1 // Protocol Buffers - Google's data interchange format 2 // Copyright 2008 Google Inc. All rights reserved. 3 // https://developers.google.com/protocol-buffers/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are 7 // met: 8 // 9 // * Redistributions of source code must retain the above copyright 10 // notice, this list of conditions and the following disclaimer. 11 // * Redistributions in binary form must reproduce the above 12 // copyright notice, this list of conditions and the following disclaimer 13 // in the documentation and/or other materials provided with the 14 // distribution. 15 // * Neither the name of Google Inc. nor the names of its 16 // contributors may be used to endorse or promote products derived from 17 // this software without specific prior written permission. 18 // 19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31 // Author: kenton (at) google.com (Kenton Varda) 32 // Based on original Protocol Buffers design by 33 // Sanjay Ghemawat, Jeff Dean, and others. 34 35 #include <google/protobuf/stubs/hash.h> 36 #include <map> 37 #include <set> 38 #include <string> 39 #include <vector> 40 #include <algorithm> 41 #include <limits> 42 43 #include <google/protobuf/descriptor.h> 44 #include <google/protobuf/descriptor_database.h> 45 #include <google/protobuf/descriptor.pb.h> 46 #include <google/protobuf/dynamic_message.h> 47 #include <google/protobuf/generated_message_util.h> 48 #include <google/protobuf/text_format.h> 49 #include <google/protobuf/unknown_field_set.h> 50 #include <google/protobuf/wire_format.h> 51 #include <google/protobuf/io/strtod.h> 52 #include <google/protobuf/io/coded_stream.h> 53 #include <google/protobuf/io/tokenizer.h> 54 #include <google/protobuf/io/zero_copy_stream_impl.h> 55 #include <google/protobuf/stubs/common.h> 56 #include <google/protobuf/stubs/once.h> 57 #include <google/protobuf/stubs/strutil.h> 58 #include <google/protobuf/stubs/substitute.h> 59 #include <google/protobuf/stubs/map_util.h> 60 #include <google/protobuf/stubs/stl_util.h> 61 62 #undef PACKAGE // autoheader #defines this. :( 63 64 namespace google { 65 namespace protobuf { 66 67 const FieldDescriptor::CppType 68 FieldDescriptor::kTypeToCppTypeMap[MAX_TYPE + 1] = { 69 static_cast<CppType>(0), // 0 is reserved for errors 70 71 CPPTYPE_DOUBLE, // TYPE_DOUBLE 72 CPPTYPE_FLOAT, // TYPE_FLOAT 73 CPPTYPE_INT64, // TYPE_INT64 74 CPPTYPE_UINT64, // TYPE_UINT64 75 CPPTYPE_INT32, // TYPE_INT32 76 CPPTYPE_UINT64, // TYPE_FIXED64 77 CPPTYPE_UINT32, // TYPE_FIXED32 78 CPPTYPE_BOOL, // TYPE_BOOL 79 CPPTYPE_STRING, // TYPE_STRING 80 CPPTYPE_MESSAGE, // TYPE_GROUP 81 CPPTYPE_MESSAGE, // TYPE_MESSAGE 82 CPPTYPE_STRING, // TYPE_BYTES 83 CPPTYPE_UINT32, // TYPE_UINT32 84 CPPTYPE_ENUM, // TYPE_ENUM 85 CPPTYPE_INT32, // TYPE_SFIXED32 86 CPPTYPE_INT64, // TYPE_SFIXED64 87 CPPTYPE_INT32, // TYPE_SINT32 88 CPPTYPE_INT64, // TYPE_SINT64 89 }; 90 91 const char * const FieldDescriptor::kTypeToName[MAX_TYPE + 1] = { 92 "ERROR", // 0 is reserved for errors 93 94 "double", // TYPE_DOUBLE 95 "float", // TYPE_FLOAT 96 "int64", // TYPE_INT64 97 "uint64", // TYPE_UINT64 98 "int32", // TYPE_INT32 99 "fixed64", // TYPE_FIXED64 100 "fixed32", // TYPE_FIXED32 101 "bool", // TYPE_BOOL 102 "string", // TYPE_STRING 103 "group", // TYPE_GROUP 104 "message", // TYPE_MESSAGE 105 "bytes", // TYPE_BYTES 106 "uint32", // TYPE_UINT32 107 "enum", // TYPE_ENUM 108 "sfixed32", // TYPE_SFIXED32 109 "sfixed64", // TYPE_SFIXED64 110 "sint32", // TYPE_SINT32 111 "sint64", // TYPE_SINT64 112 }; 113 114 const char * const FieldDescriptor::kCppTypeToName[MAX_CPPTYPE + 1] = { 115 "ERROR", // 0 is reserved for errors 116 117 "int32", // CPPTYPE_INT32 118 "int64", // CPPTYPE_INT64 119 "uint32", // CPPTYPE_UINT32 120 "uint64", // CPPTYPE_UINT64 121 "double", // CPPTYPE_DOUBLE 122 "float", // CPPTYPE_FLOAT 123 "bool", // CPPTYPE_BOOL 124 "enum", // CPPTYPE_ENUM 125 "string", // CPPTYPE_STRING 126 "message", // CPPTYPE_MESSAGE 127 }; 128 129 const char * const FieldDescriptor::kLabelToName[MAX_LABEL + 1] = { 130 "ERROR", // 0 is reserved for errors 131 132 "optional", // LABEL_OPTIONAL 133 "required", // LABEL_REQUIRED 134 "repeated", // LABEL_REPEATED 135 }; 136 137 static const char * const kNonLinkedWeakMessageReplacementName = "google.protobuf.Empty"; 138 139 #ifndef _MSC_VER // MSVC doesn't need these and won't even accept them. 140 const int FieldDescriptor::kMaxNumber; 141 const int FieldDescriptor::kFirstReservedNumber; 142 const int FieldDescriptor::kLastReservedNumber; 143 #endif 144 145 namespace { 146 147 string ToCamelCase(const string& input) { 148 bool capitalize_next = false; 149 string result; 150 result.reserve(input.size()); 151 152 for (int i = 0; i < input.size(); i++) { 153 if (input[i] == '_') { 154 capitalize_next = true; 155 } else if (capitalize_next) { 156 // Note: I distrust ctype.h due to locales. 157 if ('a' <= input[i] && input[i] <= 'z') { 158 result.push_back(input[i] - 'a' + 'A'); 159 } else { 160 result.push_back(input[i]); 161 } 162 capitalize_next = false; 163 } else { 164 result.push_back(input[i]); 165 } 166 } 167 168 // Lower-case the first letter. 169 if (!result.empty() && 'A' <= result[0] && result[0] <= 'Z') { 170 result[0] = result[0] - 'A' + 'a'; 171 } 172 173 return result; 174 } 175 176 // A DescriptorPool contains a bunch of hash_maps to implement the 177 // various Find*By*() methods. Since hashtable lookups are O(1), it's 178 // most efficient to construct a fixed set of large hash_maps used by 179 // all objects in the pool rather than construct one or more small 180 // hash_maps for each object. 181 // 182 // The keys to these hash_maps are (parent, name) or (parent, number) 183 // pairs. Unfortunately STL doesn't provide hash functions for pair<>, 184 // so we must invent our own. 185 // 186 // TODO(kenton): Use StringPiece rather than const char* in keys? It would 187 // be a lot cleaner but we'd just have to convert it back to const char* 188 // for the open source release. 189 190 typedef pair<const void*, const char*> PointerStringPair; 191 192 struct PointerStringPairEqual { 193 inline bool operator()(const PointerStringPair& a, 194 const PointerStringPair& b) const { 195 return a.first == b.first && strcmp(a.second, b.second) == 0; 196 } 197 }; 198 199 template<typename PairType> 200 struct PointerIntegerPairHash { 201 size_t operator()(const PairType& p) const { 202 // FIXME(kenton): What is the best way to compute this hash? I have 203 // no idea! This seems a bit better than an XOR. 204 return reinterpret_cast<intptr_t>(p.first) * ((1 << 16) - 1) + p.second; 205 } 206 207 #ifdef _MSC_VER 208 // Used only by MSVC and platforms where hash_map is not available. 