n Called (if present) by the ``reversed()`` built-in to implement\n reverse iteration. It should return a new iterator object that\n iterates over all the objects in the container in reverse order.\n\n If the ``__reversed__()`` method is not provided, the\n ``reversed()`` built-in will fall back to using the sequence\n protocol (``__len__()`` and ``__getitem__()``). Objects that\n support the sequence protocol should only provide\n ``__reversed__()`` if they can provide an implementation that is\n more efficient than the one provided by ``reversed()``.\n\n New in version 2.6.\n\nThe membership test operators (``in`` and ``not in``) are normally\nimplemented as an iteration through a sequence. However, container\nobjects can supply the following special method with a more efficient\nimplementation, which also does not require the object be a sequence.\n\nobject.__contains__(self, item)\n\n Called to implement membership test operators. Should return true\n if *item* is in *self*, false otherwise. For mapping objects, this\n should consider the keys of the mapping rather than the values or\n the key-item pairs.\n\n For objects that don\'t define ``__contains__()``, the membership\n test first tries iteration via ``__iter__()``, then the old\n sequence iteration protocol via ``__getitem__()``, see *this\n section in the language reference*.\n\n\nAdditional methods for emulation of sequence types\n==================================================\n\nThe following optional methods can be defined to further emulate\nsequence objects. Immutable sequences methods should at most only\ndefine ``__getslice__()``; mutable sequences
63 'strings': '\nString literals\n***************\n\nString literals are described by the following lexical definitions:\n\n stringliteral ::= [stringprefix](shortstring | longstring)\n stringprefix ::= "r" | "u" | "ur" | "R" | "U" | "UR" | "Ur" | "uR"\n | "b" | "B" | "br" | "Br" | "bR" | "BR"\n shortstring ::= "\'" shortstringitem* "\'" | \'"\' shortstringitem* \'"\'\n longstring ::= "\'\'\'" longstringitem* "\'\'\'"\n | \'"""\' longstringitem* \'"""\'\n shortstringitem ::= shortstringchar | escapeseq\n longstringitem ::= longstringchar | escapeseq\n shortstringchar ::= <any source character except "\\" or newline or the quote>\n longstringchar ::= <any source character except "\\">\n escapeseq ::= "\\" <any ASCII character>\n\nOne syntactic restriction not indicated by these productions is that\nwhitespace is not allowed between the ``stringprefix`` and the rest of\nthe string literal. The source character set is defined by the\nencoding declaration; it is ASCII if no encoding declaration is given\nin the source file; see section *Encoding declarations*.\n\nIn plain English: String literals can be enclosed in matching single\nquotes (``\'``) or double quotes (``"``). They can also be enclosed in\nmatching groups of three single or double quotes (these are generally\nreferred to as *triple-quoted strings*). The backslash (``\\``)\ncharacter is used to escape characters that otherwise have a special\nmeaning, such as newline, backslash itself, or the quote character.\nString literals may optionally be prefixed with a letter ``\'r\'`` or\n``\'R\'``; such strings are called *raw strings* and use different rules\nfor interpreting backslash escape sequences. A prefix of ``\'u\'`` or\n``\'U\'`` makes the string a Unicode string. Unicode strings use the\nUnicode character set as defined by the Unicode Consortium and ISO\n10646. Some additional escape sequences, described below, are\navailable in Unicode strings. A prefix of ``\'b\'`` or ``\'B\'`` is\nignored in Python 2; it indicates that the literal should become a\nbytes literal in Python 3 (e.g. when code is automatically converted\nwith 2to3). A ``\'u\'`` or ``\'b\'`` prefix may be followed by an ``\'r\'``\nprefix.\n\nIn triple-quoted strings, unescaped newlines and quotes are allowed\n(and are retained), except that three unescaped quotes in a row\nterminate the string. (A "quote" is the character used to open the\nstring, i.e. either ``\'`` or ``"``.)