Home | History | Annotate | Download | only in pydoc_data

Lines Matching full:nmodules

43  'import': '\nThe ``import`` statement\n************************\n\n   import_stmt     ::= "import" module ["as" name] ( "," module ["as" name] )*\n                   | "from" relative_module "import" identifier ["as" name]\n                   ( "," identifier ["as" name] )*\n                   | "from" relative_module "import" "(" identifier ["as" name]\n                   ( "," identifier ["as" name] )* [","] ")"\n                   | "from" module "import" "*"\n   module          ::= (identifier ".")* identifier\n   relative_module ::= "."* module | "."+\n   name            ::= identifier\n\nImport statements are executed in two steps: (1) find a module, and\ninitialize it if necessary; (2) define a name or names in the local\nnamespace (of the scope where the ``import`` statement occurs). The\nstatement comes in two forms differing on whether it uses the ``from``\nkeyword. The first form (without ``from``) repeats these steps for\neach identifier in the list. The form with ``from`` performs step (1)\nonce, and then performs step (2) repeatedly.\n\nTo understand how step (1) occurs, one must first understand how\nPython handles hierarchical naming of modules. To help organize\nmodules and provide a hierarchy in naming, Python has a concept of\npackages. A package can contain other packages and modules while\nmodules
67 'types': '\nThe standard type hierarchy\n***************************\n\nBelow is a list of the types that are built into Python. Extension\nmodules.\n\n Function objects also support getting and setting arbitrary\n attributes, which can be used, for example, to attach metadata\n to functions. Regular attribute dot-notation is used to get and\n set such attributes. *Note that the current implementation only\n supports function attributes on user-defined functions. Function\n attributes on built-in functions may be supported in the\n future.*\n\n Additional information about a function\'s definition can be\n retrieved from its code object; see the description of internal\n types below.\n\n User-defined methods\n A user-defined method object combines a class, a class instance\n (or ``None``) and any callable object (normally a user-defined\n function).\n\n Special read-only attributes: ``im_self`` is the class instance\n object, ``im_func`` is the function object; ``im_class`` is the\n class of ``im_self`` for bound methods or the class that asked\n for the method for unbound methods; ``__doc__`` is the method\'s\n documentation (same as ``im_func.__doc__``); ``__name__`` is the\n method name (same as ``im_func.__name__``); ``__module__`` is\n the name of the module the method was defined in, or ``None`` if\n unavailable.\n\n Changed in version 2.2: ``im_self`` used to refer to the class\n that defined the method.\n\n Changed in version 2.6: For Python 3 forward-compatibility,\n ``im_func`` is also available as ``__func__``, and ``im_self``\n as ``__self__``.\n\n Methods also support accessing (but not setting) the arbitrary\n function attributes on the underlying function object.\n\n User-defined method objects may be created when getting an\n attribute of a class (perhaps via an instance of that class), if\n that attribute is a user-defined function object, an unbound\n user-defined method object, or a class method object. When the\n attribute is a user-defined method object, a new method object\n is only created if the class from which it is being retrieved is\n the same as, or a derived class of, the class stored in the\n original method object; otherwise, the original method object is\n used as it is.\n\n When a user-defined method object is created by retrieving a\n user-defined function object from a class, its ``im_self``\n attribute is ``None`` and the method object is said to be\n unbound. When one is created by retrieving a user-defined\n function object from a class via one of its instances, its\n ``im_self`` attribute is the instance, and the method object is\n said to be bound. In either case, the new method\'s ``im_class``\n attribute is the class from which the retrieval takes place, and\n its ``im_func`` attribute is the original function object.\n\n When a user-defined method object is created by retrieving\n another method object from a class or instance, the behaviour is\n the same as for a function object, except that the ``im_func``\n attribute of the new instance is not the original method object\n but its ``im_func`` attribute.\n\n When a user-defined method object is created by retrieving a\n class method object from a class or instance, its ``im_self``\n attribute is the class itself, and its ``im_func`` attribute is\n the function object underlying the class method.\n\n When an unbound user-defined method object is called, the\n underlying function (``im_func``) is called, with the\n restriction that the first argument must be an instance of the\n proper class (``im_class``) or of a derived class thereof.