Home | History | Annotate | Download | only in src
      1 // Copyright 2009 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/global-handles.h"
      6 
      7 #include "src/api.h"
      8 #include "src/v8.h"
      9 #include "src/vm-state-inl.h"
     10 
     11 namespace v8 {
     12 namespace internal {
     13 
     14 
     15 ObjectGroup::~ObjectGroup() {
     16   if (info != NULL) info->Dispose();
     17   delete[] objects;
     18 }
     19 
     20 
     21 ImplicitRefGroup::~ImplicitRefGroup() {
     22   delete[] children;
     23 }
     24 
     25 
     26 class GlobalHandles::Node {
     27  public:
     28   // State transition diagram:
     29   // FREE -> NORMAL <-> WEAK -> PENDING -> NEAR_DEATH -> { NORMAL, WEAK, FREE }
     30   enum State {
     31     FREE = 0,
     32     NORMAL,      // Normal global handle.
     33     WEAK,        // Flagged as weak but not yet finalized.
     34     PENDING,     // Has been recognized as only reachable by weak handles.
     35     NEAR_DEATH,  // Callback has informed the handle is near death.
     36     NUMBER_OF_NODE_STATES
     37   };
     38 
     39   // Maps handle location (slot) to the containing node.
     40   static Node* FromLocation(Object** location) {
     41     DCHECK(offsetof(Node, object_) == 0);
     42     return reinterpret_cast<Node*>(location);
     43   }
     44 
     45   Node() {
     46     DCHECK(offsetof(Node, class_id_) == Internals::kNodeClassIdOffset);
     47     DCHECK(offsetof(Node, flags_) == Internals::kNodeFlagsOffset);
     48     STATIC_ASSERT(static_cast<int>(NodeState::kMask) ==
     49                   Internals::kNodeStateMask);
     50     STATIC_ASSERT(WEAK == Internals::kNodeStateIsWeakValue);
     51     STATIC_ASSERT(PENDING == Internals::kNodeStateIsPendingValue);
     52     STATIC_ASSERT(NEAR_DEATH == Internals::kNodeStateIsNearDeathValue);
     53     STATIC_ASSERT(static_cast<int>(IsIndependent::kShift) ==
     54                   Internals::kNodeIsIndependentShift);
     55     STATIC_ASSERT(static_cast<int>(IsPartiallyDependent::kShift) ==
     56                   Internals::kNodeIsPartiallyDependentShift);
     57     STATIC_ASSERT(static_cast<int>(IsActive::kShift) ==
     58                   Internals::kNodeIsActiveShift);
     59   }
     60 
     61 #ifdef ENABLE_HANDLE_ZAPPING
     62   ~Node() {
     63     // TODO(1428): if it's a weak handle we should have invoked its callback.
     64     // Zap the values for eager trapping.
     65     object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue);
     66     class_id_ = v8::HeapProfiler::kPersistentHandleNoClassId;
     67     index_ = 0;
     68     set_independent(false);
     69     if (FLAG_scavenge_reclaim_unmodified_objects) {
     70       set_active(false);
     71     } else {
     72       set_partially_dependent(false);
     73     }
     74     set_in_new_space_list(false);
     75     parameter_or_next_free_.next_free = NULL;
     76     weak_callback_ = NULL;
     77   }
     78 #endif
     79 
     80   void Initialize(int index, Node** first_free) {
     81     object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue);
     82     index_ = static_cast<uint8_t>(index);
     83     DCHECK(static_cast<int>(index_) == index);
     84     set_state(FREE);
     85     set_in_new_space_list(false);
     86     parameter_or_next_free_.next_free = *first_free;
     87     *first_free = this;
     88   }
     89 
     90   void Acquire(Object* object) {
     91     DCHECK(state() == FREE);
     92     object_ = object;
     93     class_id_ = v8::HeapProfiler::kPersistentHandleNoClassId;
     94     set_independent(false);
     95     if (FLAG_scavenge_reclaim_unmodified_objects) {
     96       set_active(false);
     97     } else {
     98       set_partially_dependent(false);
     99     }
    100     set_state(NORMAL);
    101     parameter_or_next_free_.parameter = NULL;
    102     weak_callback_ = NULL;
    103     IncreaseBlockUses();
    104   }
    105 
    106   void Zap() {
    107     DCHECK(IsInUse());
    108     // Zap the values for eager trapping.
    109     object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue);
    110   }
    111 
    112   void Release() {
    113     DCHECK(IsInUse());
    114     set_state(FREE);
    115     // Zap the values for eager trapping.
    116     object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue);
    117     class_id_ = v8::HeapProfiler::kPersistentHandleNoClassId;
    118     set_independent(false);
    119     if (FLAG_scavenge_reclaim_unmodified_objects) {
    120       set_active(false);
    121     } else {
    122       set_partially_dependent(false);
    123     }
    124     weak_callback_ = NULL;
    125     DecreaseBlockUses();
    126   }
    127 
    128   // Object slot accessors.
    129   Object* object() const { return object_; }
    130   Object** location() { return &object_; }
    131   Handle<Object> handle() { return Handle<Object>(location()); }
    132 
    133   // Wrapper class ID accessors.
    134   bool has_wrapper_class_id() const {
    135     return class_id_ != v8::HeapProfiler::kPersistentHandleNoClassId;
    136   }
    137 
    138   uint16_t wrapper_class_id() const { return class_id_; }
    139 
    140   // State and flag accessors.
    141 
    142   State state() const {
    143     return NodeState::decode(flags_);
    144   }
    145   void set_state(State state) {
    146     flags_ = NodeState::update(flags_, state);
    147   }
    148 
    149   bool is_independent() {
    150     return IsIndependent::decode(flags_);
    151   }
    152   void set_independent(bool v) {
    153     flags_ = IsIndependent::update(flags_, v);
    154   }
    155 
    156   bool is_partially_dependent() {
    157     CHECK(!FLAG_scavenge_reclaim_unmodified_objects);
    158     return IsPartiallyDependent::decode(flags_);
    159   }
    160   void set_partially_dependent(bool v) {
    161     CHECK(!FLAG_scavenge_reclaim_unmodified_objects);
    162     flags_ = IsPartiallyDependent::update(flags_, v);
    163   }
    164 
    165   bool is_active() {
    166     CHECK(FLAG_scavenge_reclaim_unmodified_objects);
    167     return IsActive::decode(flags_);
    168   }
    169   void set_active(bool v) {
    170     CHECK(FLAG_scavenge_reclaim_unmodified_objects);
    171     flags_ = IsActive::update(flags_, v);
    172   }
    173 
    174   bool is_in_new_space_list() {
    175     return IsInNewSpaceList::decode(flags_);
    176   }
    177   void set_in_new_space_list(bool v) {
    178     flags_ = IsInNewSpaceList::update(flags_, v);
    179   }
    180 
    181   WeaknessType weakness_type() const {
    182     return NodeWeaknessType::decode(flags_);
    183   }
    184   void set_weakness_type(WeaknessType weakness_type) {
    185     flags_ = NodeWeaknessType::update(flags_, weakness_type);
    186   }
    187 
    188   bool IsNearDeath() const {
    189     // Check for PENDING to ensure correct answer when processing callbacks.
