Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides Sema routines for C++ exception specification testing.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/AST/ASTMutationListener.h"
     16 #include "clang/AST/CXXInheritance.h"
     17 #include "clang/AST/Expr.h"
     18 #include "clang/AST/ExprCXX.h"
     19 #include "clang/AST/TypeLoc.h"
     20 #include "clang/Basic/Diagnostic.h"
     21 #include "clang/Basic/SourceManager.h"
     22 #include "llvm/ADT/SmallPtrSet.h"
     23 #include "llvm/ADT/SmallString.h"
     24 
     25 namespace clang {
     26 
     27 static const FunctionProtoType *GetUnderlyingFunction(QualType T)
     28 {
     29   if (const PointerType *PtrTy = T->getAs<PointerType>())
     30     T = PtrTy->getPointeeType();
     31   else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
     32     T = RefTy->getPointeeType();
     33   else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
     34     T = MPTy->getPointeeType();
     35   return T->getAs<FunctionProtoType>();
     36 }
     37 
     38 /// HACK: libstdc++ has a bug where it shadows std::swap with a member
     39 /// swap function then tries to call std::swap unqualified from the exception
     40 /// specification of that function. This function detects whether we're in
     41 /// such a case and turns off delay-parsing of exception specifications.
     42 bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) {
     43   auto *RD = dyn_cast<CXXRecordDecl>(CurContext);
     44 
     45   // All the problem cases are member functions named "swap" within class
     46   // templates declared directly within namespace std.
     47   if (!RD || RD->getEnclosingNamespaceContext() != getStdNamespace() ||
     48       !RD->getIdentifier() || !RD->getDescribedClassTemplate() ||
     49       !D.getIdentifier() || !D.getIdentifier()->isStr("swap"))
     50     return false;
     51 
     52   // Only apply this hack within a system header.
     53   if (!Context.getSourceManager().isInSystemHeader(D.getLocStart()))
     54     return false;
     55 
     56   return llvm::StringSwitch<bool>(RD->getIdentifier()->getName())
     57       .Case("array", true)
     58       .Case("pair", true)
     59       .Case("priority_queue", true)
     60       .Case("stack", true)
     61       .Case("queue", true)
     62       .Default(false);
     63 }
     64 
     65 /// CheckSpecifiedExceptionType - Check if the given type is valid in an
     66 /// exception specification. Incomplete types, or pointers to incomplete types
     67 /// other than void are not allowed.
     68 ///
     69 /// \param[in,out] T  The exception type. This will be decayed to a pointer type
     70 ///                   when the input is an array or a function type.
     71 bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) {
     72   // C++11 [except.spec]p2:
     73   //   A type cv T, "array of T", or "function returning T" denoted
     74   //   in an exception-specification is adjusted to type T, "pointer to T", or
     75   //   "pointer to function returning T", respectively.
     76   //
     77   // We also apply this rule in C++98.
     78   if (T->isArrayType())
     79     T = Context.getArrayDecayedType(T);
     80   else if (T->isFunctionType())
     81     T = Context.getPointerType(T);
     82 
     83   int Kind = 0;
     84   QualType PointeeT = T;
     85   if (const PointerType *PT = T->getAs<PointerType>()) {
     86     PointeeT = PT->getPointeeType();
     87     Kind = 1;
     88 
     89     // cv void* is explicitly permitted, despite being a pointer to an
     90     // incomplete type.
     91     if (PointeeT->isVoidType())
     92       return false;
     93   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
     94     PointeeT = RT->getPointeeType();
     95     Kind = 2;
     96 
     97     if (RT->isRValueReferenceType()) {
     98       // C++11 [except.spec]p2:
     99       //   A type denoted in an exception-specification shall not denote [...]
    100       //   an rvalue reference type.
    101       Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
    102         << T << Range;
    103       return true;
    104     }
    105   }
    106 
    107   // C++11 [except.spec]p2:
    108   //   A type denoted in an exception-specification shall not denote an
    109   //   incomplete type other than a class currently being defined [...].
    110   //   A type denoted in an exception-specification shall not denote a
    111   //   pointer or reference to an incomplete type, other than (cv) void* or a
    112   //   pointer or reference to a class currently being defined.
    113   if (!(PointeeT->isRecordType() &&
    114         PointeeT->getAs<RecordType>()->isBeingDefined()) &&
    115       RequireCompleteType(Range.getBegin(), PointeeT,
    116                           diag::err_incomplete_in_exception_spec, Kind, Range))
    117     return true;
    118 
    119   return false;
    120 }
    121 
    122 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
    123 /// to member to a function with an exception specification. This means that
    124 /// it is invalid to add another level of indirection.
    125 bool Sema::CheckDistantExceptionSpec(QualType T) {
    126   if (const PointerType *PT = T->getAs<PointerType>())
    127     T = PT->getPointeeType();
    128   else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
    129     T = PT->getPointeeType();
    130   else
    131     return false;
    132 
    133   const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
    134   if (!FnT)
    135     return false;
    136 
    137   return FnT->hasExceptionSpec();
    138 }
    139 
    140 const FunctionProtoType *
    141 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
    142   if (FPT->getExceptionSpecType() == EST_Unparsed) {
    143     Diag(Loc, diag::err_exception_spec_not_parsed);
    144     return nullptr;
    145   }
    146 
    147   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
    148     return FPT;
    149 
    150   FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
    151   const FunctionProtoType *SourceFPT =
    152       SourceDecl->getType()->castAs<FunctionProtoType>();
    153 
    154   // If the exception specification has already been resolved, just return it.
    155   if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
    156     return SourceFPT;
    157 
    158   // Compute or instantiate the exception specification now.
    159   if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
    160     EvaluateImplicitExceptionSpec(Loc, cast<CXXMethodDecl>(SourceDecl));
    161   else
    162     InstantiateExceptionSpec(Loc, SourceDecl);
    163 
    164   const FunctionProtoType *Proto =
    165     SourceDecl->getType()->castAs<FunctionProtoType>();
    166   if (Proto->getExceptionSpecType() == clang::EST_Unparsed) {
    167     Diag(Loc, diag::err_exception_spec_not_parsed);
    168     Proto = nullptr;
    169   }
    170   return Proto;
    171 }
    172 
    173 void
    174 Sema::UpdateExceptionSpec(FunctionDecl *FD,
    175                           const FunctionProtoType::ExceptionSpecInfo &ESI) {
    176   // If we've fully resolved the exception specification, notify listeners.