\n\n When a bound user-defined method object is called, the\n underlying function (``im_func``) is called, inserting the class\n instance (``im_self``) in front of the argument list. For\n instance, when ``C`` is a class which contains a definition for\n a function ``f()``, and ``x`` is an instance of ``C``, calling\n ``x.f(1)`` is equivalent to calling ``C.f(x, 1)``.\n\n When a user-defined method object is derived from a class method\n object, the "class instance" stored in ``im_self`` will actually\n be the class itself, so that calling either ``x.f(1)`` or\n ``C.f(1)`` is equivalent to calling ``f(C,1)`` where ``f`` is\n the underlying function.\n\n Note that the transformation from function object to (unbound or\n bound) method object happens each time the attribute is\n retrieved from the class or instance. In some cases, a fruitful\n optimization is to assign the attribute to a local variable and\n call that local variable. Also notice that this transformation\n only happens for user-defined functions; other callable objects\n (and all non-callable objects) are retrieved without\n transformation. It is also important to note that user-defined\n functions which are attributes of a class instance are not\n converted to bound methods; this *only* happens when the\n function is an attribute of the class.\n\n Generator functions\n A function or method which uses the ``yield`` statement (see\n section *The yield statement*) is called a *generator function*.\n Such a function, when called, always returns an iterator object\n which can be used to execute the body of the function: calling\n the iterator\'s ``next()`` method will cause the function to\n execute until it provides a value using the ``yield`` statement.\n When the function executes a ``return`` statement or falls off\n the end, a ``StopIteration`` exception is raised and the\n iterator will have reached the end of the set of values to be\n returned.\n\n Built-in functions\n A built-in function object is a wrapper around a C function.\n Examples of built-in functions are ``len()`` and ``math.sin()``\n (``math`` is a standard built-in module). The number and type of\n the arguments are determined by the C function. Special read-\n only attributes: ``__doc__`` is the function\'s documentation\n string, or ``None`` if unavailable; ``__name__`` is the\n function\'s name; ``__self__`` is set to ``None`` (but see the\n next item); ``__module__`` is the name of the module the\n function was defined in or ``None`` if unavailable.\n\n Built-in methods\n This is really a different disguise of a built-in function, this\n time containing an object passed to the C function as an\n implicit extra argument. An example of a built-in method is\n ``alist.append()``, assuming *alist* is a list object. In this\n case, the special read-only attribute ``__self__`` is set to the\n object denoted by *alist*.\n\n Class Types\n Class types, or "new-style classes," are callable. These\n objects normally act as factories for new instances of\n themselves, but variations are possible for class types that\n override ``__new__()``. The arguments of the call are passed to\n ``__new__()`` and, in the typical case, to ``__init__()`` to\n initialize the new instance.\n\n Classic Classes\n Class objects are described below. When a class object is\n called, a new class instance (also described below) is created\n and returned. This implies a call to the class\'s ``__init__()``\n method if it has one. Any arguments are passed on to the\n ``__init__()`` method. If there is no ``__init__()`` method,\n the class must be called without arguments.\n\n Class instances\n Class instances are described below. Class instances are\n callable only when the class has a ``__call__()`` method;\n ``x(arguments)`` is a shorthand for ``x.__call__(arguments)``.\n\nModules
71 'typesmodules': "\nModules\n*******\n\nThe only special operation on a module is attribute access:\n``m.name``, where *m* is a module and *name* accesses a name defined\nin *m*'s symbol table. Module attributes can be assigned to. (Note\nthat the ``import`` statement is not, strictly speaking, an operation\non a module object; ``import foo`` does not require a module object\nnamed *foo* to exist, rather it requires an (external) *definition*\nfor a module named *foo* somewhere.)\n\nA special attribute of every module is ``__dict__``. This is the\ndictionary containing the module's symbol table. Modifying this\ndictionary will actually change the module's symbol table, but direct\nassignment to the ``__dict__`` attribute is not possible (you can\nwrite ``m.__dict__['a'] = 1``, which defines ``m.a`` to be ``1``, but\nyou can't write ``m.__dict__ = {}``). Modifying ``__dict__`` directly\nis not recommended.\n\nModules built into the interpreter are written like this: ``<module\n'sys' (built-in)>``. If loaded from a file, they are written as\n``<module 'os' from '/usr/local/lib/pythonX.Y/os.pyc'>``.\n",