    190     return state() == PENDING || state() == NEAR_DEATH;
    191   }
    192 
    193   bool IsWeak() const { return state() == WEAK; }
    194 
    195   bool IsInUse() const { return state() != FREE; }
    196 
    197   bool IsPendingPhantomCallback() const {
    198     return state() == PENDING &&
    199            (weakness_type() == PHANTOM_WEAK ||
    200             weakness_type() == PHANTOM_WEAK_2_INTERNAL_FIELDS);
    201   }
    202 
    203   bool IsPendingPhantomResetHandle() const {
    204     return state() == PENDING && weakness_type() == PHANTOM_WEAK_RESET_HANDLE;
    205   }
    206 
    207   bool IsRetainer() const {
    208     return state() != FREE &&
    209            !(state() == NEAR_DEATH && weakness_type() != FINALIZER_WEAK);
    210   }
    211 
    212   bool IsStrongRetainer() const { return state() == NORMAL; }
    213 
    214   bool IsWeakRetainer() const {
    215     return state() == WEAK || state() == PENDING ||
    216            (state() == NEAR_DEATH && weakness_type() == FINALIZER_WEAK);
    217   }
    218 
    219   void MarkPending() {
    220     DCHECK(state() == WEAK);
    221     set_state(PENDING);
    222   }
    223 
    224   // Independent flag accessors.
    225   void MarkIndependent() {
    226     DCHECK(IsInUse());
    227     set_independent(true);
    228   }
    229 
    230   void MarkPartiallyDependent() {
    231     DCHECK(IsInUse());
    232     if (GetGlobalHandles()->isolate()->heap()->InNewSpace(object_)) {
    233       set_partially_dependent(true);
    234     }
    235   }
    236   void clear_partially_dependent() { set_partially_dependent(false); }
    237 
    238   // Callback accessor.
    239   // TODO(svenpanne) Re-enable or nuke later.
    240   // WeakReferenceCallback callback() { return callback_; }
    241 
    242   // Callback parameter accessors.
    243   void set_parameter(void* parameter) {
    244     DCHECK(IsInUse());
    245     parameter_or_next_free_.parameter = parameter;
    246   }
    247   void* parameter() const {
    248     DCHECK(IsInUse());
    249     return parameter_or_next_free_.parameter;
    250   }
    251 
    252   // Accessors for next free node in the free list.
    253   Node* next_free() {
    254     DCHECK(state() == FREE);
    255     return parameter_or_next_free_.next_free;
    256   }
    257   void set_next_free(Node* value) {
    258     DCHECK(state() == FREE);
    259     parameter_or_next_free_.next_free = value;
    260   }
    261 
    262   void MakeWeak(void* parameter,
    263                 WeakCallbackInfo<void>::Callback phantom_callback,
    264                 v8::WeakCallbackType type) {
    265     DCHECK(phantom_callback != nullptr);
    266     DCHECK(IsInUse());
    267     CHECK_NE(object_, reinterpret_cast<Object*>(kGlobalHandleZapValue));
    268     set_state(WEAK);
    269     switch (type) {
    270       case v8::WeakCallbackType::kParameter:
    271         set_weakness_type(PHANTOM_WEAK);
    272         break;
    273       case v8::WeakCallbackType::kInternalFields:
    274         set_weakness_type(PHANTOM_WEAK_2_INTERNAL_FIELDS);
    275         break;
    276       case v8::WeakCallbackType::kFinalizer:
    277         set_weakness_type(FINALIZER_WEAK);
    278         break;
    279     }
    280     set_parameter(parameter);
    281     weak_callback_ = phantom_callback;
    282   }
    283 
    284   void MakeWeak(Object*** location_addr) {
    285     DCHECK(IsInUse());
    286     CHECK_NE(object_, reinterpret_cast<Object*>(kGlobalHandleZapValue));
    287     set_state(WEAK);
    288     set_weakness_type(PHANTOM_WEAK_RESET_HANDLE);
    289     set_parameter(location_addr);
    290     weak_callback_ = nullptr;
    291   }
    292 
    293   void* ClearWeakness() {
    294     DCHECK(IsInUse());
    295     void* p = parameter();
    296     set_state(NORMAL);
    297     set_parameter(NULL);
    298     return p;
    299   }
    300 
    301   void CollectPhantomCallbackData(
    302       Isolate* isolate,
    303       List<PendingPhantomCallback>* pending_phantom_callbacks) {
    304     DCHECK(weakness_type() == PHANTOM_WEAK ||
    305            weakness_type() == PHANTOM_WEAK_2_INTERNAL_FIELDS);
    306     DCHECK(state() == PENDING);
    307     DCHECK(weak_callback_ != nullptr);
    308 
    309     void* internal_fields[v8::kInternalFieldsInWeakCallback] = {nullptr,
    310                                                                 nullptr};
    311     if (weakness_type() != PHANTOM_WEAK && object()->IsJSObject()) {
    312       auto jsobject = JSObject::cast(object());
    313       int field_count = jsobject->GetInternalFieldCount();
    314       for (int i = 0; i < v8::kInternalFieldsInWeakCallback; ++i) {
    315         if (field_count == i) break;
    316         auto field = jsobject->GetInternalField(i);
    317         if (field->IsSmi()) internal_fields[i] = field;
    318       }
    319     }
    320 
    321     // Zap with something dangerous.
    322     *location() = reinterpret_cast<Object*>(0x6057ca11);
    323 
    324     typedef v8::WeakCallbackInfo<void> Data;
    325     auto callback = reinterpret_cast<Data::Callback>(weak_callback_);
    326     pending_phantom_callbacks->Add(
    327         PendingPhantomCallback(this, callback, parameter(), internal_fields));
    328     DCHECK(IsInUse());
    329     set_state(NEAR_DEATH);
    330   }
    331 
    332   void ResetPhantomHandle() {
    333     DCHECK(weakness_type() == PHANTOM_WEAK_RESET_HANDLE);
    334     DCHECK(state() == PENDING);
    335     DCHECK(weak_callback_ == nullptr);
    336     Object*** handle = reinterpret_cast<Object***>(parameter());
    337     *handle = nullptr;
    338     Release();
    339   }
    340 
    341   bool PostGarbageCollectionProcessing(Isolate* isolate) {
    342     // Handles only weak handles (not phantom) that are dying.
    343     if (state() != Node::PENDING) return false;
    344     if (weak_callback_ == NULL) {
    345       Release();
    346       return false;
    347     }
    348     set_state(NEAR_DEATH);
    349 
    350     // Check that we are not passing a finalized external string to
    351     // the callback.
    352     DCHECK(!object_->IsExternalOneByteString() ||
    353            ExternalOneByteString::cast(object_)->resource() != NULL);
    354     DCHECK(!object_->IsExternalTwoByteString() ||
    355            ExternalTwoByteString::cast(object_)->resource() != NULL);
    356     if (weakness_type() != FINALIZER_WEAK) {
    357       return false;
    358     }
    359 
    360     // Leaving V8.
    361     VMState<EXTERNAL> vmstate(isolate);
    362     HandleScope handle_scope(isolate);
    363     void* internal_fields[v8::kInternalFieldsInWeakCallback] = {nullptr,
    364                                                                 nullptr};
    365     v8::WeakCallbackInfo<void> data(reinterpret_cast<v8::Isolate*>(isolate),
    366                                     parameter(), internal_fields, nullptr);
    367     weak_callback_(data);
    368 
    369     // Absence of explicit cleanup or revival of weak handle
    370     // in most of the cases would lead to memory leak.
    371     CHECK(state() != NEAR_DEATH);
    372     return true;
    373   }
    374 
    375   inline GlobalHandles* GetGlobalHandles();
    376 
    377  private:
    378   inline NodeBlock* FindBlock();
    379   inline void IncreaseBlockUses();
    380   inline void DecreaseBlockUses();
    381 
    382   // Storage for object pointer.
    383   // Placed first to avoid offset computation.
    384   Object* object_;
    385 
    386   // Next word stores class_id, index, state, and independent.
    387   // Note: the most aligned fields should go first.
    388 
    389   // Wrapper class ID.