    177   if (!isUnresolvedExceptionSpec(ESI.Type))
    178     if (auto *Listener = getASTMutationListener())
    179       Listener->ResolvedExceptionSpec(FD);
    180 
    181   for (auto *Redecl : FD->redecls())
    182     Context.adjustExceptionSpec(cast<FunctionDecl>(Redecl), ESI);
    183 }
    184 
    185 /// Determine whether a function has an implicitly-generated exception
    186 /// specification.
    187 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
    188   if (!isa<CXXDestructorDecl>(Decl) &&
    189       Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
    190       Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
    191     return false;
    192 
    193   // For a function that the user didn't declare:
    194   //  - if this is a destructor, its exception specification is implicit.
    195   //  - if this is 'operator delete' or 'operator delete[]', the exception
    196   //    specification is as-if an explicit exception specification was given
    197   //    (per [basic.stc.dynamic]p2).
    198   if (!Decl->getTypeSourceInfo())
    199     return isa<CXXDestructorDecl>(Decl);
    200 
    201   const FunctionProtoType *Ty =
    202     Decl->getTypeSourceInfo()->getType()->getAs<FunctionProtoType>();
    203   return !Ty->hasExceptionSpec();
    204 }
    205 
    206 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
    207   OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
    208   bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
    209   bool MissingExceptionSpecification = false;
    210   bool MissingEmptyExceptionSpecification = false;
    211 
    212   unsigned DiagID = diag::err_mismatched_exception_spec;
    213   bool ReturnValueOnError = true;
    214   if (getLangOpts().MicrosoftExt) {
    215     DiagID = diag::ext_mismatched_exception_spec;
    216     ReturnValueOnError = false;
    217   }
    218 
    219   // Check the types as written: they must match before any exception
    220   // specification adjustment is applied.
    221   if (!CheckEquivalentExceptionSpec(
    222         PDiag(DiagID), PDiag(diag::note_previous_declaration),
    223         Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
    224         New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
    225         &MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
    226         /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
    227     // C++11 [except.spec]p4 [DR1492]:
    228     //   If a declaration of a function has an implicit
    229     //   exception-specification, other declarations of the function shall
    230     //   not specify an exception-specification.
    231     if (getLangOpts().CPlusPlus11 &&
    232         hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
    233       Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
    234         << hasImplicitExceptionSpec(Old);
    235       if (Old->getLocation().isValid())
    236         Diag(Old->getLocation(), diag::note_previous_declaration);
    237     }
    238     return false;
    239   }
    240 
    241   // The failure was something other than an missing exception
    242   // specification; return an error, except in MS mode where this is a warning.
    243   if (!MissingExceptionSpecification)
    244     return ReturnValueOnError;
    245 
    246   const FunctionProtoType *NewProto =
    247     New->getType()->castAs<FunctionProtoType>();
    248 
    249   // The new function declaration is only missing an empty exception
    250   // specification "throw()". If the throw() specification came from a
    251   // function in a system header that has C linkage, just add an empty
    252   // exception specification to the "new" declaration. This is an
    253   // egregious workaround for glibc, which adds throw() specifications
    254   // to many libc functions as an optimization. Unfortunately, that
    255   // optimization isn't permitted by the C++ standard, so we're forced
    256   // to work around it here.
    257   if (MissingEmptyExceptionSpecification && NewProto &&
    258       (Old->getLocation().isInvalid() ||
    259        Context.getSourceManager().isInSystemHeader(Old->getLocation())) &&
    260       Old->isExternC()) {
    261     New->setType(Context.getFunctionType(
    262         NewProto->getReturnType(), NewProto->getParamTypes(),
    263         NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone)));
    264     return false;
    265   }
    266 
    267   const FunctionProtoType *OldProto =
    268     Old->getType()->castAs<FunctionProtoType>();
    269 
    270   FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType();
    271   if (ESI.Type == EST_Dynamic) {
    272     ESI.Exceptions = OldProto->exceptions();
    273   }
    274 
    275   if (ESI.Type == EST_ComputedNoexcept) {
    276     // For computed noexcept, we can't just take the expression from the old
    277     // prototype. It likely contains references to the old prototype's
    278     // parameters.
    279     New->setInvalidDecl();
    280   } else {
    281     // Update the type of the function with the appropriate exception
    282     // specification.
    283     New->setType(Context.getFunctionType(
    284         NewProto->getReturnType(), NewProto->getParamTypes(),
    285         NewProto->getExtProtoInfo().withExceptionSpec(ESI)));
    286   }
    287 
    288   if (getLangOpts().MicrosoftExt && ESI.Type != EST_ComputedNoexcept) {
    289     // Allow missing exception specifications in redeclarations as an extension.
    290     DiagID = diag::ext_ms_missing_exception_specification;
    291     ReturnValueOnError = false;
    292   } else if (New->isReplaceableGlobalAllocationFunction() &&
    293              ESI.Type != EST_ComputedNoexcept) {
    294     // Allow missing exception specifications in redeclarations as an extension,
    295     // when declaring a replaceable global allocation function.
    296     DiagID = diag::ext_missing_exception_specification;
    297     ReturnValueOnError = false;
    298   } else {
    299     DiagID = diag::err_missing_exception_specification;
    300     ReturnValueOnError = true;
    301   }
    302 
    303   // Warn about the lack of exception specification.
    304   SmallString<128> ExceptionSpecString;
    305   llvm::raw_svector_ostream OS(ExceptionSpecString);
    306   switch (OldProto->getExceptionSpecType()) {
    307   case EST_DynamicNone:
    308     OS << "throw()";
    309     break;
    310 
    311   case EST_Dynamic: {
    312     OS << "throw(";
    313     bool OnFirstException = true;
    314     for (const auto &E : OldProto->exceptions()) {
    315       if (OnFirstException)
    316         OnFirstException = false;
    317       else
    318         OS << ", ";
    319 
    320       OS << E.getAsString(getPrintingPolicy());
    321     }
    322     OS << ")";
    323     break;
    324   }
    325 
    326   case EST_BasicNoexcept:
    327     OS << "noexcept";
    328     break;
    329 
    330   case EST_ComputedNoexcept:
    331     OS << "noexcept(";
    332     assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr");
    333     OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy());
    334     OS << ")";
    335     break;
    336 
    337   default:
    338     llvm_unreachable("This spec type is compatible with none.");
    339   }
    340 
    341   SourceLocation FixItLoc;
    342   if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
    343     TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
    344     // FIXME: Preserve enough information so that we can produce a correct fixit
    345     // location when there is a trailing return type.