\n\nUnless an ``\'r\'`` or ``\'R\'`` prefix is present, escape sequences in\nstrings are interpreted according to rules similar to those used by\nStandard C. The recognized escape sequences are:\n\n+-------------------+-----------------------------------+---------+\n| Escape Sequence | Meaning | Notes |\n+===================+===================================+=========+\n| ``\\newline`` | Ignored | |\n+-------------------+-----------------------------------+---------+\n| ``\\\\`` | Backslash (``\\``) | |\n+-------------------+-----------------------------------+---------+\n| ``\\\'`` | Single quote (``\'``) | |\n+-------------------+-----------------------------------+---------+\n| ``\\"`` | Double quote (``"``) | |\n+-------------------+-----------------------------------+---------+\n| ``\\a`` | ASCII Bell (BEL) | |\n+-------------------+-----------------------------------+---------+\n| ``\\b`` | ASCII Backspace (BS) | |\n+-------------------+-----------------------------------+---------+\n| ``\\f`` | ASCII Formfeed (FF) | |\n+-------------------+-----------------------------------+---------+\n| ``\\n`` | ASCII Linefeed (LF) | |\n+-------------------+-----------------------------------+---------+\n| ``\\N{name}`` | Character named *name* in the | |\n| | Unicode database (Unicode only) | |\n+-------------------+-----------------------------------+---------+\n| ``\\r`` | ASCII Carriage Return (CR) | |\n+-------------------+-----------------------------------+---------+\n| ``\\t`` | ASCII Horizontal Tab (TAB) | |\n+-------------------+-----------------------------------+---------+\n| ``\\uxxxx`` | Character with 16-bit hex value | (1) |\n| | *xxxx* (Unicode only) | |\n+-------------------+-----------------------------------+---------+\n| ``\\Uxxxxxxxx`` | Character with 32-bit hex value | (2) |\n| | *xxxxxxxx* (Unicode only) | |\n+-------------------+-----------------------------------+---------+\n| ``\\v`` | ASCII Vertical Tab (VT) | |\n+-------------------+-----------------------------------+---------+\n| ``\\ooo`` | Character with octal value *ooo* | (3,5) |\n+-------------------+-----------------------------------+---------+\n| ``\\xhh`` | Character with hex value *hh* | (4,5) |\n+-------------------+-----------------------------------+---------+\n\nNotes:\n\n1. Individual code units which form parts of a surrogate pair can be\n encoded using this escape sequence.\n\n2. Any Unicode character can be encoded this way, but characters\n outside the Basic Multilingual Plane (BMP) will be encoded using a\n surrogate pair if Python is compiled to use 16-bit code units (the\n default). Individual code units which form parts of a surrogate\n pair can be encoded using this escape sequence.\n\n3. As in Standard C, up to three octal digits are accepted.\n\n4. Unlike in Standard C, exactly two hex digits are required.\n\n5. In a string literal, hexadecimal and octal escapes denote the byte\n with the given value; it is not necessary that the byte encodes a\n character in the source character set. In a Unicode literal, these\n escapes denote a Unicode character with the given value.\n\nUnlike Standard C, all unrecognized escape sequences are left in the\nstring unchanged, i.e., *the backslash is left in the string*. (This\nbehavior is useful when debugging: if an escape sequence is mistyped,\nthe resulting output is more easily recognized as broken.) It is also\nimportant to note that the escape sequences marked as "(Unicode only)"\nin the table above fall into the category of unrecognized escapes for\nnon-Unicode string literals.\n\nWhen an ``\'r\'`` or ``\'R\'`` prefix is present, a character following a\nbackslash is included in the string without change, and *all\nbackslashes are left in the string*. For example, the string literal\n``r"\\n"`` consists of two characters: a backslash and a lowercase\n``\'n\'``. String quotes can be escaped with a backslash, but the\nbackslash remains in the string; for example, ``r"\\""`` is a valid\nstring literal consisting of two characters: a backslash and a double\nquote; ``r"\\"`` is not a valid string literal (even a raw string\ncannot end in an odd number of backslashes). Specifically, *a raw\nstring cannot end in a single backslash* (since the backslash would\nescape the following quote character). Note also that a single\nbackslash followed by a newline is interpreted as those two characters\nas part of the string, *not* as a line continuation.\n\nWhen an ``\'r\'`` or ``\'R\'`` prefix is used in conjunction with a\n``\'u\'`` or ``\'U\'`` prefix, then the ``\\uXXXX`` and ``\\UXXXXXXXX``\nescape sequences are processed while *all other backslashes are left\nin the string*. For example, the string literal ``ur"\\u0062\\n"``\nconsists of three Unicode characters: \'LATIN SMALL LETTER B\', \'REVERSE\nSOLIDUS\', and \'LATIN SMALL LETTER N\'. Backslashes can be escaped with\na preceding backslash; however, both remain in the string. As a\nresult, ``\\uXXXX`` escape sequences are only recognized when there are\nan odd number of backslashes.\n',