    390   uint16_t class_id_;
    391 
    392   // Index in the containing handle block.
    393   uint8_t index_;
    394 
    395   // This stores three flags (independent, partially_dependent and
    396   // in_new_space_list) and a State.
    397   class NodeState : public BitField<State, 0, 3> {};
    398   class IsIndependent : public BitField<bool, 3, 1> {};
    399   // The following two fields are mutually exclusive
    400   class IsActive : public BitField<bool, 4, 1> {};
    401   class IsPartiallyDependent : public BitField<bool, 4, 1> {};
    402   class IsInNewSpaceList : public BitField<bool, 5, 1> {};
    403   class NodeWeaknessType : public BitField<WeaknessType, 6, 2> {};
    404 
    405   uint8_t flags_;
    406 
    407   // Handle specific callback - might be a weak reference in disguise.
    408   WeakCallbackInfo<void>::Callback weak_callback_;
    409 
    410   // Provided data for callback.  In FREE state, this is used for
    411   // the free list link.
    412   union {
    413     void* parameter;
    414     Node* next_free;
    415   } parameter_or_next_free_;
    416 
    417   DISALLOW_COPY_AND_ASSIGN(Node);
    418 };
    419 
    420 
    421 class GlobalHandles::NodeBlock {
    422  public:
    423   static const int kSize = 256;
    424 
    425   explicit NodeBlock(GlobalHandles* global_handles, NodeBlock* next)
    426       : next_(next),
    427         used_nodes_(0),
    428         next_used_(NULL),
    429         prev_used_(NULL),
    430         global_handles_(global_handles) {}
    431 
    432   void PutNodesOnFreeList(Node** first_free) {
    433     for (int i = kSize - 1; i >= 0; --i) {
    434       nodes_[i].Initialize(i, first_free);
    435     }
    436   }
    437 
    438   Node* node_at(int index) {
    439     DCHECK(0 <= index && index < kSize);
    440     return &nodes_[index];
    441   }
    442 
    443   void IncreaseUses() {
    444     DCHECK(used_nodes_ < kSize);
    445     if (used_nodes_++ == 0) {
    446       NodeBlock* old_first = global_handles_->first_used_block_;
    447       global_handles_->first_used_block_ = this;
    448       next_used_ = old_first;
    449       prev_used_ = NULL;
    450       if (old_first == NULL) return;
    451       old_first->prev_used_ = this;
    452     }
    453   }
    454 
    455   void DecreaseUses() {
    456     DCHECK(used_nodes_ > 0);
    457     if (--used_nodes_ == 0) {
    458       if (next_used_ != NULL) next_used_->prev_used_ = prev_used_;
    459       if (prev_used_ != NULL) prev_used_->next_used_ = next_used_;
    460       if (this == global_handles_->first_used_block_) {
    461         global_handles_->first_used_block_ = next_used_;
    462       }
    463     }
    464   }
    465 
    466   GlobalHandles* global_handles() { return global_handles_; }
    467 
    468   // Next block in the list of all blocks.
    469   NodeBlock* next() const { return next_; }
    470 
    471   // Next/previous block in the list of blocks with used nodes.
    472   NodeBlock* next_used() const { return next_used_; }
    473   NodeBlock* prev_used() const { return prev_used_; }
    474 
    475  private:
    476   Node nodes_[kSize];
    477   NodeBlock* const next_;
    478   int used_nodes_;
    479   NodeBlock* next_used_;
    480   NodeBlock* prev_used_;
    481   GlobalHandles* global_handles_;
    482 };
    483 
    484 
    485 GlobalHandles* GlobalHandles::Node::GetGlobalHandles() {
    486   return FindBlock()->global_handles();
    487 }
    488 
    489 
    490 GlobalHandles::NodeBlock* GlobalHandles::Node::FindBlock() {
    491   intptr_t ptr = reinterpret_cast<intptr_t>(this);
    492   ptr = ptr - index_ * sizeof(Node);
    493   NodeBlock* block = reinterpret_cast<NodeBlock*>(ptr);
    494   DCHECK(block->node_at(index_) == this);
    495   return block;
    496 }
    497 
    498 
    499 void GlobalHandles::Node::IncreaseBlockUses() {
    500   NodeBlock* node_block = FindBlock();
    501   node_block->IncreaseUses();
    502   GlobalHandles* global_handles = node_block->global_handles();
    503   global_handles->isolate()->counters()->global_handles()->Increment();
    504   global_handles->number_of_global_handles_++;
    505 }
    506 
    507 
    508 void GlobalHandles::Node::DecreaseBlockUses() {
    509   NodeBlock* node_block = FindBlock();
    510   GlobalHandles* global_handles = node_block->global_handles();
    511   parameter_or_next_free_.next_free = global_handles->first_free_;
    512   global_handles->first_free_ = this;
    513   node_block->DecreaseUses();
    514   global_handles->isolate()->counters()->global_handles()->Decrement();
    515   global_handles->number_of_global_handles_--;
    516 }
    517 
    518 
    519 class GlobalHandles::NodeIterator {
    520  public:
    521   explicit NodeIterator(GlobalHandles* global_handles)
    522       : block_(global_handles->first_used_block_),
    523         index_(0) {}
    524 
    525   bool done() const { return block_ == NULL; }
    526 
    527   Node* node() const {
    528     DCHECK(!done());
    529     return block_->node_at(index_);
    530   }
    531 
    532   void Advance() {
    533     DCHECK(!done());
    534     if (++index_ < NodeBlock::kSize) return;
    535     index_ = 0;
    536     block_ = block_->next_used();
    537   }
    538 
    539  private:
    540   NodeBlock* block_;
    541   int index_;
    542 
    543   DISALLOW_COPY_AND_ASSIGN(NodeIterator);
    544 };
    545 
    546 class GlobalHandles::PendingPhantomCallbacksSecondPassTask
    547     : public v8::internal::CancelableTask {
    548  public:
    549   // Takes ownership of the contents of pending_phantom_callbacks, leaving it in
    550   // the same state it would be after a call to Clear().
    551   PendingPhantomCallbacksSecondPassTask(
    552       List<PendingPhantomCallback>* pending_phantom_callbacks, Isolate* isolate)
    553       : CancelableTask(isolate) {
    554     pending_phantom_callbacks_.Swap(pending_phantom_callbacks);
    555   }
    556 
    557   void RunInternal() override {
    558     TRACE_EVENT0("v8", "V8.GCPhantomHandleProcessingCallback");
    559     isolate()->heap()->CallGCPrologueCallbacks(
    560         GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
    561     InvokeSecondPassPhantomCallbacks(&pending_phantom_callbacks_, isolate());
    562     isolate()->heap()->CallGCEpilogueCallbacks(
    563         GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
    564   }
    565 
    566  private:
    567   List<PendingPhantomCallback> pending_phantom_callbacks_;
    568 
    569   DISALLOW_COPY_AND_ASSIGN(PendingPhantomCallbacksSecondPassTask);
    570 };
    571 
    572 GlobalHandles::GlobalHandles(Isolate* isolate)
    573     : isolate_(isolate),
    574       number_of_global_handles_(0),
    575       first_block_(NULL),
    576       first_used_block_(NULL),
    577       first_free_(NULL),
    578       post_gc_processing_count_(0),
    579       number_of_phantom_handle_resets_(0),
    580       object_group_connections_(kObjectGroupConnectionsCapacity) {}
    581 
    582 GlobalHandles::~GlobalHandles() {
    583   NodeBlock* block = first_block_;
    584   while (block != NULL) {
    585     NodeBlock* tmp = block->next();
    586     delete block;
    587     block = tmp;
    588   }
    589   first_block_ = NULL;
    590 }
    591 
    592 
    593 Handle<Object> GlobalHandles::Create(Object* value) {
    594   if (first_free_ == NULL) {
    595     first_block_ = new NodeBlock(this, first_block_);
    596     first_block_->PutNodesOnFreeList(&first_free_);
    597   }
    598   DCHECK(first_free_ != NULL);
    599   // Take the first node in the free list.