    346     if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>())
    347       if (!FTLoc.getTypePtr()->hasTrailingReturn())
    348         FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd());
    349   }
    350 
    351   if (FixItLoc.isInvalid())
    352     Diag(New->getLocation(), DiagID)
    353       << New << OS.str();
    354   else {
    355     Diag(New->getLocation(), DiagID)
    356       << New << OS.str()
    357       << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
    358   }
    359 
    360   if (Old->getLocation().isValid())
    361     Diag(Old->getLocation(), diag::note_previous_declaration);
    362 
    363   return ReturnValueOnError;
    364 }
    365 
    366 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent
    367 /// exception specifications. Exception specifications are equivalent if
    368 /// they allow exactly the same set of exception types. It does not matter how
    369 /// that is achieved. See C++ [except.spec]p2.
    370 bool Sema::CheckEquivalentExceptionSpec(
    371     const FunctionProtoType *Old, SourceLocation OldLoc,
    372     const FunctionProtoType *New, SourceLocation NewLoc) {
    373   unsigned DiagID = diag::err_mismatched_exception_spec;
    374   if (getLangOpts().MicrosoftExt)
    375     DiagID = diag::ext_mismatched_exception_spec;
    376   bool Result = CheckEquivalentExceptionSpec(PDiag(DiagID),
    377       PDiag(diag::note_previous_declaration), Old, OldLoc, New, NewLoc);
    378 
    379   // In Microsoft mode, mismatching exception specifications just cause a warning.
    380   if (getLangOpts().MicrosoftExt)
    381     return false;
    382   return Result;
    383 }
    384 
    385 /// CheckEquivalentExceptionSpec - Check if the two types have compatible
    386 /// exception specifications. See C++ [except.spec]p3.
    387 ///
    388 /// \return \c false if the exception specifications match, \c true if there is
    389 /// a problem. If \c true is returned, either a diagnostic has already been
    390 /// produced or \c *MissingExceptionSpecification is set to \c true.
    391 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
    392                                         const PartialDiagnostic & NoteID,
    393                                         const FunctionProtoType *Old,
    394                                         SourceLocation OldLoc,
    395                                         const FunctionProtoType *New,
    396                                         SourceLocation NewLoc,
    397                                         bool *MissingExceptionSpecification,
    398                                         bool*MissingEmptyExceptionSpecification,
    399                                         bool AllowNoexceptAllMatchWithNoSpec,
    400                                         bool IsOperatorNew) {
    401   // Just completely ignore this under -fno-exceptions.
    402   if (!getLangOpts().CXXExceptions)
    403     return false;
    404 
    405   if (MissingExceptionSpecification)
    406     *MissingExceptionSpecification = false;
    407 
    408   if (MissingEmptyExceptionSpecification)
    409     *MissingEmptyExceptionSpecification = false;
    410 
    411   Old = ResolveExceptionSpec(NewLoc, Old);
    412   if (!Old)
    413     return false;
    414   New = ResolveExceptionSpec(NewLoc, New);
    415   if (!New)
    416     return false;
    417 
    418   // C++0x [except.spec]p3: Two exception-specifications are compatible if:
    419   //   - both are non-throwing, regardless of their form,
    420   //   - both have the form noexcept(constant-expression) and the constant-
    421   //     expressions are equivalent,
    422   //   - both are dynamic-exception-specifications that have the same set of
    423   //     adjusted types.
    424   //
    425   // C++0x [except.spec]p12: An exception-specification is non-throwing if it is
    426   //   of the form throw(), noexcept, or noexcept(constant-expression) where the
    427   //   constant-expression yields true.
    428   //
    429   // C++0x [except.spec]p4: If any declaration of a function has an exception-
    430   //   specifier that is not a noexcept-specification allowing all exceptions,
    431   //   all declarations [...] of that function shall have a compatible
    432   //   exception-specification.
    433   //
    434   // That last point basically means that noexcept(false) matches no spec.
    435   // It's considered when AllowNoexceptAllMatchWithNoSpec is true.
    436 
    437   ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
    438   ExceptionSpecificationType NewEST = New->getExceptionSpecType();
    439 
    440   assert(!isUnresolvedExceptionSpec(OldEST) &&
    441          !isUnresolvedExceptionSpec(NewEST) &&
    442          "Shouldn't see unknown exception specifications here");
    443 
    444   // Shortcut the case where both have no spec.
    445   if (OldEST == EST_None && NewEST == EST_None)
    446     return false;
    447 
    448   FunctionProtoType::NoexceptResult OldNR = Old->getNoexceptSpec(Context);
    449   FunctionProtoType::NoexceptResult NewNR = New->getNoexceptSpec(Context);
    450   if (OldNR == FunctionProtoType::NR_BadNoexcept ||
    451       NewNR == FunctionProtoType::NR_BadNoexcept)
    452     return false;
    453 
    454   // Dependent noexcept specifiers are compatible with each other, but nothing
    455   // else.
    456   // One noexcept is compatible with another if the argument is the same
    457   if (OldNR == NewNR &&
    458       OldNR != FunctionProtoType::NR_NoNoexcept &&
    459       NewNR != FunctionProtoType::NR_NoNoexcept)
    460     return false;
    461   if (OldNR != NewNR &&
    462       OldNR != FunctionProtoType::NR_NoNoexcept &&
    463       NewNR != FunctionProtoType::NR_NoNoexcept) {
    464     Diag(NewLoc, DiagID);
    465     if (NoteID.getDiagID() != 0 && OldLoc.isValid())
    466       Diag(OldLoc, NoteID);
    467     return true;
    468   }
    469 
    470   // The MS extension throw(...) is compatible with itself.
    471   if (OldEST == EST_MSAny && NewEST == EST_MSAny)
    472     return false;
    473 
    474   // It's also compatible with no spec.