209 static const size_t bucket_size = 4; 210 static const size_t min_buckets = 8; 211 #endif 212 inline bool operator()(const PairType& a, const PairType& b) const { 213 return a.first < b.first || 214 (a.first == b.first && a.second < b.second); 215 } 216 }; 217 218 typedef pair<const Descriptor*, int> DescriptorIntPair; 219 typedef pair<const EnumDescriptor*, int> EnumIntPair; 220 221 struct PointerStringPairHash { 222 size_t operator()(const PointerStringPair& p) const { 223 // FIXME(kenton): What is the best way to compute this hash? I have 224 // no idea! This seems a bit better than an XOR. 225 hash<const char*> cstring_hash; 226 return reinterpret_cast<intptr_t>(p.first) * ((1 << 16) - 1) + 227 cstring_hash(p.second); 228 } 229 230 #ifdef _MSC_VER 231 // Used only by MSVC and platforms where hash_map is not available. 232 static const size_t bucket_size = 4; 233 static const size_t min_buckets = 8; 234 #endif 235 inline bool operator()(const PointerStringPair& a, 236 const PointerStringPair& b) const { 237 if (a.first < b.first) return true; 238 if (a.first > b.first) return false; 239 return strcmp(a.second, b.second) < 0; 240 } 241 }; 242 243 244 struct Symbol { 245 enum Type { 246 NULL_SYMBOL, MESSAGE, FIELD, ONEOF, ENUM, ENUM_VALUE, SERVICE, METHOD, 247 PACKAGE 248 }; 249 Type type; 250 union { 251 const Descriptor* descriptor; 252 const FieldDescriptor* field_descriptor; 253 const OneofDescriptor* oneof_descriptor; 254 const EnumDescriptor* enum_descriptor; 255 const EnumValueDescriptor* enum_value_descriptor; 256 const ServiceDescriptor* service_descriptor; 257 const MethodDescriptor* method_descriptor; 258 const FileDescriptor* package_file_descriptor; 259 }; 260 261 inline Symbol() : type(NULL_SYMBOL) { descriptor = NULL; } 262 inline bool IsNull() const { return type == NULL_SYMBOL; } 263 inline bool IsType() const { 264 return type == MESSAGE || type == ENUM; 265 } 266 inline bool IsAggregate() const { 267 return type == MESSAGE || type == PACKAGE 268 || type == ENUM || type == SERVICE; 269 } 270 271 #define CONSTRUCTOR(TYPE, TYPE_CONSTANT, FIELD) \ 272 inline explicit Symbol(const TYPE* value) { \ 273 type = TYPE_CONSTANT; \ 274 this->FIELD = value; \ 275 } 276 277 CONSTRUCTOR(Descriptor , MESSAGE , descriptor ) 278 CONSTRUCTOR(FieldDescriptor , FIELD , field_descriptor ) 279 CONSTRUCTOR(OneofDescriptor , ONEOF , oneof_descriptor ) 280 CONSTRUCTOR(EnumDescriptor , ENUM , enum_descriptor ) 281 CONSTRUCTOR(EnumValueDescriptor, ENUM_VALUE, enum_value_descriptor ) 282 CONSTRUCTOR(ServiceDescriptor , SERVICE , service_descriptor ) 283 CONSTRUCTOR(MethodDescriptor , METHOD , method_descriptor ) 284 CONSTRUCTOR(FileDescriptor , PACKAGE , package_file_descriptor) 285 #undef CONSTRUCTOR 286 287 const FileDescriptor* GetFile() const { 288 switch (type) { 289 case NULL_SYMBOL: return NULL; 290 case MESSAGE : return descriptor ->file(); 291 case FIELD : return field_descriptor ->file(); 292 case ONEOF : return oneof_descriptor ->containing_type()->file(); 293 case ENUM : return enum_descriptor ->file(); 294 case ENUM_VALUE : return enum_value_descriptor->type()->file(); 295 case SERVICE : return service_descriptor ->file(); 296 case METHOD : return method_descriptor ->service()->file(); 297 case PACKAGE : return package_file_descriptor; 298 } 299 return NULL; 300 } 301 }; 302 303 const Symbol kNullSymbol; 304 305 typedef hash_map<const char*, Symbol, 306 hash<const char*>, streq> 307 SymbolsByNameMap; 308 typedef hash_map<PointerStringPair, Symbol, 309 PointerStringPairHash, PointerStringPairEqual> 310 SymbolsByParentMap; 311 typedef hash_map<const char*, const FileDescriptor*, 312 hash<const char*>, streq> 313 FilesByNameMap; 314 typedef hash_map<PointerStringPair, const FieldDescriptor*, 315 PointerStringPairHash, PointerStringPairEqual> 316 FieldsByNameMap; 317 typedef hash_map<DescriptorIntPair, const FieldDescriptor*, 318 PointerIntegerPairHash<DescriptorIntPair> > 319 FieldsByNumberMap; 320 typedef hash_map<EnumIntPair, const EnumValueDescriptor*, 321 PointerIntegerPairHash<EnumIntPair> > 322 EnumValuesByNumberMap; 323 // This is a map rather than a hash_map, since we use it to iterate 324 // through all the extensions that extend a given Descriptor, and an 325 // ordered data structure that implements lower_bound is convenient 326 // for that. 327 typedef map<DescriptorIntPair, const FieldDescriptor*> 328 ExtensionsGroupedByDescriptorMap; 329 typedef hash_map<string, const SourceCodeInfo_Location*> LocationsByPathMap; 330 } // anonymous namespace 331 332 // =================================================================== 333 // DescriptorPool::Tables 334 335 class DescriptorPool::Tables { 336 public: 337 Tables(); 338 ~Tables(); 339 340 // Record the current state of the tables to the stack of checkpoints. 341 // Each call to AddCheckpoint() must be paired with exactly one call to either 342 // ClearLastCheckpoint() or RollbackToLastCheckpoint(). 343 // 344 // This is used when building files, since some kinds of validation errors 345 // cannot be detected until the file's descriptors have already been added to 346 // the tables. 347 // 348 // This supports recursive checkpoints, since building a file may trigger 349 // recursive building of other files. Note that recursive checkpoints are not 350 // normally necessary; explicit dependencies are built prior to checkpointing. 351 // So although we recursively build transitive imports, there is at most one 352 // checkpoint in the stack during dependency building. 353 // 354 // Recursive checkpoints only arise during cross-linking of the descriptors. 355 // Symbol references must be resolved, via DescriptorBuilder::FindSymbol and 356 // friends. If the pending file references an unknown symbol 357 // (e.g., it is not defined in the pending file's explicit dependencies), and 358 // the pool is using a fallback database, and that database contains a file 359 // defining that symbol, and that file has not yet been built by the pool, 360 // the pool builds the file during cross-linking, leading to another 361 // checkpoint. 362 void AddCheckpoint(); 363 364 // Mark the last checkpoint as having cleared successfully, removing it from 365 // the stack. If the stack is empty, all pending symbols will be committed. 366 // 367 // Note that this does not guarantee that the symbols added since the last 368 // checkpoint won't be rolled back: if a checkpoint gets rolled back, 369 // everything past that point gets rolled back, including symbols added after 370 // checkpoints that were pushed onto the stack after it and marked as cleared. 371 void ClearLastCheckpoint(); 372 373 // Roll back the Tables to the state of the checkpoint at the top of the 374 // stack, removing everything that was added after that point. 