67 'types': '\nThe standard type hierarchy\n***************************\n\nBelow is a list of the types that are built into Python. Extension\nmodules (written in C, Java, or other languages, depending on the\nimplementation) can define additional types. Future versions of\nPython may add types to the type hierarchy (e.g., rational numbers,\nefficiently stored arrays of integers, etc.).\n\nSome of the type descriptions below contain a paragraph listing\n\'special attributes.\' These are attributes that provide access to the\nimplementation and are not intended for general use. Their definition\nmay change in the future.\n\nNone\n This type has a single value. There is a single object with this\n value. This object is accessed through the built-in name ``None``.\n It is used to signify the absence of a value in many situations,\n e.g., it is returned from functions that don\'t explicitly return\n anything. Its truth value is false.\n\nNotImplemented\n This type has a single value. There is a single object with this\n value. This object is accessed through the built-in name\n ``NotImplemented``. Numeric methods and rich comparison methods may\n return this value if they do not implement the operation for the\n operands provided. (The interpreter will then try the reflected\n operation, or some other fallback, depending on the operator.) Its\n truth value is true.\n\nEllipsis\n This type has a single value. There is a single object with this\n value. This object is accessed through the built-in name\n ``Ellipsis``. It is used to indicate the presence of the ``...``\n syntax in a slice. Its truth value is true.\n\n``numbers.Number``\n These are created by numeric literals and returned as results by\n arithmetic operators and arithmetic built-in functions. Numeric\n objects are immutable; once created their value never changes.\n Python numbers are of course strongly related to mathematical\n numbers, but subject to the limitations of numerical representation\n in computers.\n\n Python distinguishes between integers, floating point numbers, and\n complex numbers:\n\n ``numbers.Integral``\n These represent elements from the mathematical set of integers\n (positive and negative).\n\n There are three types of integers:\n\n Plain integers\n These represent numbers in the range -2147483648 through\n 2147483647. (The range may be larger on machines with a\n larger natural word size, but not smaller.) When the result\n of an operation would fall outside this range, the result is\n normally returned as a long integer (in some cases, the\n exception ``OverflowError`` is raised instead). For the\n purpose of shift and mask operations, integers are assumed to\n have a binary, 2\'s complement notation using 32 or more bits,\n and hiding no bits from the user (i.e., all 4294967296\n different bit patterns correspond to different values).\n\n Long integers\n These represent numbers in an unlimited range, subject to\n available (virtual) memory only. For the purpose of shift\n and mask operations, a binary representation is assumed, and\n negative numbers are represented in a variant of 2\'s\n complement which gives the illusion of an infinite string of\n sign bits extending to the left.\n\n Booleans\n These represent the truth values False and True. The two\n objects representing the values False and True are the only\n Boolean objects. The Boolean type is a subtype of plain\n integers, and Boolean values behave like the values 0 and 1,\n respectively, in almost all contexts, the exception being\n that when converted to a string, the strings ``"False"`` or\n ``"True"`` are returned, respectively.