1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "reference_processor.h" 18 19 #include "base/time_utils.h" 20 #include "collector/garbage_collector.h" 21 #include "mirror/class-inl.h" 22 #include "mirror/object-inl.h" 23 #include "mirror/reference-inl.h" 24 #include "reference_processor-inl.h" 25 #include "reflection.h" 26 #include "ScopedLocalRef.h" 27 #include "scoped_thread_state_change.h" 28 #include "task_processor.h" 29 #include "utils.h" 30 #include "well_known_classes.h" 31 32 namespace art { 33 namespace gc { 34 35 static constexpr bool kAsyncReferenceQueueAdd = false; 36 37 ReferenceProcessor::ReferenceProcessor() 38 : collector_(nullptr), 39 preserving_references_(false), 40 condition_("reference processor condition", *Locks::reference_processor_lock_) , 41 soft_reference_queue_(Locks::reference_queue_soft_references_lock_), 42 weak_reference_queue_(Locks::reference_queue_weak_references_lock_), 43 finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_), 44 phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_), 45 cleared_references_(Locks::reference_queue_cleared_references_lock_) { 46 } 47 48 void ReferenceProcessor::EnableSlowPath() { 49 mirror::Reference::GetJavaLangRefReference()->SetSlowPath(true); 50 } 51 52 void ReferenceProcessor::DisableSlowPath(Thread* self) { 53 mirror::Reference::GetJavaLangRefReference()->SetSlowPath(false); 54 condition_.Broadcast(self); 55 } 56 57 void ReferenceProcessor::BroadcastForSlowPath(Thread* self) { 58 CHECK(kUseReadBarrier); 59 MutexLock mu(self, *Locks::reference_processor_lock_); 60 condition_.Broadcast(self); 61 } 62 63 mirror::Object* ReferenceProcessor::GetReferent(Thread* self, mirror::Reference* reference) { 64 if (!kUseReadBarrier || self->GetWeakRefAccessEnabled()) { 65 // Under read barrier / concurrent copying collector, it's not safe to call GetReferent() when 66 // weak ref access is disabled as the call includes a read barrier which may push a ref onto the 67 // mark stack and interfere with termination of marking. 68 mirror::Object* const referent = reference->GetReferent(); 69 // If the referent is null then it is already cleared, we can just return null since there is no 70 // scenario where it becomes non-null during the reference processing phase. 71 if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) { 72 return referent; 73 } 74 } 75 MutexLock mu(self, *Locks::reference_processor_lock_); 76 while ((!kUseReadBarrier && SlowPathEnabled()) || 77 (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) { 78 mirror::HeapReference<mirror::Object>* const referent_addr = 79 reference->GetReferentReferenceAddr(); 80 // If the referent became cleared, return it. Don't need barrier since thread roots can't get 81 // updated until after we leave the function due to holding the mutator lock. 82 if (referent_addr->AsMirrorPtr() == nullptr) { 83 return nullptr; 84 } 85 // Try to see if the referent is already marked by using the is_marked_callback. We can return 86 // it to the mutator as long as the GC is not preserving references. 87 if (LIKELY(collector_ != nullptr)) { 88 // If it's null it means not marked, but it could become marked if the referent is reachable 89 // by finalizer referents. So we cannot return in this case and must block. Otherwise, we 90 // can return it to the mutator as long as the GC is not preserving references, in which 91 // case only black nodes can be safely returned. If the GC is preserving references, the 92 // mutator could take a white field from a grey or white node and move it somewhere else 93 // in the heap causing corruption since this field would get swept. 94 if (collector_->IsMarkedHeapReference(referent_addr)) { 95 if (!preserving_references_ || 96 (LIKELY(!reference->IsFinalizerReferenceInstance()) && reference->IsUnprocessed())) { 97 return referent_addr->AsMirrorPtr(); 98 } 99 } 100 } 101 condition_.WaitHoldingLocks(self); 102 } 103 return reference->GetReferent(); 104 } 105 106 void ReferenceProcessor::StartPreservingReferences(Thread* self) { 107 MutexLock mu(self, *Locks::reference_processor_lock_); 108 preserving_references_ = true; 109 } 110 111 void ReferenceProcessor::StopPreservingReferences(Thread* self) { 112 MutexLock mu(self, *Locks::reference_processor_lock_); 113 preserving_references_ = false; 114 // We are done preserving references, some people who are blocked may see a marked referent. 115 condition_.Broadcast(self); 116 } 117 118 // Process reference class instances and schedule finalizations. 119 void ReferenceProcessor::ProcessReferences(bool concurrent, TimingLogger* timings, 120 bool clear_soft_references, 121 collector::GarbageCollector* collector) { 122 TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings); 123 Thread* self = Thread::Current(); 124 { 125 MutexLock mu(self, *Locks::reference_processor_lock_); 126 collector_ = collector; 127 if (!kUseReadBarrier) { 128 CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent"; 129 } else { 130 // Weak ref access is enabled at Zygote compaction by SemiSpace (concurrent == false). 131 CHECK_EQ(!self->GetWeakRefAccessEnabled(), concurrent); 132 } 133 } 134 // Unless required to clear soft references with white references, preserve some white referents. 135 if (!clear_soft_references) { 136 TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" : 137 "(Paused)ForwardSoftReferences", timings); 138 if (concurrent) { 139 StartPreservingReferences(self); 140 } 141 // TODO: Add smarter logic for preserving soft references. The behavior should be a conditional 142 // mark if the SoftReference is supposed to be preserved. 143 soft_reference_queue_.ForwardSoftReferences(collector); 144 collector->ProcessMarkStack(); 145 if (concurrent) { 146 StopPreservingReferences(self); 147 } 148 } 149 // Clear all remaining soft and weak references with white referents. 