    475   if ((OldEST == EST_None && NewEST == EST_MSAny) ||
    476       (OldEST == EST_MSAny && NewEST == EST_None))
    477     return false;
    478 
    479   // It's also compatible with noexcept(false).
    480   if (OldEST == EST_MSAny && NewNR == FunctionProtoType::NR_Throw)
    481     return false;
    482   if (NewEST == EST_MSAny && OldNR == FunctionProtoType::NR_Throw)
    483     return false;
    484 
    485   // As described above, noexcept(false) matches no spec only for functions.
    486   if (AllowNoexceptAllMatchWithNoSpec) {
    487     if (OldEST == EST_None && NewNR == FunctionProtoType::NR_Throw)
    488       return false;
    489     if (NewEST == EST_None && OldNR == FunctionProtoType::NR_Throw)
    490       return false;
    491   }
    492 
    493   // Any non-throwing specifications are compatible.
    494   bool OldNonThrowing = OldNR == FunctionProtoType::NR_Nothrow ||
    495                         OldEST == EST_DynamicNone;
    496   bool NewNonThrowing = NewNR == FunctionProtoType::NR_Nothrow ||
    497                         NewEST == EST_DynamicNone;
    498   if (OldNonThrowing && NewNonThrowing)
    499     return false;
    500 
    501   // As a special compatibility feature, under C++0x we accept no spec and
    502   // throw(std::bad_alloc) as equivalent for operator new and operator new[].
    503   // This is because the implicit declaration changed, but old code would break.
    504   if (getLangOpts().CPlusPlus11 && IsOperatorNew) {
    505     const FunctionProtoType *WithExceptions = nullptr;
    506     if (OldEST == EST_None && NewEST == EST_Dynamic)
    507       WithExceptions = New;
    508     else if (OldEST == EST_Dynamic && NewEST == EST_None)
    509       WithExceptions = Old;
    510     if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
    511       // One has no spec, the other throw(something). If that something is
    512       // std::bad_alloc, all conditions are met.
    513       QualType Exception = *WithExceptions->exception_begin();
    514       if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
    515         IdentifierInfo* Name = ExRecord->getIdentifier();
    516         if (Name && Name->getName() == "bad_alloc") {
    517           // It's called bad_alloc, but is it in std?
    518           if (ExRecord->isInStdNamespace()) {
    519             return false;
    520           }
    521         }
    522       }
    523     }
    524   }
    525 
    526   // At this point, the only remaining valid case is two matching dynamic
    527   // specifications. We return here unless both specifications are dynamic.
    528   if (OldEST != EST_Dynamic || NewEST != EST_Dynamic) {
    529     if (MissingExceptionSpecification && Old->hasExceptionSpec() &&
    530         !New->hasExceptionSpec()) {
    531       // The old type has an exception specification of some sort, but
    532       // the new type does not.
    533       *MissingExceptionSpecification = true;
    534 
    535       if (MissingEmptyExceptionSpecification && OldNonThrowing) {
    536         // The old type has a throw() or noexcept(true) exception specification
    537         // and the new type has no exception specification, and the caller asked
    538         // to handle this itself.
    539         *MissingEmptyExceptionSpecification = true;
    540       }
    541 
    542       return true;
    543     }
    544 
    545     Diag(NewLoc, DiagID);
    546     if (NoteID.getDiagID() != 0 && OldLoc.isValid())
    547       Diag(OldLoc, NoteID);
    548     return true;
    549   }
    550 
    551   assert(OldEST == EST_Dynamic && NewEST == EST_Dynamic &&
    552       "Exception compatibility logic error: non-dynamic spec slipped through.");
    553 
    554   bool Success = true;
    555   // Both have a dynamic exception spec. Collect the first set, then compare
    556   // to the second.
    557   llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
    558   for (const auto &I : Old->exceptions())
    559     OldTypes.insert(Context.getCanonicalType(I).getUnqualifiedType());
    560 
    561   for (const auto &I : New->exceptions()) {
    562     CanQualType TypePtr = Context.getCanonicalType(I).getUnqualifiedType();
    563     if(OldTypes.count(TypePtr))
    564       NewTypes.insert(TypePtr);
    565     else
    566       Success = false;
    567   }
    568 
    569   Success = Success && OldTypes.size() == NewTypes.size();
    570 
    571   if (Success) {
    572     return false;
    573   }
    574   Diag(NewLoc, DiagID);
    575   if (NoteID.getDiagID() != 0 && OldLoc.isValid())
    576     Diag(OldLoc, NoteID);
    577   return true;
    578 }
    579 
    580 /// CheckExceptionSpecSubset - Check whether the second function type's
    581 /// exception specification is a subset (or equivalent) of the first function
    582 /// type. This is used by override and pointer assignment checks.
    583 bool Sema::CheckExceptionSpecSubset(
    584     const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
    585     const FunctionProtoType *Superset, SourceLocation SuperLoc,
    586     const FunctionProtoType *Subset, SourceLocation SubLoc) {
    587 
    588   // Just auto-succeed under -fno-exceptions.
    589   if (!getLangOpts().CXXExceptions)
    590     return false;
    591 
    592   // FIXME: As usual, we could be more specific in our error messages, but
    593   // that better waits until we've got types with source locations.
    594 
    595   if (!SubLoc.isValid())
    596     SubLoc = SuperLoc;
    597 
    598   // Resolve the exception specifications, if needed.
    599   Superset = ResolveExceptionSpec(SuperLoc, Superset);
    600   if (!Superset)
    601     return false;
    602   Subset = ResolveExceptionSpec(SubLoc, Subset);
    603   if (!Subset)
    604     return false;
    605 
    606   ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
    607 
    608   // If superset contains everything, we're done.
    609   if (SuperEST == EST_None || SuperEST == EST_MSAny)
    610     return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
    611 
    612   // If there are dependent noexcept specs, assume everything is fine. Unlike
    613   // with the equivalency check, this is safe in this case, because we don't
    614   // want to merge declarations. Checks after instantiation will catch any
    615   // omissions we make here.
    616   // We also shortcut checking if a noexcept expression was bad.
    617 
    618   FunctionProtoType::NoexceptResult SuperNR =Superset->getNoexceptSpec(Context);
    619   if (SuperNR == FunctionProtoType::NR_BadNoexcept ||
    620       SuperNR == FunctionProtoType::NR_Dependent)
    621     return false;
    622 
    623   // Another case of the superset containing everything.