\n\n The rules for integer representation are intended to give the\n most meaningful interpretation of shift and mask operations\n involving negative integers and the least surprises when\n switching between the plain and long integer domains. Any\n operation, if it yields a result in the plain integer domain,\n will yield the same result in the long integer domain or when\n using mixed operands. The switch between domains is transparent\n to the programmer.\n\n ``numbers.Real`` (``float``)\n These represent machine-level double precision floating point\n numbers. You are at the mercy of the underlying machine\n architecture (and C or Java implementation) for the accepted\n range and handling of overflow. Python does not support single-\n precision floating point numbers; the savings in processor and\n memory usage that are usually the reason for using these is\n dwarfed by the overhead of using objects in Python, so there is\n no reason to complicate the language with two kinds of floating\n point numbers.\n\n ``numbers.Complex``\n These represent complex numbers as a pair of machine-level\n double precision floating point numbers. The same caveats apply\n as for floating point numbers. The real and imaginary parts of a\n complex number ``z`` can be retrieved through the read-only\n attributes ``z.real`` and ``z.imag``.\n\nSequences\n These represent finite ordered sets indexed by non-negative\n numbers. The built-in function ``len()`` returns the number of\n items of a sequence. When the length of a sequence is *n*, the\n index set contains the numbers 0, 1, ..., *n*-1. Item *i* of\n sequence *a* is selected by ``a[i]``.\n\n Sequences also support slicing: ``a[i:j]`` selects all items with\n index *k* such that *i* ``<=`` *k* ``<`` *j*. When used as an\n expression, a slice is a sequence of the same type. This implies\n that the index set is renumbered so that it starts at 0.\n\n Some sequences also support "extended slicing" with a third "step"\n parameter: ``a[i:j:k]`` selects all items of *a* with index *x*\n where ``x = i + n*k``, *n* ``>=`` ``0`` and *i* ``<=`` *x* ``<``\n *j*.\n\n Sequences are distinguished according to their mutability:\n\n Immutable sequences\n An object of an immutable sequence type cannot change once it is\n created. (If the object contains references to other objects,\n these other objects may be mutable and may be changed; however,\n the collection of objects directly referenced by an immutable\n object cannot change.)\n\n The following types are immutable sequences:\n\n Strings\n The items of a string are characters. There is no separate\n character type; a character is represented by a string of one\n item. Characters represent (at least) 8-bit bytes. The\n built-in functions ``chr()`` and ``ord()`` convert between\n characters and nonnegative integers representing the byte\n values. Bytes with the values 0-127 usually represent the\n corresponding ASCII values, but the interpretation of values\n is up to the program. The string data type is also used to\n represent arrays of bytes, e.g., to hold data read from a\n file.\n\n (On systems whose native character set is not ASCII, strings\n may use EBCDIC in their internal representation, provided the\n functions ``chr()`` and ``ord()`` implement a mapping between\n ASCII and EBCDIC, and string comparison preserves the ASCII\n order. Or perhaps someone can propose a better rule?)\n\n Unicode\n The items of a Unicode object are Unicode code units. A\n Unicode code unit is represented by a Unicode object of one\n item and can hold either a 16-bit or 32-bit value\n representing a Unicode ordinal (the maximum value for the\n ordinal is given in ``sys.maxunicode``, and depends on how\n Python is configured at compile time). Surrogate pairs may\n be present in the Unicode object, and will be reported as two\n separate items. The built-in functions ``unichr()`` and\n ``ord()`` convert between code units and nonnegative integers\n representing the Unicode ordinals as defined in the Unicode\n Standard 3.0. Conversion from and to other encodings are\n possible through the Unicode method ``encode()`` and the\n built-in function ``unicode()``.\n\n Tuples\n The items of a tuple are arbitrary Python objects. Tuples of\n two or more items are formed by comma-separated lists of\n expressions. A tuple of one item (a \'singleton\') can be\n formed by affixing a comma to an expression (an expression by\n itself does not create a tuple, since parentheses must be\n usable for grouping of expressions). An empty tuple can be\n formed by an empty pair of parentheses.