    600   Node* result = first_free_;
    601   first_free_ = result->next_free();
    602   result->Acquire(value);
    603   if (isolate_->heap()->InNewSpace(value) &&
    604       !result->is_in_new_space_list()) {
    605     new_space_nodes_.Add(result);
    606     result->set_in_new_space_list(true);
    607   }
    608   return result->handle();
    609 }
    610 
    611 
    612 Handle<Object> GlobalHandles::CopyGlobal(Object** location) {
    613   DCHECK(location != NULL);
    614   return Node::FromLocation(location)->GetGlobalHandles()->Create(*location);
    615 }
    616 
    617 
    618 void GlobalHandles::Destroy(Object** location) {
    619   if (location != NULL) Node::FromLocation(location)->Release();
    620 }
    621 
    622 
    623 typedef v8::WeakCallbackInfo<void>::Callback GenericCallback;
    624 
    625 
    626 void GlobalHandles::MakeWeak(Object** location, void* parameter,
    627                              GenericCallback phantom_callback,
    628                              v8::WeakCallbackType type) {
    629   Node::FromLocation(location)->MakeWeak(parameter, phantom_callback, type);
    630 }
    631 
    632 void GlobalHandles::MakeWeak(Object*** location_addr) {
    633   Node::FromLocation(*location_addr)->MakeWeak(location_addr);
    634 }
    635 
    636 void* GlobalHandles::ClearWeakness(Object** location) {
    637   return Node::FromLocation(location)->ClearWeakness();
    638 }
    639 
    640 
    641 void GlobalHandles::MarkIndependent(Object** location) {
    642   Node::FromLocation(location)->MarkIndependent();
    643 }
    644 
    645 
    646 void GlobalHandles::MarkPartiallyDependent(Object** location) {
    647   Node::FromLocation(location)->MarkPartiallyDependent();
    648 }
    649 
    650 
    651 bool GlobalHandles::IsIndependent(Object** location) {
    652   return Node::FromLocation(location)->is_independent();
    653 }
    654 
    655 
    656 bool GlobalHandles::IsNearDeath(Object** location) {
    657   return Node::FromLocation(location)->IsNearDeath();
    658 }
    659 
    660 
    661 bool GlobalHandles::IsWeak(Object** location) {
    662   return Node::FromLocation(location)->IsWeak();
    663 }
    664 
    665 void GlobalHandles::IterateWeakRoots(ObjectVisitor* v) {
    666   for (NodeIterator it(this); !it.done(); it.Advance()) {
    667     Node* node = it.node();
    668     if (node->IsWeakRetainer()) {
    669       // Pending weak phantom handles die immediately. Everything else survives.
    670       if (node->IsPendingPhantomResetHandle()) {
    671         node->ResetPhantomHandle();
    672         ++number_of_phantom_handle_resets_;
    673       } else if (node->IsPendingPhantomCallback()) {
    674         node->CollectPhantomCallbackData(isolate(),
    675                                          &pending_phantom_callbacks_);
    676       } else {
    677         v->VisitPointer(node->location());
    678       }
    679     }
    680   }
    681 }
    682 
    683 
    684 void GlobalHandles::IdentifyWeakHandles(WeakSlotCallback f) {
    685   for (NodeIterator it(this); !it.done(); it.Advance()) {
    686     if (it.node()->IsWeak() && f(it.node()->location())) {
    687       it.node()->MarkPending();
    688     }
    689   }
    690 }
    691 
    692 
    693 void GlobalHandles::IterateNewSpaceStrongAndDependentRoots(ObjectVisitor* v) {
    694   for (int i = 0; i < new_space_nodes_.length(); ++i) {
    695     Node* node = new_space_nodes_[i];
    696     if (FLAG_scavenge_reclaim_unmodified_objects) {
    697       if (node->IsStrongRetainer() ||
    698           (node->IsWeakRetainer() && !node->is_independent() &&
    699            node->is_active())) {
    700         v->VisitPointer(node->location());
    701       }
    702     } else {
    703       if (node->IsStrongRetainer() ||
    704           (node->IsWeakRetainer() && !node->is_independent() &&
    705            !node->is_partially_dependent())) {
    706         v->VisitPointer(node->location());
    707       }
    708     }
    709   }
    710 }
    711 
    712 
    713 void GlobalHandles::IdentifyNewSpaceWeakIndependentHandles(
    714     WeakSlotCallbackWithHeap f) {
    715   for (int i = 0; i < new_space_nodes_.length(); ++i) {
    716     Node* node = new_space_nodes_[i];
    717     DCHECK(node->is_in_new_space_list());
    718     if ((node->is_independent() || node->is_partially_dependent()) &&
    719         node->IsWeak() && f(isolate_->heap(), node->location())) {
    720       node->MarkPending();
    721     }
    722   }
    723 }
    724 
    725 
    726 void GlobalHandles::IterateNewSpaceWeakIndependentRoots(ObjectVisitor* v) {
    727   for (int i = 0; i < new_space_nodes_.length(); ++i) {
    728     Node* node = new_space_nodes_[i];
    729     DCHECK(node->is_in_new_space_list());
    730     if ((node->is_independent() || node->is_partially_dependent()) &&
    731         node->IsWeakRetainer()) {
    732       // Pending weak phantom handles die immediately. Everything else survives.
    733       if (node->IsPendingPhantomResetHandle()) {
    734         node->ResetPhantomHandle();
    735         ++number_of_phantom_handle_resets_;
    736       } else if (node->IsPendingPhantomCallback()) {
    737         node->CollectPhantomCallbackData(isolate(),
    738                                          &pending_phantom_callbacks_);
    739       } else {
    740         v->VisitPointer(node->location());
    741       }
    742     }
    743   }
    744 }
    745 
    746 
    747 void GlobalHandles::IdentifyWeakUnmodifiedObjects(
    748     WeakSlotCallback is_unmodified) {
    749   for (int i = 0; i < new_space_nodes_.length(); ++i) {
    750     Node* node = new_space_nodes_[i];
    751     if (node->IsWeak() && !is_unmodified(node->location())) {
    752       node->set_active(true);
    753     }
    754   }
    755 }
    756 
    757 
    758 void GlobalHandles::MarkNewSpaceWeakUnmodifiedObjectsPending(
    759     WeakSlotCallbackWithHeap is_unscavenged) {
    760   for (int i = 0; i < new_space_nodes_.length(); ++i) {
    761     Node* node = new_space_nodes_[i];
    762     DCHECK(node->is_in_new_space_list());
    763     if ((node->is_independent() || !node->is_active()) && node->IsWeak() &&
    764         is_unscavenged(isolate_->heap(), node->location())) {
    765       node->MarkPending();
    766     }
    767   }
    768 }
    769 
    770 
    771 void GlobalHandles::IterateNewSpaceWeakUnmodifiedRoots(ObjectVisitor* v) {
    772   for (int i = 0; i < new_space_nodes_.length(); ++i) {
    773     Node* node = new_space_nodes_[i];
    774     DCHECK(node->is_in_new_space_list());
    775     if ((node->is_independent() || !node->is_active()) &&
    776         node->IsWeakRetainer()) {
    777       // Pending weak phantom handles die immediately. Everything else survives.