375 void RollbackToLastCheckpoint(); 376 377 // The stack of files which are currently being built. Used to detect 378 // cyclic dependencies when loading files from a DescriptorDatabase. Not 379 // used when fallback_database_ == NULL. 380 vector<string> pending_files_; 381 382 // A set of files which we have tried to load from the fallback database 383 // and encountered errors. We will not attempt to load them again during 384 // execution of the current public API call, but for compatibility with 385 // legacy clients, this is cleared at the beginning of each public API call. 386 // Not used when fallback_database_ == NULL. 387 hash_set<string> known_bad_files_; 388 389 // A set of symbols which we have tried to load from the fallback database 390 // and encountered errors. We will not attempt to load them again during 391 // execution of the current public API call, but for compatibility with 392 // legacy clients, this is cleared at the beginning of each public API call. 393 hash_set<string> known_bad_symbols_; 394 395 // The set of descriptors for which we've already loaded the full 396 // set of extensions numbers from fallback_database_. 397 hash_set<const Descriptor*> extensions_loaded_from_db_; 398 399 // ----------------------------------------------------------------- 400 // Finding items. 401 402 // Find symbols. This returns a null Symbol (symbol.IsNull() is true) 403 // if not found. 404 inline Symbol FindSymbol(const string& key) const; 405 406 // This implements the body of DescriptorPool::Find*ByName(). It should 407 // really be a private method of DescriptorPool, but that would require 408 // declaring Symbol in descriptor.h, which would drag all kinds of other 409 // stuff into the header. Yay C++. 410 Symbol FindByNameHelper( 411 const DescriptorPool* pool, const string& name); 412 413 // These return NULL if not found. 414 inline const FileDescriptor* FindFile(const string& key) const; 415 inline const FieldDescriptor* FindExtension(const Descriptor* extendee, 416 int number); 417 inline void FindAllExtensions(const Descriptor* extendee, 418 vector<const FieldDescriptor*>* out) const; 419 420 // ----------------------------------------------------------------- 421 // Adding items. 422 423 // These add items to the corresponding tables. They return false if 424 // the key already exists in the table. For AddSymbol(), the string passed 425 // in must be one that was constructed using AllocateString(), as it will 426 // be used as a key in the symbols_by_name_ map without copying. 427 bool AddSymbol(const string& full_name, Symbol symbol); 428 bool AddFile(const FileDescriptor* file); 429 bool AddExtension(const FieldDescriptor* field); 430 431 // ----------------------------------------------------------------- 432 // Allocating memory. 433 434 // Allocate an object which will be reclaimed when the pool is 435 // destroyed. Note that the object's destructor will never be called, 436 // so its fields must be plain old data (primitive data types and 437 // pointers). All of the descriptor types are such objects. 438 template<typename Type> Type* Allocate(); 439 440 // Allocate an array of objects which will be reclaimed when the 441 // pool in destroyed. Again, destructors are never called. 442 template<typename Type> Type* AllocateArray(int count); 443 444 // Allocate a string which will be destroyed when the pool is destroyed. 445 // The string is initialized to the given value for convenience. 446 string* AllocateString(const string& value); 447 448 // Allocate a protocol message object. Some older versions of GCC have 449 // trouble understanding explicit template instantiations in some cases, so 450 // in those cases we have to pass a dummy pointer of the right type as the 451 // parameter instead of specifying the type explicitly. 452 template<typename Type> Type* AllocateMessage(Type* dummy = NULL); 453 454 // Allocate a FileDescriptorTables object. 455 FileDescriptorTables* AllocateFileTables(); 456 457 private: 458 vector<string*> strings_; // All strings in the pool. 459 vector<Message*> messages_; // All messages in the pool. 460 vector<FileDescriptorTables*> file_tables_; // All file tables in the pool. 461 vector<void*> allocations_; // All other memory allocated in the pool. 462 463 SymbolsByNameMap symbols_by_name_; 464 FilesByNameMap files_by_name_; 465 ExtensionsGroupedByDescriptorMap extensions_; 466 467 struct CheckPoint { 468 explicit CheckPoint(const Tables* tables) 469 : strings_before_checkpoint(tables->strings_.size()), 470 messages_before_checkpoint(tables->messages_.size()), 471 file_tables_before_checkpoint(tables->file_tables_.size()), 472 allocations_before_checkpoint(tables->allocations_.size()), 473 pending_symbols_before_checkpoint( 474 tables->symbols_after_checkpoint_.size()), 475 pending_files_before_checkpoint( 476 tables->files_after_checkpoint_.size()), 477 pending_extensions_before_checkpoint( 478 tables->extensions_after_checkpoint_.size()) { 479 } 480 int strings_before_checkpoint; 481 int messages_before_checkpoint; 482 int file_tables_before_checkpoint; 483 int allocations_before_checkpoint; 484 int pending_symbols_before_checkpoint; 485 int pending_files_before_checkpoint; 486 int pending_extensions_before_checkpoint; 487 }; 488 vector<CheckPoint> checkpoints_; 489 vector<const char* > symbols_after_checkpoint_; 490 vector<const char* > files_after_checkpoint_; 491 vector<DescriptorIntPair> extensions_after_checkpoint_; 492 493 // Allocate some bytes which will be reclaimed when the pool is 494 // destroyed. 495 void* AllocateBytes(int size); 496 }; 497 498 // Contains tables specific to a particular file. These tables are not 499 // modified once the file has been constructed, so they need not be 500 // protected by a mutex. This makes operations that depend only on the 501 // contents of a single file -- e.g. Descriptor::FindFieldByName() -- 502 // lock-free. 503 // 504 // For historical reasons, the definitions of the methods of 505 // FileDescriptorTables and DescriptorPool::Tables are interleaved below. 506 // These used to be a single class. 507 class FileDescriptorTables { 508 public: 509 FileDescriptorTables(); 510 ~FileDescriptorTables(); 511 512 // Empty table, used with placeholder files. 513 static const FileDescriptorTables kEmpty; 514 515 // ----------------------------------------------------------------- 516 // Finding items. 517 518 // Find symbols. These return a null Symbol (symbol.IsNull() is true) 519 // if not found. 520 inline Symbol FindNestedSymbol(const void* parent, 521 const string& name) const; 522 inline Symbol FindNestedSymbolOfType(const void* parent, 523 const string& name, 524 const Symbol::Type type) const; 525 526 // These return NULL if not found. 