\n\n Mutable sequences\n Mutable sequencessequences, or mappings\n if they have methods with certain special names. See section\n *Special method names*.\n\n Special attributes: ``__dict__`` is the attribute dictionary;\n ``__class__`` is the instance\'s class.\n\nFiles\n A file object represents an open file. File objects are created by\n the ``open()`` built-in function, and also by ``os.popen()``,\n ``os.fdopen()``, and the ``makefile()`` method of socket objects\n (and perhaps by other functions or methods provided by extension\n modules). The objects ``sys.stdin``, ``sys.stdout`` and\n ``sys.stderr`` are initialized to file objects corresponding to the\n interpreter\'s standard input, output and error streams. See *File\n Objects* for complete documentation of file objects.\n\nInternal types\n A few types used internally by the interpreter are exposed to the\n user. Their definitions may change with future versions of the\n interpreter, but they are mentioned here for completeness.\n\n Code objects\n Code objects represent *byte-compiled* executable Python code,\n or *bytecode*. The difference between a code object and a\n function object is that the function object contains an explicit\n reference to the function\'s globals (the module in which it was\n defined), while a code object contains no context; also the\n default argument values are stored in the function object, not\n in the code object (because they represent values calculated at\n run-time). Unlike function objects, code objects are immutable\n and contain no references (directly or indirectly) to mutable\n objects.\n\n Special read-only attributes: ``co_name`` gives the function\n name; ``co_argcount`` is the number of positional arguments\n (including arguments with default values); ``co_nlocals`` is the\n number of local variables used by the function (including\n arguments); ``co_varnames`` is a tuple containing the names of\n the local variables (starting with the argument names);\n ``co_cellvars`` is a tuple containing the names of local\n variables that are referenced by nested functions;\n ``co_freevars`` is a tuple containing the names of free\n variables; ``co_code`` is a string representing the sequence of\n bytecode instructions; ``co_consts`` is a tuple containing the\n literals used by the bytecode; ``co_names`` is a tuple\n containing the names used by the bytecode; ``co_filename`` is\n the filename from which the code was compiled;\n ``co_firstlineno`` is the first line number of the function;\n ``co_lnotab`` is a string encoding the mapping from bytecode\n offsets to line numbers (for details see the source code of the\n interpreter); ``co_stacksize`` is the required stack size\n (including local variables); ``co_flags`` is an integer encoding\n a number of flags for the interpreter.\n\n The following flag bits are defined for ``co_flags``: bit\n ``0x04`` is set if the function uses the ``*arguments`` syntax\n to accept an arbitrary number of positional arguments; bit\n ``0x08`` is set if the function uses the ``**keywords`` syntax\n to accept arbitrary keyword arguments; bit ``0x20`` is set if\n the function is a generator.\n\n Future feature declarations (``from __future__ import\n division``) also use bits in ``co_flags`` to indicate whether a\n code object was compiled with a particular feature enabled: bit\n ``0x2000`` is set if the function was compiled with future\n division enabled; bits ``0x10`` and ``0x1000`` were used in\n earlier versions of Python.\n\n Other bits in ``co_flags`` are reserved for internal use.\n\n If a code object represents a function, the first item in\n ``co_consts`` is the documentation string of the function, or\n ``None`` if undefined.\n\n Frame objects\n Frame objects represent execution frames. They may occur in\n traceback objects (see below).\n\n Special read-only attributes: ``f_back`` is to the previous\n stack frame (towards the caller), or ``None`` if this is the\n bottom stack frame; ``f_code`` is the code object being executed\n in this frame; ``f_locals`` is the dictionary used to look up\n local variables; ``f_globals`` is used for global variables;\n ``f_builtins`` is used for built-in (intrinsic) names;\n ``f_restricted`` is a flag indicating whether the function is\n executing in restricted execution mode; ``f_lasti`` gives the\n precise instruction (this is an index into the bytecode string\n of the code object).