    778       if (node->IsPendingPhantomResetHandle()) {
    779         node->ResetPhantomHandle();
    780         ++number_of_phantom_handle_resets_;
    781       } else if (node->IsPendingPhantomCallback()) {
    782         node->CollectPhantomCallbackData(isolate(),
    783                                          &pending_phantom_callbacks_);
    784       } else {
    785         v->VisitPointer(node->location());
    786       }
    787     }
    788   }
    789 }
    790 
    791 
    792 bool GlobalHandles::IterateObjectGroups(ObjectVisitor* v,
    793                                         WeakSlotCallbackWithHeap can_skip) {
    794   ComputeObjectGroupsAndImplicitReferences();
    795   int last = 0;
    796   bool any_group_was_visited = false;
    797   for (int i = 0; i < object_groups_.length(); i++) {
    798     ObjectGroup* entry = object_groups_.at(i);
    799     DCHECK(entry != NULL);
    800 
    801     Object*** objects = entry->objects;
    802     bool group_should_be_visited = false;
    803     for (size_t j = 0; j < entry->length; j++) {
    804       Object* object = *objects[j];
    805       if (object->IsHeapObject()) {
    806         if (!can_skip(isolate_->heap(), &object)) {
    807           group_should_be_visited = true;
    808           break;
    809         }
    810       }
    811     }
    812 
    813     if (!group_should_be_visited) {
    814       object_groups_[last++] = entry;
    815       continue;
    816     }
    817 
    818     // An object in the group requires visiting, so iterate over all
    819     // objects in the group.
    820     for (size_t j = 0; j < entry->length; ++j) {
    821       Object* object = *objects[j];
    822       if (object->IsHeapObject()) {
    823         v->VisitPointer(&object);
    824         any_group_was_visited = true;
    825       }
    826     }
    827 
    828     // Once the entire group has been iterated over, set the object
    829     // group to NULL so it won't be processed again.
    830     delete entry;
    831     object_groups_.at(i) = NULL;
    832   }
    833   object_groups_.Rewind(last);
    834   return any_group_was_visited;
    835 }
    836 
    837 namespace {
    838 // Traces the information about object groups and implicit ref groups given by
    839 // the embedder to the V8 during each gc prologue.
    840 class ObjectGroupsTracer {
    841  public:
    842   explicit ObjectGroupsTracer(Isolate* isolate);
    843   void Print();
    844 
    845  private:
    846   void PrintObjectGroup(ObjectGroup* group);
    847   void PrintImplicitRefGroup(ImplicitRefGroup* group);
    848   void PrintObject(Object* object);
    849   void PrintConstructor(JSObject* js_object);
    850   void PrintInternalFields(JSObject* js_object);
    851   Isolate* isolate_;
    852   DISALLOW_COPY_AND_ASSIGN(ObjectGroupsTracer);
    853 };
    854 
    855 ObjectGroupsTracer::ObjectGroupsTracer(Isolate* isolate) : isolate_(isolate) {}
    856 
    857 void ObjectGroupsTracer::Print() {
    858   GlobalHandles* global_handles = isolate_->global_handles();
    859 
    860   PrintIsolate(isolate_, "### Tracing object groups:\n");
    861 
    862   for (auto group : *(global_handles->object_groups())) {
    863     PrintObjectGroup(group);
    864   }
    865   for (auto group : *(global_handles->implicit_ref_groups())) {
    866     PrintImplicitRefGroup(group);
    867   }
    868 
    869   PrintIsolate(isolate_, "### Tracing object groups finished.\n");
    870 }
    871 
    872 void ObjectGroupsTracer::PrintObject(Object* object) {
    873   if (object->IsJSObject()) {
    874     JSObject* js_object = JSObject::cast(object);
    875 
    876     PrintF("{ constructor_name: ");
    877     PrintConstructor(js_object);
    878     PrintF(", hidden_fields: [ ");
    879     PrintInternalFields(js_object);
    880     PrintF(" ] }\n");
    881   } else {
    882     PrintF("object of unexpected type: %p\n", static_cast<void*>(object));
    883   }
    884 }
    885 
    886 void ObjectGroupsTracer::PrintConstructor(JSObject* js_object) {
    887   Object* maybe_constructor = js_object->map()->GetConstructor();
    888   if (maybe_constructor->IsJSFunction()) {
    889     JSFunction* constructor = JSFunction::cast(maybe_constructor);
    890     String* name = String::cast(constructor->shared()->name());
    891     if (name->length() == 0) name = constructor->shared()->inferred_name();
    892 
    893     PrintF("%s", name->ToCString().get());
    894   } else if (maybe_constructor->IsNull(isolate_)) {
    895     if (js_object->IsOddball()) {
    896       PrintF("<oddball>");
    897     } else {
    898       PrintF("<null>");
    899     }
    900   } else {
    901     UNREACHABLE();
    902   }
    903 }
    904 
    905 void ObjectGroupsTracer::PrintInternalFields(JSObject* js_object) {
    906   for (int i = 0; i < js_object->GetInternalFieldCount(); ++i) {
    907     if (i != 0) {
    908       PrintF(", ");
    909     }
    910     PrintF("%p", static_cast<void*>(js_object->GetInternalField(i)));
    911   }
    912 }
    913 
    914 void ObjectGroupsTracer::PrintObjectGroup(ObjectGroup* group) {
    915   PrintIsolate(isolate_, "ObjectGroup (size: %" PRIuS ")\n", group->length);
    916   Object*** objects = group->objects;
    917 
    918   for (size_t i = 0; i < group->length; ++i) {
    919     PrintIsolate(isolate_, "  - Member: ");
    920     PrintObject(*objects[i]);
    921   }
    922 }
    923 
    924 void ObjectGroupsTracer::PrintImplicitRefGroup(ImplicitRefGroup* group) {
    925   PrintIsolate(isolate_, "ImplicitRefGroup (children count: %" PRIuS ")\n",
    926                group->length);
    927   PrintIsolate(isolate_, "  - Parent: ");
    928   PrintObject(*(group->parent));
    929 
    930   Object*** children = group->children;
    931   for (size_t i = 0; i < group->length; ++i) {
    932     PrintIsolate(isolate_, "  - Child: ");
    933     PrintObject(*children[i]);
    934   }
    935 }
    936 
    937 }  // namespace
    938 
    939 void GlobalHandles::PrintObjectGroups() {
    940   ObjectGroupsTracer(isolate_).Print();
    941 }
    942 
    943 void GlobalHandles::InvokeSecondPassPhantomCallbacks(
    944     List<PendingPhantomCallback>* callbacks, Isolate* isolate) {
    945   while (callbacks->length() != 0) {
    946     auto callback = callbacks->RemoveLast();
    947     DCHECK(callback.node() == nullptr);
    948     // Fire second pass callback
    949     callback.Invoke(isolate);
    950   }
    951 }
    952 
    953 
    954 int GlobalHandles::PostScavengeProcessing(
    955     const int initial_post_gc_processing_count) {
    956   int freed_nodes = 0;
    957   for (int i = 0; i < new_space_nodes_.length(); ++i) {
    958     Node* node = new_space_nodes_[i];
    959     DCHECK(node->is_in_new_space_list());
    960     if (!node->IsRetainer()) {
    961       // Free nodes do not have weak callbacks. Do not use them to compute
    962       // the freed_nodes.
    963       continue;
    964     }
    965     // Skip dependent or unmodified handles. Their weak callbacks might expect
    966     // to be
    967     // called between two global garbage collection callbacks which
    968     // are not called for minor collections.