    624   if (SuperNR == FunctionProtoType::NR_Throw)
    625     return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
    626 
    627   ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
    628 
    629   assert(!isUnresolvedExceptionSpec(SuperEST) &&
    630          !isUnresolvedExceptionSpec(SubEST) &&
    631          "Shouldn't see unknown exception specifications here");
    632 
    633   // It does not. If the subset contains everything, we've failed.
    634   if (SubEST == EST_None || SubEST == EST_MSAny) {
    635     Diag(SubLoc, DiagID);
    636     if (NoteID.getDiagID() != 0)
    637       Diag(SuperLoc, NoteID);
    638     return true;
    639   }
    640 
    641   FunctionProtoType::NoexceptResult SubNR = Subset->getNoexceptSpec(Context);
    642   if (SubNR == FunctionProtoType::NR_BadNoexcept ||
    643       SubNR == FunctionProtoType::NR_Dependent)
    644     return false;
    645 
    646   // Another case of the subset containing everything.
    647   if (SubNR == FunctionProtoType::NR_Throw) {
    648     Diag(SubLoc, DiagID);
    649     if (NoteID.getDiagID() != 0)
    650       Diag(SuperLoc, NoteID);
    651     return true;
    652   }
    653 
    654   // If the subset contains nothing, we're done.
    655   if (SubEST == EST_DynamicNone || SubNR == FunctionProtoType::NR_Nothrow)
    656     return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
    657 
    658   // Otherwise, if the superset contains nothing, we've failed.
    659   if (SuperEST == EST_DynamicNone || SuperNR == FunctionProtoType::NR_Nothrow) {
    660     Diag(SubLoc, DiagID);
    661     if (NoteID.getDiagID() != 0)
    662       Diag(SuperLoc, NoteID);
    663     return true;
    664   }
    665 
    666   assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
    667          "Exception spec subset: non-dynamic case slipped through.");
    668 
    669   // Neither contains everything or nothing. Do a proper comparison.
    670   for (const auto &SubI : Subset->exceptions()) {
    671     // Take one type from the subset.
    672     QualType CanonicalSubT = Context.getCanonicalType(SubI);
    673     // Unwrap pointers and references so that we can do checks within a class
    674     // hierarchy. Don't unwrap member pointers; they don't have hierarchy
    675     // conversions on the pointee.
    676     bool SubIsPointer = false;
    677     if (const ReferenceType *RefTy = CanonicalSubT->getAs<ReferenceType>())
    678       CanonicalSubT = RefTy->getPointeeType();
    679     if (const PointerType *PtrTy = CanonicalSubT->getAs<PointerType>()) {
    680       CanonicalSubT = PtrTy->getPointeeType();
    681       SubIsPointer = true;
    682     }
    683     bool SubIsClass = CanonicalSubT->isRecordType();
    684     CanonicalSubT = CanonicalSubT.getLocalUnqualifiedType();
    685 
    686     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
    687                        /*DetectVirtual=*/false);
    688 
    689     bool Contained = false;
    690     // Make sure it's in the superset.
    691     for (const auto &SuperI : Superset->exceptions()) {
    692       QualType CanonicalSuperT = Context.getCanonicalType(SuperI);
    693       // SubT must be SuperT or derived from it, or pointer or reference to
    694       // such types.
    695       if (const ReferenceType *RefTy = CanonicalSuperT->getAs<ReferenceType>())
    696         CanonicalSuperT = RefTy->getPointeeType();
    697       if (SubIsPointer) {
    698         if (const PointerType *PtrTy = CanonicalSuperT->getAs<PointerType>())
    699           CanonicalSuperT = PtrTy->getPointeeType();
    700         else {
    701           continue;
    702         }
    703       }
    704       CanonicalSuperT = CanonicalSuperT.getLocalUnqualifiedType();
    705       // If the types are the same, move on to the next type in the subset.
    706       if (CanonicalSubT == CanonicalSuperT) {
    707         Contained = true;
    708         break;
    709       }
    710 
    711       // Otherwise we need to check the inheritance.
    712       if (!SubIsClass || !CanonicalSuperT->isRecordType())
    713         continue;
    714 
    715       Paths.clear();
    716       if (!IsDerivedFrom(SubLoc, CanonicalSubT, CanonicalSuperT, Paths))
    717         continue;
    718 
    719       if (Paths.isAmbiguous(Context.getCanonicalType(CanonicalSuperT)))
    720         continue;
    721 
    722       // Do this check from a context without privileges.
    723       switch (CheckBaseClassAccess(SourceLocation(),
    724                                    CanonicalSuperT, CanonicalSubT,
    725                                    Paths.front(),
    726                                    /*Diagnostic*/ 0,
    727                                    /*ForceCheck*/ true,
    728                                    /*ForceUnprivileged*/ true)) {
    729       case AR_accessible: break;
    730       case AR_inaccessible: continue;
    731       case AR_dependent:
    732         llvm_unreachable("access check dependent for unprivileged context");
    733       case AR_delayed:
    734         llvm_unreachable("access check delayed in non-declaration");
    735       }
    736 
    737       Contained = true;
    738       break;
    739     }
    740     if (!Contained) {
    741       Diag(SubLoc, DiagID);
    742       if (NoteID.getDiagID() != 0)
    743         Diag(SuperLoc, NoteID);
    744       return true;
    745     }
    746   }
    747   // We've run half the gauntlet.
    748   return CheckParamExceptionSpec(NoteID, Superset, SuperLoc, Subset, SubLoc);
    749 }
    750 
    751 static bool CheckSpecForTypesEquivalent(Sema &S,
    752     const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
    753     QualType Target, SourceLocation TargetLoc,
    754     QualType Source, SourceLocation SourceLoc)
    755 {
    756   const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
    757   if (!TFunc)
    758     return false;
    759   const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
    760   if (!SFunc)
    761     return false;
    762 
    763   return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
    764                                         SFunc, SourceLoc);
    765 }
    766 
    767 /// CheckParamExceptionSpec - Check if the parameter and return types of the
    768 /// two functions have equivalent exception specs. This is part of the
    769 /// assignment and override compatibility check. We do not check the parameters
    770 /// of parameter function pointers recursively, as no sane programmer would
    771 /// even be able to write such a function type.