\n\n Special writable attributes: ``f_trace``, if not ``None``, is a\n function called at the start of each source code line (this is\n used by the debugger); ``f_exc_type``, ``f_exc_value``,\n ``f_exc_traceback`` represent the last exception raised in the\n parent frame provided another exception was ever raised in the\n current frame (in all other cases they are None); ``f_lineno``\n is the current line number of the frame --- writing to this from\n within a trace function jumps to the given line (only for the\n bottom-most frame). A debugger can implement a Jump command\n (aka Set Next Statement) by writing to f_lineno.\n\n Traceback objects\n Traceback objects represent a stack trace of an exception. A\n traceback object is created when an exception occurs. When the\n search for an exception handler unwinds the execution stack, at\n each unwound level a traceback object is inserted in front of\n the current traceback. When an exception handler is entered,\n the stack trace is made available to the program. (See section\n *The try statement*.) It is accessible as ``sys.exc_traceback``,\n and also as the third item of the tuple returned by\n ``sys.exc_info()``. The latter is the preferred interface,\n since it works correctly when the program is using multiple\n threads. When the program contains no suitable handler, the\n stack trace is written (nicely formatted) to the standard error\n stream; if the interpreter is interactive, it is also made\n available to the user as ``sys.last_traceback``.\n\n Special read-only attributes: ``tb_next`` is the next level in\n the stack trace (towards the frame where the exception\n occurred), or ``None`` if there is no next level; ``tb_frame``\n points to the execution frame of the current level;\n ``tb_lineno`` gives the line number where the exception\n occurred; ``tb_lasti`` indicates the precise instruction. The\n line number and last instruction in the traceback may differ\n from the line number of its frame object if the exception\n occurred in a ``try`` statement with no matching except clause\n or with a finally clause.\n\n Slice objects\n Slice objects are used to represent slices when *extended slice\n syntax* is used. This is a slice using two colons, or multiple\n slices or ellipses separated by commas, e.g., ``a[i:j:step]``,\n ``a[i:j, k:l]``, or ``a[..., i:j]``. They are also created by\n the built-in ``slice()`` function.\n\n Special read-only attributes: ``start`` is the lower bound;\n ``stop`` is the upper bound; ``step`` is the step value; each is\n ``None`` if omitted. These attributes can have any type.\n\n Slice objects support one method:\n\n slice.indices(self, length)\n\n This method takes a single integer argument *length* and\n computes information about the extended slice that the slice\n object would describe if applied to a sequence of *length*\n items. It returns a tuple of three integers; respectively\n these are the *start* and *stop* indices and the *step* or\n stride length of the slice. Missing or out-of-bounds indices\n are handled in a manner consistent with regular slices.\n\n New in version 2.3.\n\n Static method objects\n Static method objects provide a way of defeating the\n transformation of function objects to method objects described\n above. A static method object is a wrapper around any other\n object, usually a user-defined method object. When a static\n method object is retrieved from a class or a class instance, the\n object actually returned is the wrapped object, which is not\n subject to any further transformation. Static method objects are\n not themselves callable, although the objects they wrap usually\n are. Static method objects are created by the built-in\n ``staticmethod()`` constructor.\n\n Class method objects\n A class method object, like a static method object, is a wrapper\n around another object that alters the way in which that object\n is retrieved from classes and class instances. The behaviour of\n class method objects upon such retrieval is described above,\n under "User-defined methods". Class method objects are created\n by the built-in ``classmethod()`` constructor.\n',