527 inline const FieldDescriptor* FindFieldByNumber( 528 const Descriptor* parent, int number) const; 529 inline const FieldDescriptor* FindFieldByLowercaseName( 530 const void* parent, const string& lowercase_name) const; 531 inline const FieldDescriptor* FindFieldByCamelcaseName( 532 const void* parent, const string& camelcase_name) const; 533 inline const EnumValueDescriptor* FindEnumValueByNumber( 534 const EnumDescriptor* parent, int number) const; 535 536 // ----------------------------------------------------------------- 537 // Adding items. 538 539 // These add items to the corresponding tables. They return false if 540 // the key already exists in the table. For AddAliasUnderParent(), the 541 // string passed in must be one that was constructed using AllocateString(), 542 // as it will be used as a key in the symbols_by_parent_ map without copying. 543 bool AddAliasUnderParent(const void* parent, const string& name, 544 Symbol symbol); 545 bool AddFieldByNumber(const FieldDescriptor* field); 546 bool AddEnumValueByNumber(const EnumValueDescriptor* value); 547 548 // Adds the field to the lowercase_name and camelcase_name maps. Never 549 // fails because we allow duplicates; the first field by the name wins. 550 void AddFieldByStylizedNames(const FieldDescriptor* field); 551 552 // Populates p->first->locations_by_path_ from p->second. 553 // Unusual signature dictated by GoogleOnceDynamic. 554 static void BuildLocationsByPath( 555 pair<const FileDescriptorTables*, const SourceCodeInfo*>* p); 556 557 // Returns the location denoted by the specified path through info, 558 // or NULL if not found. 559 // The value of info must be that of the corresponding FileDescriptor. 560 // (Conceptually a pure function, but stateful as an optimisation.) 561 const SourceCodeInfo_Location* GetSourceLocation( 562 const vector<int>& path, const SourceCodeInfo* info) const; 563 564 private: 565 SymbolsByParentMap symbols_by_parent_; 566 FieldsByNameMap fields_by_lowercase_name_; 567 FieldsByNameMap fields_by_camelcase_name_; 568 FieldsByNumberMap fields_by_number_; // Not including extensions. 569 EnumValuesByNumberMap enum_values_by_number_; 570 571 // Populated on first request to save space, hence constness games. 572 mutable GoogleOnceDynamic locations_by_path_once_; 573 mutable LocationsByPathMap locations_by_path_; 574 }; 575 576 DescriptorPool::Tables::Tables() 577 // Start some hash_map and hash_set objects with a small # of buckets 578 : known_bad_files_(3), 579 known_bad_symbols_(3), 580 extensions_loaded_from_db_(3), 581 symbols_by_name_(3), 582 files_by_name_(3) {} 583 584 585 DescriptorPool::Tables::~Tables() { 586 GOOGLE_DCHECK(checkpoints_.empty()); 587 // Note that the deletion order is important, since the destructors of some 588 // messages may refer to objects in allocations_. 589 STLDeleteElements(&messages_); 590 for (int i = 0; i < allocations_.size(); i++) { 591 operator delete(allocations_[i]); 592 } 593 STLDeleteElements(&strings_); 594 STLDeleteElements(&file_tables_); 595 } 596 597 FileDescriptorTables::FileDescriptorTables() 598 // Initialize all the hash tables to start out with a small # of buckets 599 : symbols_by_parent_(3), 600 fields_by_lowercase_name_(3), 601 fields_by_camelcase_name_(3), 602 fields_by_number_(3), 603 enum_values_by_number_(3) { 604 } 605 606 FileDescriptorTables::~FileDescriptorTables() {} 607 608 const FileDescriptorTables FileDescriptorTables::kEmpty; 609 610 void DescriptorPool::Tables::AddCheckpoint() { 611 checkpoints_.push_back(CheckPoint(this)); 612 } 613 614 void DescriptorPool::Tables::ClearLastCheckpoint() { 615 GOOGLE_DCHECK(!checkpoints_.empty()); 616 checkpoints_.pop_back(); 617 if (checkpoints_.empty()) { 618 // All checkpoints have been cleared: we can now commit all of the pending 619 // data. 620 symbols_after_checkpoint_.clear(); 621 files_after_checkpoint_.clear(); 622 extensions_after_checkpoint_.clear(); 623 } 624 } 625 626 void DescriptorPool::Tables::RollbackToLastCheckpoint() { 627 GOOGLE_DCHECK(!checkpoints_.empty()); 628 const CheckPoint& checkpoint = checkpoints_.back(); 629 630 for (int i = checkpoint.pending_symbols_before_checkpoint; 631 i < symbols_after_checkpoint_.size(); 632 i++) { 633 symbols_by_name_.erase(symbols_after_checkpoint_[i]); 634 } 635 for (int i = checkpoint.pending_files_before_checkpoint; 636 i < files_after_checkpoint_.size(); 637 i++) { 638 files_by_name_.erase(files_after_checkpoint_[i]); 639 } 640 for (int i = checkpoint.pending_extensions_before_checkpoint; 641 i < extensions_after_checkpoint_.size(); 642 i++) { 643 extensions_.erase(extensions_after_checkpoint_[i]); 644 } 645 646 symbols_after_checkpoint_.resize( 647 checkpoint.pending_symbols_before_checkpoint); 648 files_after_checkpoint_.resize(checkpoint.pending_files_before_checkpoint); 649 extensions_after_checkpoint_.resize( 650 checkpoint.pending_extensions_before_checkpoint); 651 652 STLDeleteContainerPointers( 653 strings_.begin() + checkpoint.strings_before_checkpoint, strings_.end()); 654 STLDeleteContainerPointers( 655 messages_.begin() + checkpoint.messages_before_checkpoint, 656 messages_.end()); 657 STLDeleteContainerPointers( 658 file_tables_.begin() + checkpoint.file_tables_before_checkpoint, 659 file_tables_.end()); 660 for (int i = checkpoint.allocations_before_checkpoint; 661 i < allocations_.size(); 662 i++) { 663 operator delete(allocations_[i]); 664 } 665 666 strings_.resize(checkpoint.strings_before_checkpoint); 667 messages_.resize(checkpoint.messages_before_checkpoint); 668 file_tables_.resize(checkpoint.file_tables_before_checkpoint); 669 allocations_.resize(checkpoint.allocations_before_checkpoint); 670 checkpoints_.pop_back(); 671 } 672 673 // ------------------------------------------------------------------- 674 675 inline Symbol DescriptorPool::Tables::FindSymbol(const string& key) const { 676 const Symbol* result = FindOrNull(symbols_by_name_, key.c_str()); 677 if (result == NULL) { 678 return kNullSymbol; 679 } else { 680 return *result; 681 } 682 } 683 684 inline Symbol FileDescriptorTables::FindNestedSymbol( 685 const void* parent, const string& name) const { 686 const Symbol* result = 687 FindOrNull(symbols_by_parent_, PointerStringPair(parent, name.c_str())); 688 if (result == NULL) { 689 return kNullSymbol; 690 } else { 691 return *result; 692 } 693 } 694 695 inline Symbol FileDescriptorTables::FindNestedSymbolOfType( 696 const void* parent, const string& name, const Symbol::Type type) const { 697 Symbol result = FindNestedSymbol(parent, name); 698 if (result.type != type) return kNullSymbol; 699 return result; 700 } 701 702 Symbol DescriptorPool::Tables::FindByNameHelper( 703 const DescriptorPool* pool, const string& name) { 704 MutexLockMaybe lock(pool->mutex_); 705 known_bad_symbols_.clear(); 706 known_bad_files_.clear(); 707 Symbol result = FindSymbol(name); 708 709 if (result.IsNull() && pool->underlay_ != NULL) { 710 // Symbol not found; check the underlay. 