    969     if (FLAG_scavenge_reclaim_unmodified_objects) {
    970       if (!node->is_independent() && (node->is_active())) {
    971         node->set_active(false);
    972         continue;
    973       }
    974       node->set_active(false);
    975     } else {
    976       if (!node->is_independent() && !node->is_partially_dependent()) {
    977         continue;
    978       }
    979       node->clear_partially_dependent();
    980     }
    981 
    982     if (node->PostGarbageCollectionProcessing(isolate_)) {
    983       if (initial_post_gc_processing_count != post_gc_processing_count_) {
    984         // Weak callback triggered another GC and another round of
    985         // PostGarbageCollection processing.  The current node might
    986         // have been deleted in that round, so we need to bail out (or
    987         // restart the processing).
    988         return freed_nodes;
    989       }
    990     }
    991     if (!node->IsRetainer()) {
    992       freed_nodes++;
    993     }
    994   }
    995   return freed_nodes;
    996 }
    997 
    998 
    999 int GlobalHandles::PostMarkSweepProcessing(
   1000     const int initial_post_gc_processing_count) {
   1001   int freed_nodes = 0;
   1002   for (NodeIterator it(this); !it.done(); it.Advance()) {
   1003     if (!it.node()->IsRetainer()) {
   1004       // Free nodes do not have weak callbacks. Do not use them to compute
   1005       // the freed_nodes.
   1006       continue;
   1007     }
   1008     if (FLAG_scavenge_reclaim_unmodified_objects) {
   1009       it.node()->set_active(false);
   1010     } else {
   1011       it.node()->clear_partially_dependent();
   1012     }
   1013     if (it.node()->PostGarbageCollectionProcessing(isolate_)) {
   1014       if (initial_post_gc_processing_count != post_gc_processing_count_) {
   1015         // See the comment above.
   1016         return freed_nodes;
   1017       }
   1018     }
   1019     if (!it.node()->IsRetainer()) {
   1020       freed_nodes++;
   1021     }
   1022   }
   1023   return freed_nodes;
   1024 }
   1025 
   1026 
   1027 void GlobalHandles::UpdateListOfNewSpaceNodes() {
   1028   int last = 0;
   1029   for (int i = 0; i < new_space_nodes_.length(); ++i) {
   1030     Node* node = new_space_nodes_[i];
   1031     DCHECK(node->is_in_new_space_list());
   1032     if (node->IsRetainer()) {
   1033       if (isolate_->heap()->InNewSpace(node->object())) {
   1034         new_space_nodes_[last++] = node;
   1035         isolate_->heap()->IncrementNodesCopiedInNewSpace();
   1036       } else {
   1037         node->set_in_new_space_list(false);
   1038         isolate_->heap()->IncrementNodesPromoted();
   1039       }
   1040     } else {
   1041       node->set_in_new_space_list(false);
   1042       isolate_->heap()->IncrementNodesDiedInNewSpace();
   1043     }
   1044   }
   1045   new_space_nodes_.Rewind(last);
   1046   new_space_nodes_.Trim();
   1047 }
   1048 
   1049 
   1050 int GlobalHandles::DispatchPendingPhantomCallbacks(
   1051     bool synchronous_second_pass) {
   1052   int freed_nodes = 0;
   1053   List<PendingPhantomCallback> second_pass_callbacks;
   1054   {
   1055     // The initial pass callbacks must simply clear the nodes.
   1056     for (auto i = pending_phantom_callbacks_.begin();
   1057          i != pending_phantom_callbacks_.end(); ++i) {
   1058       auto callback = i;
   1059       // Skip callbacks that have already been processed once.
   1060       if (callback->node() == nullptr) continue;
   1061       callback->Invoke(isolate());
   1062       if (callback->callback()) second_pass_callbacks.Add(*callback);
   1063       freed_nodes++;
   1064     }
   1065   }
   1066   pending_phantom_callbacks_.Clear();
   1067   if (second_pass_callbacks.length() > 0) {
   1068     if (FLAG_optimize_for_size || FLAG_predictable || synchronous_second_pass) {
   1069       isolate()->heap()->CallGCPrologueCallbacks(
   1070           GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
   1071       InvokeSecondPassPhantomCallbacks(&second_pass_callbacks, isolate());
   1072       isolate()->heap()->CallGCEpilogueCallbacks(
   1073           GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
   1074     } else {
   1075       auto task = new PendingPhantomCallbacksSecondPassTask(
   1076           &second_pass_callbacks, isolate());
   1077       V8::GetCurrentPlatform()->CallOnForegroundThread(
   1078           reinterpret_cast<v8::Isolate*>(isolate()), task);
   1079     }
   1080   }
   1081   return freed_nodes;
   1082 }
   1083 
   1084 
   1085 void GlobalHandles::PendingPhantomCallback::Invoke(Isolate* isolate) {
   1086   Data::Callback* callback_addr = nullptr;
   1087   if (node_ != nullptr) {
   1088     // Initialize for first pass callback.
   1089     DCHECK(node_->state() == Node::NEAR_DEATH);
   1090     callback_addr = &callback_;
   1091   }
   1092   Data data(reinterpret_cast<v8::Isolate*>(isolate), parameter_,
   1093             internal_fields_, callback_addr);
   1094   Data::Callback callback = callback_;
   1095   callback_ = nullptr;
   1096   callback(data);
   1097   if (node_ != nullptr) {
   1098     // Transition to second pass state.
   1099     DCHECK(node_->state() == Node::FREE);
   1100     node_ = nullptr;
   1101   }
   1102 }
   1103 
   1104 
   1105 int GlobalHandles::PostGarbageCollectionProcessing(
   1106     GarbageCollector collector, const v8::GCCallbackFlags gc_callback_flags) {
   1107   // Process weak global handle callbacks. This must be done after the
   1108   // GC is completely done, because the callbacks may invoke arbitrary
   1109   // API functions.
   1110   DCHECK(isolate_->heap()->gc_state() == Heap::NOT_IN_GC);
   1111   const int initial_post_gc_processing_count = ++post_gc_processing_count_;
   1112   int freed_nodes = 0;
   1113   bool synchronous_second_pass =
   1114       (gc_callback_flags &
   1115        (kGCCallbackFlagForced | kGCCallbackFlagCollectAllAvailableGarbage |
   1116         kGCCallbackFlagSynchronousPhantomCallbackProcessing)) != 0;
   1117   freed_nodes += DispatchPendingPhantomCallbacks(synchronous_second_pass);
   1118   if (initial_post_gc_processing_count != post_gc_processing_count_) {
   1119     // If the callbacks caused a nested GC, then return.  See comment in
   1120     // PostScavengeProcessing.
   1121     return freed_nodes;
   1122   }
   1123   if (collector == SCAVENGER) {
   1124     freed_nodes += PostScavengeProcessing(initial_post_gc_processing_count);
   1125   } else {
   1126     freed_nodes += PostMarkSweepProcessing(initial_post_gc_processing_count);
   1127   }
   1128   if (initial_post_gc_processing_count != post_gc_processing_count_) {
   1129     // If the callbacks caused a nested GC, then return.  See comment in
   1130     // PostScavengeProcessing.