72 'typesseq': '\nSequence Types --- ``str``, ``unicode``, ``list``, ``tuple``, ``bytearray``, ``buffer``, ``xrange``\n***************************************************************************************************\n\nThere are seven sequence types: strings, Unicode strings, lists,\ntuples, bytearrays, buffers, and xrange objects.\n\nFor other containers see the built in ``dict`` and ``set`` classes,\nand the ``collections`` module.\n\nString literals are written in single or double quotes: ``\'xyzzy\'``,\n``"frobozz"``. See *String literals* for more about string literals.\nUnicode strings are much like strings, but are specified in the syntax\nusing a preceding ``\'u\'`` character: ``u\'abc\'``, ``u"def"``. In\naddition to the functionality described here, there are also string-\nspecific methods described in the *String Methods* section. Lists are\nconstructed with square brackets, separating items with commas: ``[a,\nb, c]``. Tuples are constructed by the comma operator (not within\nsquare brackets), with or without enclosing parentheses, but an empty\ntuple must have the enclosing parentheses, such as ``a, b, c`` or\n``()``. A single item tuple must have a trailing comma, such as\n``(d,)``.\n\nBytearray objects are created with the built-in function\n``bytearray()``.\n\nBuffer objects are not directly supported by Python syntax, but can be\ncreated by calling the built-in function ``buffer()``. They don\'t\nsupport concatenation or repetition.\n\nObjects of type xrange are similar to buffers in that there is no\nspecific syntax to create them, but they are created using the\n``xrange()`` function. They don\'t support slicing, concatenation or\nrepetition, and using ``in``, ``not in``, ``min()`` or ``max()`` on\nthem is inefficient.\n\nMost sequence types support the following operations. The ``in`` and\n``not in`` operations have the same priorities as the comparison\noperations. The ``+`` and ``*`` operations have the same priority as\nthe corresponding numeric operations. [3] Additional methods are\nprovided for *Mutable Sequence Types*.\n\nThis table lists the sequence operations sorted in ascending priority\n(operations in the same box have the same priority). In the table,\n*s* and *t* are sequences of the same type; *n*, *i* and *j* are\nintegers:\n\n+--------------------+----------------------------------+------------+\n| Operation | Result | Notes |\n+====================+==================================+============+\n| ``x in s`` | ``True`` if an item of *s* is | (1) |\n| | equal to *x*, else ``False`` | |\n+--------------------+----------------------------------+------------+\n| ``x not in s`` | ``False`` if an item of *s* is | (1) |\n| | equal to *x*, else ``True`` | |\n+--------------------+----------------------------------+------------+\n| ``s + t`` | the concatenation of *s* and *t* | (6) |\n+--------------------+----------------------------------+------------+\n| ``s * n, n * s`` | *n* shallow copies of *s* | (2) |\n| | concatenated | |\n+--------------------+----------------------------------+------------+\n| ``s[i]`` | *i*th item of *s*, origin 0 | (3) |\n+--------------------+----------------------------------+------------+\n| ``s[i:j]`` | slice of *s* from *i* to *j* | (3)(4) |\n+--------------------+----------------------------------+------------+\n| ``s[i:j:k]`` | slice of *s* from *i* to *j* | (3)(5) |\n| | with step *k* | |\n+--------------------+----------------------------------+------------+\n| ``len(s)`` | length of *s* | |\n+--------------------+----------------------------------+------------+\n| ``min(s)`` | smallest item of *s* | |\n+--------------------+----------------------------------+------------+\n| ``max(s)`` | largest item of *s* | |\n+--------------------+----------------------------------+------------+\n| ``s.index(i)`` | index of the first occurence of | |\n| | *i* in *s* | |\n+--------------------+----------------------------------+------------+\n| ``s.count(i)`` | total number of occurences of | |\n| | *i* in *s* | |\n+--------------------+----------------------------------+------------+\n\nSequence types also support comparisons. In particular, tuples and\nlists are compared lexicographically by comparing corresponding\nelements. This means that to compare equal, every element must compare\nequal and the two sequences