711 result = 712 pool->underlay_->tables_->FindByNameHelper(pool->underlay_, name); 713 } 714 715 if (result.IsNull()) { 716 // Symbol still not found, so check fallback database. 717 if (pool->TryFindSymbolInFallbackDatabase(name)) { 718 result = FindSymbol(name); 719 } 720 } 721 722 return result; 723 } 724 725 inline const FileDescriptor* DescriptorPool::Tables::FindFile( 726 const string& key) const { 727 return FindPtrOrNull(files_by_name_, key.c_str()); 728 } 729 730 inline const FieldDescriptor* FileDescriptorTables::FindFieldByNumber( 731 const Descriptor* parent, int number) const { 732 return FindPtrOrNull(fields_by_number_, make_pair(parent, number)); 733 } 734 735 inline const FieldDescriptor* FileDescriptorTables::FindFieldByLowercaseName( 736 const void* parent, const string& lowercase_name) const { 737 return FindPtrOrNull(fields_by_lowercase_name_, 738 PointerStringPair(parent, lowercase_name.c_str())); 739 } 740 741 inline const FieldDescriptor* FileDescriptorTables::FindFieldByCamelcaseName( 742 const void* parent, const string& camelcase_name) const { 743 return FindPtrOrNull(fields_by_camelcase_name_, 744 PointerStringPair(parent, camelcase_name.c_str())); 745 } 746 747 inline const EnumValueDescriptor* FileDescriptorTables::FindEnumValueByNumber( 748 const EnumDescriptor* parent, int number) const { 749 return FindPtrOrNull(enum_values_by_number_, make_pair(parent, number)); 750 } 751 752 inline const FieldDescriptor* DescriptorPool::Tables::FindExtension( 753 const Descriptor* extendee, int number) { 754 return FindPtrOrNull(extensions_, make_pair(extendee, number)); 755 } 756 757 inline void DescriptorPool::Tables::FindAllExtensions( 758 const Descriptor* extendee, vector<const FieldDescriptor*>* out) const { 759 ExtensionsGroupedByDescriptorMap::const_iterator it = 760 extensions_.lower_bound(make_pair(extendee, 0)); 761 for (; it != extensions_.end() && it->first.first == extendee; ++it) { 762 out->push_back(it->second); 763 } 764 } 765 766 // ------------------------------------------------------------------- 767 768 bool DescriptorPool::Tables::AddSymbol( 769 const string& full_name, Symbol symbol) { 770 if (InsertIfNotPresent(&symbols_by_name_, full_name.c_str(), symbol)) { 771 symbols_after_checkpoint_.push_back(full_name.c_str()); 772 return true; 773 } else { 774 return false; 775 } 776 } 777 778 bool FileDescriptorTables::AddAliasUnderParent( 779 const void* parent, const string& name, Symbol symbol) { 780 PointerStringPair by_parent_key(parent, name.c_str()); 781 return InsertIfNotPresent(&symbols_by_parent_, by_parent_key, symbol); 782 } 783 784 bool DescriptorPool::Tables::AddFile(const FileDescriptor* file) { 785 if (InsertIfNotPresent(&files_by_name_, file->name().c_str(), file)) { 786 files_after_checkpoint_.push_back(file->name().c_str()); 787 return true; 788 } else { 789 return false; 790 } 791 } 792 793 void FileDescriptorTables::AddFieldByStylizedNames( 794 const FieldDescriptor* field) { 795 const void* parent; 796 if (field->is_extension()) { 797 if (field->extension_scope() == NULL) { 798 parent = field->file(); 799 } else { 800 parent = field->extension_scope(); 801 } 802 } else { 803 parent = field->containing_type(); 804 } 805 806 PointerStringPair lowercase_key(parent, field->lowercase_name().c_str()); 807 InsertIfNotPresent(&fields_by_lowercase_name_, lowercase_key, field); 808 809 PointerStringPair camelcase_key(parent, field->camelcase_name().c_str()); 810 InsertIfNotPresent(&fields_by_camelcase_name_, camelcase_key, field); 811 } 812 813 bool FileDescriptorTables::AddFieldByNumber(const FieldDescriptor* field) { 814 DescriptorIntPair key(field->containing_type(), field->number()); 815 return InsertIfNotPresent(&fields_by_number_, key, field); 816 } 817 818 bool FileDescriptorTables::AddEnumValueByNumber( 819 const EnumValueDescriptor* value) { 820 EnumIntPair key(value->type(), value->number()); 821 return InsertIfNotPresent(&enum_values_by_number_, key, value); 822 } 823 824 bool DescriptorPool::Tables::AddExtension(const FieldDescriptor* field) { 825 DescriptorIntPair key(field->containing_type(), field->number()); 826 if (InsertIfNotPresent(&extensions_, key, field)) { 827 extensions_after_checkpoint_.push_back(key); 828 return true; 829 } else { 830 return false; 831 } 832 } 833 834 // ------------------------------------------------------------------- 835 836 template<typename Type> 837 Type* DescriptorPool::Tables::Allocate() { 838 return reinterpret_cast<Type*>(AllocateBytes(sizeof(Type))); 839 } 840 841 template<typename Type> 842 Type* DescriptorPool::Tables::AllocateArray(int count) { 843 return reinterpret_cast<Type*>(AllocateBytes(sizeof(Type) * count)); 844 } 845 846 string* DescriptorPool::Tables::AllocateString(const string& value) { 847 string* result = new string(value); 848 strings_.push_back(result); 849 return result; 850 } 851 852 template<typename Type> 853 Type* DescriptorPool::Tables::AllocateMessage(Type* /* dummy */) { 854 Type* result = new Type; 855 messages_.push_back(result); 856 return result; 857 } 858 859 FileDescriptorTables* DescriptorPool::Tables::AllocateFileTables() { 860 FileDescriptorTables* result = new FileDescriptorTables; 861 file_tables_.push_back(result); 862 return result; 863 } 864 865 void* DescriptorPool::Tables::AllocateBytes(int size) { 866 // TODO(kenton): Would it be worthwhile to implement this in some more 867 // sophisticated way? Probably not for the open source release, but for 868 // internal use we could easily plug in one of our existing memory pool 869 // allocators... 