150 soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); 151 weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); 152 { 153 TimingLogger::ScopedTiming t2(concurrent ? "EnqueueFinalizerReferences" : 154 "(Paused)EnqueueFinalizerReferences", timings); 155 if (concurrent) { 156 StartPreservingReferences(self); 157 } 158 // Preserve all white objects with finalize methods and schedule them for finalization. 159 finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, collector); 160 collector->ProcessMarkStack(); 161 if (concurrent) { 162 StopPreservingReferences(self); 163 } 164 } 165 // Clear all finalizer referent reachable soft and weak references with white referents. 166 soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); 167 weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); 168 // Clear all phantom references with white referents. 169 phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, collector); 170 // At this point all reference queues other than the cleared references should be empty. 171 DCHECK(soft_reference_queue_.IsEmpty()); 172 DCHECK(weak_reference_queue_.IsEmpty()); 173 DCHECK(finalizer_reference_queue_.IsEmpty()); 174 DCHECK(phantom_reference_queue_.IsEmpty()); 175 { 176 MutexLock mu(self, *Locks::reference_processor_lock_); 177 // Need to always do this since the next GC may be concurrent. Doing this for only concurrent 178 // could result in a stale is_marked_callback_ being called before the reference processing 179 // starts since there is a small window of time where slow_path_enabled_ is enabled but the 180 // callback isn't yet set. 181 collector_ = nullptr; 182 if (!kUseReadBarrier && concurrent) { 183 // Done processing, disable the slow path and broadcast to the waiters. 184 DisableSlowPath(self); 185 } 186 } 187 } 188 189 // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been 190 // marked, put it on the appropriate list in the heap for later processing. 191 void ReferenceProcessor::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref, 192 collector::GarbageCollector* collector) { 193 // klass can be the class of the old object if the visitor already updated the class of ref. 194 DCHECK(klass != nullptr); 195 DCHECK(klass->IsTypeOfReferenceClass()); 196 mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr(); 197 if (referent->AsMirrorPtr() != nullptr && !collector->IsMarkedHeapReference(referent)) { 198 Thread* self = Thread::Current(); 199 // TODO: Remove these locks, and use atomic stacks for storing references? 200 // We need to check that the references haven't already been enqueued since we can end up 201 // scanning the same reference multiple times due to dirty cards. 202 if (klass->IsSoftReferenceClass()) { 203 soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 204 } else if (klass->IsWeakReferenceClass()) { 205 weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 206 } else if (klass->IsFinalizerReferenceClass()) { 207 finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 208 } else if (klass->IsPhantomReferenceClass()) { 209 phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref); 210 } else { 211 LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex 212 << klass->GetAccessFlags(); 213 } 214 } 215 } 216 217 void ReferenceProcessor::UpdateRoots(IsMarkedVisitor* visitor) { 218 cleared_references_.UpdateRoots(visitor); 219 } 220 221 class ClearedReferenceTask : public HeapTask { 222 public: 223 explicit ClearedReferenceTask(jobject cleared_references) 224 : HeapTask(NanoTime()), cleared_references_(cleared_references) { 225 } 226 virtual void Run(Thread* thread) { 227 ScopedObjectAccess soa(thread); 228 jvalue args[1]; 229 args[0].l = cleared_references_; 230 InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args); 231 soa.Env()->DeleteGlobalRef(cleared_references_); 232 } 233 234 private: 235 const jobject cleared_references_; 236 }; 237 238 void ReferenceProcessor::EnqueueClearedReferences(Thread* self) { 239 Locks::mutator_lock_->AssertNotHeld(self); 240 // When a runtime isn't started there are no reference queues to care about so ignore. 241 if (!cleared_references_.IsEmpty()) { 242 if (LIKELY(Runtime::Current()->IsStarted())) { 243 jobject cleared_references; 244 { 245 ReaderMutexLock mu(self, *Locks::mutator_lock_); 246 cleared_references = self->GetJniEnv()->vm->AddGlobalRef( 247 self, cleared_references_.GetList()); 248 } 249 if (kAsyncReferenceQueueAdd) { 250 // TODO: This can cause RunFinalization to terminate before newly freed objects are 251 // finalized since they may not be enqueued by the time RunFinalization starts. 252 Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask( 253 self, new ClearedReferenceTask(cleared_references)); 254 } else { 255 ClearedReferenceTask task(cleared_references); 256 task.Run(self); 257 } 258 } 259 cleared_references_.Clear(); 260 } 261 } 262 263 bool ReferenceProcessor::MakeCircularListIfUnenqueued(mirror::FinalizerReference* reference) { 264 Thread* self = Thread::Current(); 265 MutexLock mu(self, *Locks::reference_processor_lock_); 266 // Wait untul we are done processing reference. 267 while ((!kUseReadBarrier && SlowPathEnabled()) || 268 (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) { 269 condition_.WaitHoldingLocks(self); 270 } 271 // At this point, since the sentinel of the reference is live, it is guaranteed to not be 272 // enqueued if we just finished processing references. Otherwise, we may be doing the main GC 273 // phase. Since we are holding the reference processor lock, it guarantees that reference 274 // processing can't begin. The GC could have just enqueued the reference one one of the internal 275 // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this 276 // race. 277 MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_); 278 if (reference->IsUnprocessed()) { 279 CHECK(reference->IsFinalizerReferenceInstance()); 280 reference->SetPendingNext(reference); 281 return true; 282 } 283 return false; 284 } 285 286 } // namespace gc 287 } // namespace art 288