    772 bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &NoteID,
    773                                    const FunctionProtoType *Target,
    774                                    SourceLocation TargetLoc,
    775                                    const FunctionProtoType *Source,
    776                                    SourceLocation SourceLoc) {
    777   if (CheckSpecForTypesEquivalent(
    778           *this, PDiag(diag::err_deep_exception_specs_differ) << 0, PDiag(),
    779           Target->getReturnType(), TargetLoc, Source->getReturnType(),
    780           SourceLoc))
    781     return true;
    782 
    783   // We shouldn't even be testing this unless the arguments are otherwise
    784   // compatible.
    785   assert(Target->getNumParams() == Source->getNumParams() &&
    786          "Functions have different argument counts.");
    787   for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) {
    788     if (CheckSpecForTypesEquivalent(
    789             *this, PDiag(diag::err_deep_exception_specs_differ) << 1, PDiag(),
    790             Target->getParamType(i), TargetLoc, Source->getParamType(i),
    791             SourceLoc))
    792       return true;
    793   }
    794   return false;
    795 }
    796 
    797 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) {
    798   // First we check for applicability.
    799   // Target type must be a function, function pointer or function reference.
    800   const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
    801   if (!ToFunc || ToFunc->hasDependentExceptionSpec())
    802     return false;
    803 
    804   // SourceType must be a function or function pointer.
    805   const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
    806   if (!FromFunc || FromFunc->hasDependentExceptionSpec())
    807     return false;
    808 
    809   // Now we've got the correct types on both sides, check their compatibility.
    810   // This means that the source of the conversion can only throw a subset of
    811   // the exceptions of the target, and any exception specs on arguments or
    812   // return types must be equivalent.
    813   //
    814   // FIXME: If there is a nested dependent exception specification, we should
    815   // not be checking it here. This is fine:
    816   //   template<typename T> void f() {
    817   //     void (*p)(void (*) throw(T));
    818   //     void (*q)(void (*) throw(int)) = p;
    819   //   }
    820   // ... because it might be instantiated with T=int.
    821   return CheckExceptionSpecSubset(PDiag(diag::err_incompatible_exception_specs),
    822                                   PDiag(), ToFunc,
    823                                   From->getSourceRange().getBegin(),
    824                                   FromFunc, SourceLocation());
    825 }
    826 
    827 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
    828                                                 const CXXMethodDecl *Old) {
    829   // If the new exception specification hasn't been parsed yet, skip the check.
    830   // We'll get called again once it's been parsed.
    831   if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
    832       EST_Unparsed)
    833     return false;
    834   if (getLangOpts().CPlusPlus11 && isa<CXXDestructorDecl>(New)) {
    835     // Don't check uninstantiated template destructors at all. We can only
    836     // synthesize correct specs after the template is instantiated.
    837     if (New->getParent()->isDependentType())
    838       return false;
    839     if (New->getParent()->isBeingDefined()) {
    840       // The destructor might be updated once the definition is finished. So
    841       // remember it and check later.
    842       DelayedExceptionSpecChecks.push_back(std::make_pair(New, Old));
    843       return false;
    844     }
    845   }
    846   // If the old exception specification hasn't been parsed yet, remember that
    847   // we need to perform this check when we get to the end of the outermost
    848   // lexically-surrounding class.
    849   if (Old->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
    850       EST_Unparsed) {
    851     DelayedExceptionSpecChecks.push_back(std::make_pair(New, Old));
    852     return false;
    853   }
    854   unsigned DiagID = diag::err_override_exception_spec;
    855   if (getLangOpts().MicrosoftExt)
    856     DiagID = diag::ext_override_exception_spec;
    857   return CheckExceptionSpecSubset(PDiag(DiagID),
    858                                   PDiag(diag::note_overridden_virtual_function),
    859                                   Old->getType()->getAs<FunctionProtoType>(),
    860                                   Old->getLocation(),
    861                                   New->getType()->getAs<FunctionProtoType>(),
    862                                   New->getLocation());
    863 }
    864 
    865 static CanThrowResult canSubExprsThrow(Sema &S, const Expr *E) {
    866   CanThrowResult R = CT_Cannot;
    867   for (const Stmt *SubStmt : E->children()) {
    868     R = mergeCanThrow(R, S.canThrow(cast<Expr>(SubStmt)));
    869     if (R == CT_Can)
    870       break;
    871   }
    872   return R;
    873 }
    874 
    875 static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D) {
    876   assert(D && "Expected decl");
    877 
    878   // See if we can get a function type from the decl somehow.
    879   const ValueDecl *VD = dyn_cast<ValueDecl>(D);
    880   if (!VD) // If we have no clue what we're calling, assume the worst.
    881     return CT_Can;
    882 
    883   // As an extension, we assume that __attribute__((nothrow)) functions don't
    884   // throw.