870 if (size == 0) return NULL; 871 872 void* result = operator new(size); 873 allocations_.push_back(result); 874 return result; 875 } 876 877 void FileDescriptorTables::BuildLocationsByPath( 878 pair<const FileDescriptorTables*, const SourceCodeInfo*>* p) { 879 for (int i = 0, len = p->second->location_size(); i < len; ++i) { 880 const SourceCodeInfo_Location* loc = &p->second->location().Get(i); 881 p->first->locations_by_path_[Join(loc->path(), ",")] = loc; 882 } 883 } 884 885 const SourceCodeInfo_Location* FileDescriptorTables::GetSourceLocation( 886 const vector<int>& path, const SourceCodeInfo* info) const { 887 pair<const FileDescriptorTables*, const SourceCodeInfo*> p( 888 make_pair(this, info)); 889 locations_by_path_once_.Init(&FileDescriptorTables::BuildLocationsByPath, &p); 890 return FindPtrOrNull(locations_by_path_, Join(path, ",")); 891 } 892 893 // =================================================================== 894 // DescriptorPool 895 896 DescriptorPool::ErrorCollector::~ErrorCollector() {} 897 898 DescriptorPool::DescriptorPool() 899 : mutex_(NULL), 900 fallback_database_(NULL), 901 default_error_collector_(NULL), 902 underlay_(NULL), 903 tables_(new Tables), 904 enforce_dependencies_(true), 905 allow_unknown_(false), 906 enforce_weak_(false) {} 907 908 DescriptorPool::DescriptorPool(DescriptorDatabase* fallback_database, 909 ErrorCollector* error_collector) 910 : mutex_(new Mutex), 911 fallback_database_(fallback_database), 912 default_error_collector_(error_collector), 913 underlay_(NULL), 914 tables_(new Tables), 915 enforce_dependencies_(true), 916 allow_unknown_(false), 917 enforce_weak_(false) { 918 } 919 920 DescriptorPool::DescriptorPool(const DescriptorPool* underlay) 921 : mutex_(NULL), 922 fallback_database_(NULL), 923 default_error_collector_(NULL), 924 underlay_(underlay), 925 tables_(new Tables), 926 enforce_dependencies_(true), 927 allow_unknown_(false), 928 enforce_weak_(false) {} 929 930 DescriptorPool::~DescriptorPool() { 931 if (mutex_ != NULL) delete mutex_; 932 } 933 934 // DescriptorPool::BuildFile() defined later. 935 // DescriptorPool::BuildFileCollectingErrors() defined later. 936 937 void DescriptorPool::InternalDontEnforceDependencies() { 938 enforce_dependencies_ = false; 939 } 940 941 void DescriptorPool::AddUnusedImportTrackFile(const string& file_name) { 942 unused_import_track_files_.insert(file_name); 943 } 944 945 void DescriptorPool::ClearUnusedImportTrackFiles() { 946 unused_import_track_files_.clear(); 947 } 948 949 bool DescriptorPool::InternalIsFileLoaded(const string& filename) const { 950 MutexLockMaybe lock(mutex_); 951 return tables_->FindFile(filename) != NULL; 952 } 953 954 // generated_pool ==================================================== 955 956 namespace { 957 958 959 EncodedDescriptorDatabase* generated_database_ = NULL; 960 DescriptorPool* generated_pool_ = NULL; 961 GOOGLE_PROTOBUF_DECLARE_ONCE(generated_pool_init_); 962 963 void DeleteGeneratedPool() { 964 delete generated_database_; 965 generated_database_ = NULL; 966 delete generated_pool_; 967 generated_pool_ = NULL; 968 } 969 970 static void InitGeneratedPool() { 971 generated_database_ = new EncodedDescriptorDatabase; 972 generated_pool_ = new DescriptorPool(generated_database_); 973 974 internal::OnShutdown(&DeleteGeneratedPool); 975 } 976 977 inline void InitGeneratedPoolOnce() { 978 ::google::protobuf::GoogleOnceInit(&generated_pool_init_, &InitGeneratedPool); 979 } 980 981 } // anonymous namespace 982 983 const DescriptorPool* DescriptorPool::generated_pool() { 984 InitGeneratedPoolOnce(); 985 return generated_pool_; 986 } 987 988 DescriptorPool* DescriptorPool::internal_generated_pool() { 989 InitGeneratedPoolOnce(); 990 return generated_pool_; 991 } 992 993 void DescriptorPool::InternalAddGeneratedFile( 994 const void* encoded_file_descriptor, int size) { 995 // So, this function is called in the process of initializing the 996 // descriptors for generated proto classes. Each generated .pb.cc file 997 // has an internal procedure called AddDescriptors() which is called at 998 // process startup, and that function calls this one in order to register 999 // the raw bytes of the FileDescriptorProto representing the file. 1000 // 1001 // We do not actually construct the descriptor objects right away. We just 1002 // hang on to the bytes until they are actually needed. We actually construct 1003 // the descriptor the first time one of the following things happens: 1004 // * Someone calls a method like descriptor(), GetDescriptor(), or 1005 // GetReflection() on the generated types, which requires returning the 1006 // descriptor or an object based on it. 1007 // * Someone looks up the descriptor in DescriptorPool::generated_pool(). 1008 // 1009 // Once one of these happens, the DescriptorPool actually parses the 1010 // FileDescriptorProto and generates a FileDescriptor (and all its children) 1011 // based on it. 1012 // 1013 // Note that FileDescriptorProto is itself a generated protocol message. 1014 // Therefore, when we parse one, we have to be very careful to avoid using 1015 // any descriptor-based operations, since this might cause infinite recursion 1016 // or deadlock. 1017 InitGeneratedPoolOnce(); 1018 GOOGLE_CHECK(generated_database_->Add(encoded_file_descriptor, size)); 1019 } 1020 1021 1022 // Find*By* methods ================================================== 1023 1024 // TODO(kenton): There's a lot of repeated code here, but I'm not sure if 1025 // there's any good way to factor it out. Think about this some time when 1026 // there's nothing more important to do (read: never). 1027 1028 const FileDescriptor* DescriptorPool::FindFileByName(const string& name) const { 1029 MutexLockMaybe lock(mutex_); 1030 tables_->known_bad_symbols_.clear(); 1031 tables_->known_bad_files_.clear(); 1032 const FileDescriptor* result = tables_->FindFile(name); 1033 if (result != NULL) return result; 1034 if (underlay_ != NULL) { 1035 result = underlay_->FindFileByName(name); 1036 if (result != NULL) return result; 1037 } 1038 if (TryFindFileInFallbackDatabase(name)) { 1039 result = tables_->FindFile(name); 1040 if (result != NULL) return result; 1041 } 1042 return NULL; 1043 } 1044 1045 const FileDescriptor* DescriptorPool::FindFileContainingSymbol( 1046 const string& symbol_name) const { 1047 MutexLockMaybe lock(mutex_); 1048 tables_->known_bad_symbols_.clear(); 1049 tables_->known_bad_files_.clear(); 1050 Symbol result = tables_->FindSymbol(symbol_name); 1051 if (!result.IsNull()) return result.GetFile(); 1052 if (underlay_ != NULL) { 1053 const FileDescriptor* file_result = 1054 underlay_->FindFileContainingSymbol(symbol_name); 1055 if (file_result != NULL) return file_result; 1056 } 1057 if (TryFindSymbolInFallbackDatabase(symbol_name)) { 1058 result = tables_->FindSymbol(symbol_name); 1059 if (!result.IsNull()) return result.GetFile(); 1060 } 1061 return NULL; 1062 } 1063 1064 const Descriptor* DescriptorPool::FindMessageTypeByName( 1065 const string& name) const { 1066 Symbol result = tables_->FindByNameHelper(this, name); 1067 return (result.type == Symbol::MESSAGE) ? result.descriptor : NULL; 1068 } 1069 1070 const FieldDescriptor* DescriptorPool::FindFieldByName( 1071 const string& name) const { 1072 Symbol result = tables_->FindByNameHelper(this, name); 1073 if (result.type == Symbol::FIELD && 1074 !result.field_descriptor->is_extension()) { 1075 return result.field_descriptor; 1076 } else { 1077 return NULL; 1078 } 1079 } 1080 1081 const FieldDescriptor* DescriptorPool::FindExtensionByName( 1082 const string& name) const { 1083 Symbol result = tables_->FindByNameHelper(this, name); 1084 if (result.type == Symbol::FIELD && 1085 result.field_descriptor->is_extension()) { 1086 return result.field_descriptor; 1087 } else { 1088 return NULL; 1089 } 1090 } 1091 1092 const OneofDescriptor* DescriptorPool::FindOneofByName( 1093 const string& name) const { 1094 Symbol result = tables_->FindByNameHelper(this, name); 1095 return (result.type == Symbol::ONEOF) ? result.oneof_descriptor : NULL; 1096 } 1097 1098 const EnumDescriptor* DescriptorPool::FindEnumTypeByName( 1099 const string& name) const { 1100 Symbol result = tables_->FindByNameHelper(this, name); 1101 return (result.type == Symbol::ENUM) ? result.enum_descriptor : NULL; 1102 } 1103 1104 const EnumValueDescriptor* DescriptorPool::FindEnumValueByName( 1105 const string& name) const { 1106 Symbol result = tables_->FindByNameHelper(this, name); 1107 return (result.type == Symbol::ENUM_VALUE) ? 