   1131     return freed_nodes;
   1132   }
   1133   if (initial_post_gc_processing_count == post_gc_processing_count_) {
   1134     UpdateListOfNewSpaceNodes();
   1135   }
   1136   return freed_nodes;
   1137 }
   1138 
   1139 
   1140 void GlobalHandles::IterateStrongRoots(ObjectVisitor* v) {
   1141   for (NodeIterator it(this); !it.done(); it.Advance()) {
   1142     if (it.node()->IsStrongRetainer()) {
   1143       v->VisitPointer(it.node()->location());
   1144     }
   1145   }
   1146 }
   1147 
   1148 
   1149 void GlobalHandles::IterateAllRoots(ObjectVisitor* v) {
   1150   for (NodeIterator it(this); !it.done(); it.Advance()) {
   1151     if (it.node()->IsRetainer()) {
   1152       v->VisitPointer(it.node()->location());
   1153     }
   1154   }
   1155 }
   1156 
   1157 
   1158 void GlobalHandles::IterateAllRootsWithClassIds(ObjectVisitor* v) {
   1159   for (NodeIterator it(this); !it.done(); it.Advance()) {
   1160     if (it.node()->IsRetainer() && it.node()->has_wrapper_class_id()) {
   1161       v->VisitEmbedderReference(it.node()->location(),
   1162                                 it.node()->wrapper_class_id());
   1163     }
   1164   }
   1165 }
   1166 
   1167 
   1168 void GlobalHandles::IterateAllRootsInNewSpaceWithClassIds(ObjectVisitor* v) {
   1169   for (int i = 0; i < new_space_nodes_.length(); ++i) {
   1170     Node* node = new_space_nodes_[i];
   1171     if (node->IsRetainer() && node->has_wrapper_class_id()) {
   1172       v->VisitEmbedderReference(node->location(),
   1173                                 node->wrapper_class_id());
   1174     }
   1175   }
   1176 }
   1177 
   1178 
   1179 void GlobalHandles::IterateWeakRootsInNewSpaceWithClassIds(ObjectVisitor* v) {
   1180   for (int i = 0; i < new_space_nodes_.length(); ++i) {
   1181     Node* node = new_space_nodes_[i];
   1182     if (node->has_wrapper_class_id() && node->IsWeak()) {
   1183       v->VisitEmbedderReference(node->location(), node->wrapper_class_id());
   1184     }
   1185   }
   1186 }
   1187 
   1188 
   1189 int GlobalHandles::NumberOfWeakHandles() {
   1190   int count = 0;
   1191   for (NodeIterator it(this); !it.done(); it.Advance()) {
   1192     if (it.node()->IsWeakRetainer()) {
   1193       count++;
   1194     }
   1195   }
   1196   return count;
   1197 }
   1198 
   1199 
   1200 int GlobalHandles::NumberOfGlobalObjectWeakHandles() {
   1201   int count = 0;
   1202   for (NodeIterator it(this); !it.done(); it.Advance()) {
   1203     if (it.node()->IsWeakRetainer() &&
   1204         it.node()->object()->IsJSGlobalObject()) {
   1205       count++;
   1206     }
   1207   }
   1208   return count;
   1209 }
   1210 
   1211 
   1212 void GlobalHandles::RecordStats(HeapStats* stats) {
   1213   *stats->global_handle_count = 0;
   1214   *stats->weak_global_handle_count = 0;
   1215   *stats->pending_global_handle_count = 0;
   1216   *stats->near_death_global_handle_count = 0;
   1217   *stats->free_global_handle_count = 0;
   1218   for (NodeIterator it(this); !it.done(); it.Advance()) {
   1219     *stats->global_handle_count += 1;
   1220     if (it.node()->state() == Node::WEAK) {
   1221       *stats->weak_global_handle_count += 1;
   1222     } else if (it.node()->state() == Node::PENDING) {
   1223       *stats->pending_global_handle_count += 1;
   1224     } else if (it.node()->state() == Node::NEAR_DEATH) {
   1225       *stats->near_death_global_handle_count += 1;
   1226     } else if (it.node()->state() == Node::FREE) {
   1227       *stats->free_global_handle_count += 1;
   1228     }
   1229   }
   1230 }
   1231 
   1232 #ifdef DEBUG
   1233 
   1234 void GlobalHandles::PrintStats() {
   1235   int total = 0;
   1236   int weak = 0;
   1237   int pending = 0;
   1238   int near_death = 0;
   1239   int destroyed = 0;
   1240 
   1241   for (NodeIterator it(this); !it.done(); it.Advance()) {
   1242     total++;
   1243     if (it.node()->state() == Node::WEAK) weak++;
   1244     if (it.node()->state() == Node::PENDING) pending++;
   1245     if (it.node()->state() == Node::NEAR_DEATH) near_death++;
   1246     if (it.node()->state() == Node::FREE) destroyed++;
   1247   }
   1248 
   1249   PrintF("Global Handle Statistics:\n");
   1250   PrintF("  allocated memory = %" PRIuS "B\n", total * sizeof(Node));
   1251   PrintF("  # weak       = %d\n", weak);
   1252   PrintF("  # pending    = %d\n", pending);
   1253   PrintF("  # near_death = %d\n", near_death);
   1254   PrintF("  # free       = %d\n", destroyed);
   1255   PrintF("  # total      = %d\n", total);
   1256 }
   1257 
   1258 
   1259 void GlobalHandles::Print() {
   1260   PrintF("Global handles:\n");
   1261   for (NodeIterator it(this); !it.done(); it.Advance()) {
   1262     PrintF("  handle %p to %p%s\n",
   1263            reinterpret_cast<void*>(it.node()->location()),
   1264            reinterpret_cast<void*>(it.node()->object()),
   1265            it.node()->IsWeak() ? " (weak)" : "");
   1266   }
   1267 }
   1268 
   1269 #endif
   1270 
   1271 
   1272 
   1273 void GlobalHandles::AddObjectGroup(Object*** handles,
   1274                                    size_t length,
   1275                                    v8::RetainedObjectInfo* info) {
   1276 #ifdef DEBUG
   1277   for (size_t i = 0; i < length; ++i) {
   1278     DCHECK(!Node::FromLocation(handles[i])->is_independent());
   1279   }
   1280 #endif
   1281   if (length == 0) {
   1282     if (info != NULL) info->Dispose();
   1283     return;
   1284   }
   1285   ObjectGroup* group = new ObjectGroup(length);
   1286   for (size_t i = 0; i < length; ++i)
   1287     group->objects[i] = handles[i];
   1288   group->info = info;
   1289   object_groups_.Add(group);
   1290 }
   1291 
   1292 
   1293 void GlobalHandles::SetObjectGroupId(Object** handle,
   1294                                      UniqueId id) {
   1295   object_group_connections_.Add(ObjectGroupConnection(id, handle));
   1296 }
   1297 
   1298 
   1299 void GlobalHandles::SetRetainedObjectInfo(UniqueId id,
   1300                                           RetainedObjectInfo* info) {
   1301   retainer_infos_.Add(ObjectGroupRetainerInfo(id, info));
   1302 }
   1303 
   1304 
   1305 void GlobalHandles::SetReferenceFromGroup(UniqueId id, Object** child) {
   1306   DCHECK(!Node::FromLocation(child)->is_independent());
   1307   implicit_ref_connections_.Add(ObjectGroupConnection(id, child));
   1308 }
   1309 
   1310 
   1311 void GlobalHandles::SetReference(HeapObject** parent, Object** child) {
   1312   DCHECK(!Node::FromLocation(child)->is_independent());
   1313   ImplicitRefGroup* group = new ImplicitRefGroup(parent, 1);
   1314   group->children[0] = child;
   1315   implicit_ref_groups_.Add(group);
   1316 }
   1317 
   1318 
   1319 void GlobalHandles::RemoveObjectGroups() {
   1320   for (int i = 0; i < object_groups_.length(); i++)
   1321     delete object_groups_.at(i);
   1322   object_groups_.Clear();
   1323   for (int i = 0; i < retainer_infos_.length(); ++i)
   1324     retainer_infos_[i].info->Dispose();
   1325   retainer_infos_.Clear();
   1326   object_group_connections_.Clear();
   1327   object_group_connections_.Initialize(kObjectGroupConnectionsCapacity);
   1328 }
   1329 
   1330 
   1331 void GlobalHandles::RemoveImplicitRefGroups() {
   1332   for (int i = 0; i < implicit_ref_groups_.length(); i++) {
   1333     delete implicit_ref_groups_.at(i);
   1334   }
   1335   implicit_ref_groups_.Clear();
   1336   implicit_ref_connections_.Clear();
   1337 }
   1338 
   1339 
   1340 void GlobalHandles::TearDown() {
   1341   // TODO(1428): invoke weak callbacks.