    885   if (isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
    886     return CT_Cannot;
    887 
    888   QualType T = VD->getType();
    889   const FunctionProtoType *FT;
    890   if ((FT = T->getAs<FunctionProtoType>())) {
    891   } else if (const PointerType *PT = T->getAs<PointerType>())
    892     FT = PT->getPointeeType()->getAs<FunctionProtoType>();
    893   else if (const ReferenceType *RT = T->getAs<ReferenceType>())
    894     FT = RT->getPointeeType()->getAs<FunctionProtoType>();
    895   else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
    896     FT = MT->getPointeeType()->getAs<FunctionProtoType>();
    897   else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
    898     FT = BT->getPointeeType()->getAs<FunctionProtoType>();
    899 
    900   if (!FT)
    901     return CT_Can;
    902 
    903   FT = S.ResolveExceptionSpec(E->getLocStart(), FT);
    904   if (!FT)
    905     return CT_Can;
    906 
    907   return FT->isNothrow(S.Context) ? CT_Cannot : CT_Can;
    908 }
    909 
    910 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
    911   if (DC->isTypeDependent())
    912     return CT_Dependent;
    913 
    914   if (!DC->getTypeAsWritten()->isReferenceType())
    915     return CT_Cannot;
    916 
    917   if (DC->getSubExpr()->isTypeDependent())
    918     return CT_Dependent;
    919 
    920   return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
    921 }
    922 
    923 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
    924   if (DC->isTypeOperand())
    925     return CT_Cannot;
    926 
    927   Expr *Op = DC->getExprOperand();
    928   if (Op->isTypeDependent())
    929     return CT_Dependent;
    930 
    931   const RecordType *RT = Op->getType()->getAs<RecordType>();
    932   if (!RT)
    933     return CT_Cannot;
    934 
    935   if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
    936     return CT_Cannot;
    937 
    938   if (Op->Classify(S.Context).isPRValue())
    939     return CT_Cannot;
    940 
    941   return CT_Can;
    942 }
    943 
    944 CanThrowResult Sema::canThrow(const Expr *E) {
    945   // C++ [expr.unary.noexcept]p3:
    946   //   [Can throw] if in a potentially-evaluated context the expression would
    947   //   contain:
    948   switch (E->getStmtClass()) {
    949   case Expr::CXXThrowExprClass:
    950     //   - a potentially evaluated throw-expression
    951     return CT_Can;
    952 
    953   case Expr::CXXDynamicCastExprClass: {
    954     //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
    955     //     where T is a reference type, that requires a run-time check
    956     CanThrowResult CT = canDynamicCastThrow(cast<CXXDynamicCastExpr>(E));
    957     if (CT == CT_Can)
    958       return CT;
    959     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
    960   }
    961 
    962   case Expr::CXXTypeidExprClass:
    963     //   - a potentially evaluated typeid expression applied to a glvalue
    964     //     expression whose type is a polymorphic class type
    965     return canTypeidThrow(*this, cast<CXXTypeidExpr>(E));
    966 
    967     //   - a potentially evaluated call to a function, member function, function
    968     //     pointer, or member function pointer that does not have a non-throwing
    969     //     exception-specification
    970   case Expr::CallExprClass:
    971   case Expr::CXXMemberCallExprClass:
    972   case Expr::CXXOperatorCallExprClass:
    973   case Expr::UserDefinedLiteralClass: {
    974     const CallExpr *CE = cast<CallExpr>(E);
    975     CanThrowResult CT;
    976     if (E->isTypeDependent())
    977       CT = CT_Dependent;
    978     else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
    979       CT = CT_Cannot;
    980     else if (CE->getCalleeDecl())
    981       CT = canCalleeThrow(*this, E, CE->getCalleeDecl());
    982     else
    983       CT = CT_Can;
    984     if (CT == CT_Can)
    985       return CT;
    986     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
    987   }
    988 
    989   case Expr::CXXConstructExprClass:
    990   case Expr::CXXTemporaryObjectExprClass: {
    991     CanThrowResult CT = canCalleeThrow(*this, E,
    992         cast<CXXConstructExpr>(E)->getConstructor());
    993     if (CT == CT_Can)
    994       return CT;
    995     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
    996   }
    997 
    998   case Expr::LambdaExprClass: {
    999     const LambdaExpr *Lambda = cast<LambdaExpr>(E);
   1000     CanThrowResult CT = CT_Cannot;
   1001     for (LambdaExpr::const_capture_init_iterator
   1002              Cap = Lambda->capture_init_begin(),
   1003              CapEnd = Lambda->capture_init_end();
   1004          Cap != CapEnd; ++Cap)
   1005       CT = mergeCanThrow(CT, canThrow(*Cap));
   1006     return CT;
   1007   }
   1008 
   1009   case Expr::CXXNewExprClass: {
   1010     CanThrowResult CT;
   1011     if (E->isTypeDependent())
   1012       CT = CT_Dependent;
   1013     else
   1014       CT = canCalleeThrow(*this, E, cast<CXXNewExpr>(E)->getOperatorNew());
   1015     if (CT == CT_Can)
   1016       return CT;
   1017     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
   1018   }
   1019 
   1020   case Expr::CXXDeleteExprClass: {
   1021     CanThrowResult CT;
   1022     QualType DTy = cast<CXXDeleteExpr>(E)->getDestroyedType();
   1023     if (DTy.isNull() || DTy->isDependentType()) {
   1024       CT = CT_Dependent;
   1025     } else {
   1026       CT = canCalleeThrow(*this, E,
   1027                           cast<CXXDeleteExpr>(E)->getOperatorDelete());
   1028       if (const RecordType *RT = DTy->getAs<RecordType>()) {
   1029         const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   1030         const CXXDestructorDecl *DD = RD->getDestructor();
   1031         if (DD)
   1032           CT = mergeCanThrow(CT, canCalleeThrow(*this, E, DD));
   1033       }
   1034       if (CT == CT_Can)
   1035         return CT;
   1036     }
   1037     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
   1038   }
   1039 
   1040   case Expr::CXXBindTemporaryExprClass: {
   1041     // The bound temporary has to be destroyed again, which might throw.
   1042     CanThrowResult CT = canCalleeThrow(*this, E,
   1043       cast<CXXBindTemporaryExpr>(E)->getTemporary()->getDestructor());
   1044     if (CT == CT_Can)
   1045       return CT;
   1046     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
   1047   }
   1048 
   1049     // ObjC message sends are like function calls, but never have exception
   1050     // specs.
   1051   case Expr::ObjCMessageExprClass:
   1052   case Expr::ObjCPropertyRefExprClass:
   1053   case Expr::ObjCSubscriptRefExprClass:
   1054     return CT_Can;
   1055 
   1056     // All the ObjC literals that are implemented as calls are
   1057     // potentially throwing unless we decide to close off that
   1058     // possibility.
   1059   case Expr::ObjCArrayLiteralClass:
   1060   case Expr::ObjCDictionaryLiteralClass:
   1061   case Expr::ObjCBoxedExprClass:
   1062     return CT_Can;
   1063 
   1064     // Many other things have subexpressions, so we have to test those.
   1065     // Some are simple:
   1066   case Expr::CoawaitExprClass:
   1067   case Expr::ConditionalOperatorClass:
   1068   case Expr::CompoundLiteralExprClass:
   1069   case Expr::CoyieldExprClass:
   1070   case Expr::CXXConstCastExprClass:
   1071   case Expr::CXXReinterpretCastExprClass:
   1072   case Expr::CXXStdInitializerListExprClass:
   1073   case Expr::DesignatedInitExprClass:
   1074   case Expr::DesignatedInitUpdateExprClass:
   1075   case Expr::ExprWithCleanupsClass:
   1076   case Expr::ExtVectorElementExprClass:
   1077   case Expr::InitListExprClass:
   1078   case Expr::MemberExprClass:
   1079   case Expr::ObjCIsaExprClass:
   1080   case Expr::ObjCIvarRefExprClass:
   1081   case Expr::ParenExprClass:
   1082   case Expr::ParenListExprClass:
   1083   case Expr::ShuffleVectorExprClass:
   1084   case Expr::ConvertVectorExprClass:
   1085   case Expr::VAArgExprClass:
   1086     return canSubExprsThrow(*this, E);
   1087 
   1088     // Some might be dependent for other reasons.