1108 result.enum_value_descriptor : NULL; 1109 } 1110 1111 const ServiceDescriptor* DescriptorPool::FindServiceByName( 1112 const string& name) const { 1113 Symbol result = tables_->FindByNameHelper(this, name); 1114 return (result.type == Symbol::SERVICE) ? result.service_descriptor : NULL; 1115 } 1116 1117 const MethodDescriptor* DescriptorPool::FindMethodByName( 1118 const string& name) const { 1119 Symbol result = tables_->FindByNameHelper(this, name); 1120 return (result.type == Symbol::METHOD) ? result.method_descriptor : NULL; 1121 } 1122 1123 const FieldDescriptor* DescriptorPool::FindExtensionByNumber( 1124 const Descriptor* extendee, int number) const { 1125 MutexLockMaybe lock(mutex_); 1126 tables_->known_bad_symbols_.clear(); 1127 tables_->known_bad_files_.clear(); 1128 const FieldDescriptor* result = tables_->FindExtension(extendee, number); 1129 if (result != NULL) { 1130 return result; 1131 } 1132 if (underlay_ != NULL) { 1133 result = underlay_->FindExtensionByNumber(extendee, number); 1134 if (result != NULL) return result; 1135 } 1136 if (TryFindExtensionInFallbackDatabase(extendee, number)) { 1137 result = tables_->FindExtension(extendee, number); 1138 if (result != NULL) { 1139 return result; 1140 } 1141 } 1142 return NULL; 1143 } 1144 1145 void DescriptorPool::FindAllExtensions( 1146 const Descriptor* extendee, vector<const FieldDescriptor*>* out) const { 1147 MutexLockMaybe lock(mutex_); 1148 tables_->known_bad_symbols_.clear(); 1149 tables_->known_bad_files_.clear(); 1150 1151 // Initialize tables_->extensions_ from the fallback database first 1152 // (but do this only once per descriptor). 1153 if (fallback_database_ != NULL && 1154 tables_->extensions_loaded_from_db_.count(extendee) == 0) { 1155 vector<int> numbers; 1156 if (fallback_database_->FindAllExtensionNumbers(extendee->full_name(), 1157 &numbers)) { 1158 for (int i = 0; i < numbers.size(); ++i) { 1159 int number = numbers[i]; 1160 if (tables_->FindExtension(extendee, number) == NULL) { 1161 TryFindExtensionInFallbackDatabase(extendee, number); 1162 } 1163 } 1164 tables_->extensions_loaded_from_db_.insert(extendee); 1165 } 1166 } 1167 1168 tables_->FindAllExtensions(extendee, out); 1169 if (underlay_ != NULL) { 1170 underlay_->FindAllExtensions(extendee, out); 1171 } 1172 } 1173 1174 1175 // ------------------------------------------------------------------- 1176 1177 const FieldDescriptor* 1178 Descriptor::FindFieldByNumber(int key) const { 1179 const FieldDescriptor* result = 1180 file()->tables_->FindFieldByNumber(this, key); 1181 if (result == NULL || result->is_extension()) { 1182 return NULL; 1183 } else { 1184 return result; 1185 } 1186 } 1187 1188 const FieldDescriptor* 1189 Descriptor::FindFieldByLowercaseName(const string& key) const { 1190 const FieldDescriptor* result = 1191 file()->tables_->FindFieldByLowercaseName(this, key); 1192 if (result == NULL || result->is_extension()) { 1193 return NULL; 1194 } else { 1195 return result; 1196 } 1197 } 1198 1199 const FieldDescriptor* 1200 Descriptor::FindFieldByCamelcaseName(const string& key) const { 1201 const FieldDescriptor* result = 1202 file()->tables_->FindFieldByCamelcaseName(this, key); 1203 if (result == NULL || result->is_extension()) { 1204 return NULL; 1205 } else { 1206 return result; 1207 } 1208 } 1209 1210 const FieldDescriptor* 1211 Descriptor::FindFieldByName(const string& key) const { 1212 Symbol result = 1213 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD); 1214 if (!result.IsNull() && !result.field_descriptor->is_extension()) { 1215 return result.field_descriptor; 1216 } else { 1217 return NULL; 1218 } 1219 } 1220 1221 const OneofDescriptor* 1222 Descriptor::FindOneofByName(const string& key) const { 1223 Symbol result = 1224 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ONEOF); 1225 if (!result.IsNull()) { 1226 return result.oneof_descriptor; 1227 } else { 1228 return NULL; 1229 } 1230 } 1231 1232 const FieldDescriptor* 1233 Descriptor::FindExtensionByName(const string& key) const { 1234 Symbol result = 1235 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD); 1236 if (!result.IsNull() && result.field_descriptor->is_extension()) { 1237 return result.field_descriptor; 1238 } else { 1239 return NULL; 1240 } 1241 } 1242 1243 const FieldDescriptor* 1244 Descriptor::FindExtensionByLowercaseName(const string& key) const { 1245 const FieldDescriptor* result = 1246 file()->tables_->FindFieldByLowercaseName(this, key); 1247 if (result == NULL || !result->is_extension()) { 1248 return NULL; 1249 } else { 1250 return result; 1251 } 1252 } 1253 1254 const FieldDescriptor* 1255 Descriptor::FindExtensionByCamelcaseName(const string& key) const { 1256 const FieldDescriptor* result = 1257 file()->tables_->FindFieldByCamelcaseName(this, key); 1258 if (result == NULL || !result->is_extension()) { 1259 return NULL; 1260 } else { 1261 return result; 1262 } 1263 } 1264 1265 const Descriptor* 1266 Descriptor::FindNestedTypeByName(const string& key) const { 1267 Symbol result = 1268 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::MESSAGE); 1269 if (!result.IsNull()) { 1270 return result.descriptor; 1271 } else { 1272 return NULL; 1273 } 1274 } 1275 1276 const EnumDescriptor* 1277 Descriptor::FindEnumTypeByName(const string& key) const { 1278 Symbol result = 1279 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM); 1280 if (!result.IsNull()) { 1281 return result.enum_descriptor; 1282 } else { 1283 return NULL; 1284 } 1285 } 1286 1287 const EnumValueDescriptor* 1288 Descriptor::FindEnumValueByName(const string& key) const { 1289 Symbol result = 1290 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE); 1291 if (!result.IsNull()) { 1292 return result.enum_value_descriptor; 1293 } else { 1294 return NULL; 1295 } 1296 } 1297 1298 const EnumValueDescriptor* 1299 EnumDescriptor::FindValueByName(const string& key) const { 1300 Symbol result = 1301 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE); 