   1342 }
   1343 
   1344 
   1345 void GlobalHandles::ComputeObjectGroupsAndImplicitReferences() {
   1346   if (object_group_connections_.length() == 0) {
   1347     for (int i = 0; i < retainer_infos_.length(); ++i)
   1348       retainer_infos_[i].info->Dispose();
   1349     retainer_infos_.Clear();
   1350     implicit_ref_connections_.Clear();
   1351     return;
   1352   }
   1353 
   1354   object_group_connections_.Sort();
   1355   retainer_infos_.Sort();
   1356   implicit_ref_connections_.Sort();
   1357 
   1358   int info_index = 0;  // For iterating retainer_infos_.
   1359   UniqueId current_group_id(0);
   1360   int current_group_start = 0;
   1361 
   1362   int current_implicit_refs_start = 0;
   1363   int current_implicit_refs_end = 0;
   1364   for (int i = 0; i <= object_group_connections_.length(); ++i) {
   1365     if (i == 0)
   1366       current_group_id = object_group_connections_[i].id;
   1367     if (i == object_group_connections_.length() ||
   1368         current_group_id != object_group_connections_[i].id) {
   1369       // Group detected: objects in indices [current_group_start, i[.
   1370 
   1371       // Find out which implicit references are related to this group. (We want
   1372       // to ignore object groups which only have 1 object, but that object is
   1373       // needed as a representative object for the implicit refrerence group.)
   1374       while (current_implicit_refs_start < implicit_ref_connections_.length() &&
   1375              implicit_ref_connections_[current_implicit_refs_start].id <
   1376                  current_group_id)
   1377         ++current_implicit_refs_start;
   1378       current_implicit_refs_end = current_implicit_refs_start;
   1379       while (current_implicit_refs_end < implicit_ref_connections_.length() &&
   1380              implicit_ref_connections_[current_implicit_refs_end].id ==
   1381                  current_group_id)
   1382         ++current_implicit_refs_end;
   1383 
   1384       if (current_implicit_refs_end > current_implicit_refs_start) {
   1385         // Find a representative object for the implicit references.
   1386         HeapObject** representative = NULL;
   1387         for (int j = current_group_start; j < i; ++j) {
   1388           Object** object = object_group_connections_[j].object;
   1389           if ((*object)->IsHeapObject()) {
   1390             representative = reinterpret_cast<HeapObject**>(object);
   1391             break;
   1392           }
   1393         }
   1394         if (representative) {
   1395           ImplicitRefGroup* group = new ImplicitRefGroup(
   1396               representative,
   1397               current_implicit_refs_end - current_implicit_refs_start);
   1398           for (int j = current_implicit_refs_start;
   1399                j < current_implicit_refs_end;
   1400                ++j) {
   1401             group->children[j - current_implicit_refs_start] =
   1402                 implicit_ref_connections_[j].object;
   1403           }
   1404           implicit_ref_groups_.Add(group);
   1405         }
   1406         current_implicit_refs_start = current_implicit_refs_end;
   1407       }
   1408 
   1409       // Find a RetainedObjectInfo for the group.
   1410       RetainedObjectInfo* info = NULL;
   1411       while (info_index < retainer_infos_.length() &&
   1412              retainer_infos_[info_index].id < current_group_id) {
   1413         retainer_infos_[info_index].info->Dispose();
   1414         ++info_index;
   1415       }
   1416       if (info_index < retainer_infos_.length() &&
   1417           retainer_infos_[info_index].id == current_group_id) {
   1418         // This object group has an associated ObjectGroupRetainerInfo.
   1419         info = retainer_infos_[info_index].info;
   1420         ++info_index;
   1421       }
   1422 
   1423       // Ignore groups which only contain one object.
   1424       if (i > current_group_start + 1) {
   1425         ObjectGroup* group = new ObjectGroup(i - current_group_start);
   1426         for (int j = current_group_start; j < i; ++j) {
   1427           group->objects[j - current_group_start] =
   1428               object_group_connections_[j].object;
   1429         }
   1430         group->info = info;
   1431         object_groups_.Add(group);
   1432       } else if (info) {
   1433         info->Dispose();
   1434       }
   1435 
   1436       if (i < object_group_connections_.length()) {
   1437         current_group_id = object_group_connections_[i].id;
   1438         current_group_start = i;
   1439       }
   1440     }
   1441   }
   1442   object_group_connections_.Clear();
   1443   object_group_connections_.Initialize(kObjectGroupConnectionsCapacity);
   1444   retainer_infos_.Clear();
   1445   implicit_ref_connections_.Clear();
   1446 }
   1447 
   1448 
   1449 EternalHandles::EternalHandles() : size_(0) {
   1450   for (unsigned i = 0; i < arraysize(singleton_handles_); i++) {
   1451     singleton_handles_[i] = kInvalidIndex;
   1452   }
   1453 }
   1454 
   1455 
   1456 EternalHandles::~EternalHandles() {
   1457   for (int i = 0; i < blocks_.length(); i++) delete[] blocks_[i];
   1458 }
   1459 
   1460 
   1461 void EternalHandles::IterateAllRoots(ObjectVisitor* visitor) {
   1462   int limit = size_;
   1463   for (int i = 0; i < blocks_.length(); i++) {
   1464     DCHECK(limit > 0);
   1465     Object** block = blocks_[i];
   1466     visitor->VisitPointers(block, block + Min(limit, kSize));
   1467     limit -= kSize;
   1468   }
   1469 }
   1470 
   1471 
   1472 void EternalHandles::IterateNewSpaceRoots(ObjectVisitor* visitor) {
   1473   for (int i = 0; i < new_space_indices_.length(); i++) {
   1474     visitor->VisitPointer(GetLocation(new_space_indices_[i]));
   1475   }
   1476 }
   1477 
   1478 
   1479 void EternalHandles::PostGarbageCollectionProcessing(Heap* heap) {
   1480   int last = 0;
   1481   for (int i = 0; i < new_space_indices_.length(); i++) {
   1482     int index = new_space_indices_[i];
   1483     if (heap->InNewSpace(*GetLocation(index))) {
   1484       new_space_indices_[last++] = index;
   1485     }
   1486   }
   1487   new_space_indices_.Rewind(last);
   1488 }
   1489 
   1490 
   1491 void EternalHandles::Create(Isolate* isolate, Object* object, int* index) {
   1492   DCHECK_EQ(kInvalidIndex, *index);
   1493   if (object == NULL) return;
   1494   DCHECK_NE(isolate->heap()->the_hole_value(), object);
   1495   int block = size_ >> kShift;
   1496   int offset = size_ & kMask;
   1497   // need to resize
   1498   if (offset == 0) {
   1499     Object** next_block = new Object*[kSize];
   1500     Object* the_hole = isolate->heap()->the_hole_value();
   1501     MemsetPointer(next_block, the_hole, kSize);
   1502     blocks_.Add(next_block);
   1503   }
   1504   DCHECK_EQ(isolate->heap()->the_hole_value(), blocks_[block][offset]);
   1505   blocks_[block][offset] = object;
   1506   if (isolate->heap()->InNewSpace(object)) {
   1507     new_space_indices_.Add(size_);
   1508   }
   1509   *index = size_++;
   1510 }
   1511 
   1512 
   1513 }  // namespace internal
   1514 }  // namespace v8
   1515