   1089   case Expr::ArraySubscriptExprClass:
   1090   case Expr::OMPArraySectionExprClass:
   1091   case Expr::BinaryOperatorClass:
   1092   case Expr::CompoundAssignOperatorClass:
   1093   case Expr::CStyleCastExprClass:
   1094   case Expr::CXXStaticCastExprClass:
   1095   case Expr::CXXFunctionalCastExprClass:
   1096   case Expr::ImplicitCastExprClass:
   1097   case Expr::MaterializeTemporaryExprClass:
   1098   case Expr::UnaryOperatorClass: {
   1099     CanThrowResult CT = E->isTypeDependent() ? CT_Dependent : CT_Cannot;
   1100     return mergeCanThrow(CT, canSubExprsThrow(*this, E));
   1101   }
   1102 
   1103     // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
   1104   case Expr::StmtExprClass:
   1105     return CT_Can;
   1106 
   1107   case Expr::CXXDefaultArgExprClass:
   1108     return canThrow(cast<CXXDefaultArgExpr>(E)->getExpr());
   1109 
   1110   case Expr::CXXDefaultInitExprClass:
   1111     return canThrow(cast<CXXDefaultInitExpr>(E)->getExpr());
   1112 
   1113   case Expr::ChooseExprClass:
   1114     if (E->isTypeDependent() || E->isValueDependent())
   1115       return CT_Dependent;
   1116     return canThrow(cast<ChooseExpr>(E)->getChosenSubExpr());
   1117 
   1118   case Expr::GenericSelectionExprClass:
   1119     if (cast<GenericSelectionExpr>(E)->isResultDependent())
   1120       return CT_Dependent;
   1121     return canThrow(cast<GenericSelectionExpr>(E)->getResultExpr());
   1122 
   1123     // Some expressions are always dependent.
   1124   case Expr::CXXDependentScopeMemberExprClass:
   1125   case Expr::CXXUnresolvedConstructExprClass:
   1126   case Expr::DependentScopeDeclRefExprClass:
   1127   case Expr::CXXFoldExprClass:
   1128     return CT_Dependent;
   1129 
   1130   case Expr::AsTypeExprClass:
   1131   case Expr::BinaryConditionalOperatorClass:
   1132   case Expr::BlockExprClass:
   1133   case Expr::CUDAKernelCallExprClass:
   1134   case Expr::DeclRefExprClass:
   1135   case Expr::ObjCBridgedCastExprClass:
   1136   case Expr::ObjCIndirectCopyRestoreExprClass:
   1137   case Expr::ObjCProtocolExprClass:
   1138   case Expr::ObjCSelectorExprClass:
   1139   case Expr::OffsetOfExprClass:
   1140   case Expr::PackExpansionExprClass:
   1141   case Expr::PseudoObjectExprClass:
   1142   case Expr::SubstNonTypeTemplateParmExprClass:
   1143   case Expr::SubstNonTypeTemplateParmPackExprClass:
   1144   case Expr::FunctionParmPackExprClass:
   1145   case Expr::UnaryExprOrTypeTraitExprClass:
   1146   case Expr::UnresolvedLookupExprClass:
   1147   case Expr::UnresolvedMemberExprClass:
   1148   case Expr::TypoExprClass:
   1149     // FIXME: Can any of the above throw?  If so, when?
   1150     return CT_Cannot;
   1151 
   1152   case Expr::AddrLabelExprClass:
   1153   case Expr::ArrayTypeTraitExprClass:
   1154   case Expr::AtomicExprClass:
   1155   case Expr::TypeTraitExprClass:
   1156   case Expr::CXXBoolLiteralExprClass:
   1157   case Expr::CXXNoexceptExprClass:
   1158   case Expr::CXXNullPtrLiteralExprClass:
   1159   case Expr::CXXPseudoDestructorExprClass:
   1160   case Expr::CXXScalarValueInitExprClass:
   1161   case Expr::CXXThisExprClass:
   1162   case Expr::CXXUuidofExprClass:
   1163   case Expr::CharacterLiteralClass:
   1164   case Expr::ExpressionTraitExprClass:
   1165   case Expr::FloatingLiteralClass:
   1166   case Expr::GNUNullExprClass:
   1167   case Expr::ImaginaryLiteralClass:
   1168   case Expr::ImplicitValueInitExprClass:
   1169   case Expr::IntegerLiteralClass:
   1170   case Expr::NoInitExprClass:
   1171   case Expr::ObjCEncodeExprClass:
   1172   case Expr::ObjCStringLiteralClass:
   1173   case Expr::ObjCBoolLiteralExprClass:
   1174   case Expr::OpaqueValueExprClass:
   1175   case Expr::PredefinedExprClass:
   1176   case Expr::SizeOfPackExprClass:
   1177   case Expr::StringLiteralClass:
   1178     // These expressions can never throw.
   1179     return CT_Cannot;
   1180 
   1181   case Expr::MSPropertyRefExprClass:
   1182   case Expr::MSPropertySubscriptExprClass:
   1183     llvm_unreachable("Invalid class for expression");
   1184 
   1185 #define STMT(CLASS, PARENT) case Expr::CLASS##Class:
   1186 #define STMT_RANGE(Base, First, Last)
   1187 #define LAST_STMT_RANGE(BASE, FIRST, LAST)
   1188 #define EXPR(CLASS, PARENT)
   1189 #define ABSTRACT_STMT(STMT)
   1190 #include "clang/AST/StmtNodes.inc"
   1191   case Expr::NoStmtClass:
   1192     llvm_unreachable("Invalid class for expression");
   1193   }
   1194   llvm_unreachable("Bogus StmtClass");
   1195 }
   1196 
   1197 } // end namespace clang
   1198