1302 if (!result.IsNull()) { 1303 return result.enum_value_descriptor; 1304 } else { 1305 return NULL; 1306 } 1307 } 1308 1309 const EnumValueDescriptor* 1310 EnumDescriptor::FindValueByNumber(int key) const { 1311 return file()->tables_->FindEnumValueByNumber(this, key); 1312 } 1313 1314 const MethodDescriptor* 1315 ServiceDescriptor::FindMethodByName(const string& key) const { 1316 Symbol result = 1317 file()->tables_->FindNestedSymbolOfType(this, key, Symbol::METHOD); 1318 if (!result.IsNull()) { 1319 return result.method_descriptor; 1320 } else { 1321 return NULL; 1322 } 1323 } 1324 1325 const Descriptor* 1326 FileDescriptor::FindMessageTypeByName(const string& key) const { 1327 Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::MESSAGE); 1328 if (!result.IsNull()) { 1329 return result.descriptor; 1330 } else { 1331 return NULL; 1332 } 1333 } 1334 1335 const EnumDescriptor* 1336 FileDescriptor::FindEnumTypeByName(const string& key) const { 1337 Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM); 1338 if (!result.IsNull()) { 1339 return result.enum_descriptor; 1340 } else { 1341 return NULL; 1342 } 1343 } 1344 1345 const EnumValueDescriptor* 1346 FileDescriptor::FindEnumValueByName(const string& key) const { 1347 Symbol result = 1348 tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE); 1349 if (!result.IsNull()) { 1350 return result.enum_value_descriptor; 1351 } else { 1352 return NULL; 1353 } 1354 } 1355 1356 const ServiceDescriptor* 1357 FileDescriptor::FindServiceByName(const string& key) const { 1358 Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::SERVICE); 1359 if (!result.IsNull()) { 1360 return result.service_descriptor; 1361 } else { 1362 return NULL; 1363 } 1364 } 1365 1366 const FieldDescriptor* 1367 FileDescriptor::FindExtensionByName(const string& key) const { 1368 Symbol result = tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD); 1369 if (!result.IsNull() && result.field_descriptor->is_extension()) { 1370 return result.field_descriptor; 1371 } else { 1372 return NULL; 1373 } 1374 } 1375 1376 const FieldDescriptor* 1377 FileDescriptor::FindExtensionByLowercaseName(const string& key) const { 1378 const FieldDescriptor* result = tables_->FindFieldByLowercaseName(this, key); 1379 if (result == NULL || !result->is_extension()) { 1380 return NULL; 1381 } else { 1382 return result; 1383 } 1384 } 1385 1386 const FieldDescriptor* 1387 FileDescriptor::FindExtensionByCamelcaseName(const string& key) const { 1388 const FieldDescriptor* result = tables_->FindFieldByCamelcaseName(this, key); 1389 if (result == NULL || !result->is_extension()) { 1390 return NULL; 1391 } else { 1392 return result; 1393 } 1394 } 1395 1396 const Descriptor::ExtensionRange* 1397 Descriptor::FindExtensionRangeContainingNumber(int number) const { 1398 // Linear search should be fine because we don't expect a message to have 1399 // more than a couple extension ranges. 1400 for (int i = 0; i < extension_range_count(); i++) { 1401 if (number >= extension_range(i)->start && 1402 number < extension_range(i)->end) { 1403 return extension_range(i); 1404 } 1405 } 1406 return NULL; 1407 } 1408 1409 // ------------------------------------------------------------------- 1410 1411 bool DescriptorPool::TryFindFileInFallbackDatabase(const string& name) const { 1412 if (fallback_database_ == NULL) return false; 1413 1414 if (tables_->known_bad_files_.count(name) > 0) return false; 1415 1416 FileDescriptorProto file_proto; 1417 if (!fallback_database_->FindFileByName(name, &file_proto) || 1418 BuildFileFromDatabase(file_proto) == NULL) { 1419 tables_->known_bad_files_.insert(name); 1420 return false; 1421 } 1422 return true; 1423 } 1424 1425 bool DescriptorPool::IsSubSymbolOfBuiltType(const string& name) const { 1426 string prefix = name; 1427 for (;;) { 1428 string::size_type dot_pos = prefix.find_last_of('.'); 1429 if (dot_pos == string::npos) { 1430 break; 1431 } 1432 prefix = prefix.substr(0, dot_pos); 1433 Symbol symbol = tables_->FindSymbol(prefix); 1434 // If the symbol type is anything other than PACKAGE, then its complete 1435 // definition is already known. 1436 if (!symbol.IsNull() && symbol.type != Symbol::PACKAGE) { 1437 return true; 1438 } 1439 } 1440 if (underlay_ != NULL) { 1441 // Check to see if any prefix of this symbol exists in the underlay. 1442 return underlay_->IsSubSymbolOfBuiltType(name); 1443 } 1444 return false; 1445 } 1446 1447 bool DescriptorPool::TryFindSymbolInFallbackDatabase(const string& name) const { 1448 if (fallback_database_ == NULL) return false; 1449 1450 if (tables_->known_bad_symbols_.count(name) > 0) return false; 1451 1452 FileDescriptorProto file_proto; 1453 if (// We skip looking in the fallback database if the name is a sub-symbol 1454 // of any descriptor that already exists in the descriptor pool (except 1455 // for package descriptors). This is valid because all symbols except 1456 // for packages are defined in a single file, so if the symbol exists 1457 // then we should already have its definition. 1458 // 1459 // The other reason to do this is to support "overriding" type 1460 // definitions by merging two databases that define the same type. (Yes, 1461 // people do this.) The main difficulty with making this work is that 1462 // FindFileContainingSymbol() is allowed to return both false positives 1463 // (e.g., SimpleDescriptorDatabase, UpgradedDescriptorDatabase) and false 1464 // negatives (e.g. ProtoFileParser, SourceTreeDescriptorDatabase). 1465 // When two such databases are merged, looking up a non-existent 1466 // sub-symbol of a type that already exists in the descriptor pool can 1467 // result in an attempt to load multiple definitions of the same type. 1468 // The check below avoids this. 1469 IsSubSymbolOfBuiltType(name) 1470 1471 // Look up file containing this symbol in fallback database. 1472 || !fallback_database_->FindFileContainingSymbol(name, &file_proto) 1473 1474 // Check if we've already built this file. If so, it apparently doesn't 1475 // contain the symbol we're looking for. Some DescriptorDatabases 1476 // return false positives. 1477 || tables_->FindFile(file_proto.name()) != NULL 1478 1479 // Build the file. 1480 || BuildFileFromDatabase(file_proto) == NULL) { 1481 tables_->known_bad_symbols_.insert(name); 1482 return false; 1483 } 1484 1485 return true; 1486 } 1487 1488 bool DescriptorPool::TryFindExtensionInFallbackDatabase( 1489 const Descriptor* containing_type, int field_number) const { 1490 if (fallback_database_ == NULL) return false; 1491 1492 FileDescriptorProto file_proto; 1493 if (!fallback_database_->FindFileContainingExtension( 1494 containing_type->full_name(), field_number, &file_proto)) { 1495 return false; 1496 } 1497 1498 if (tables_->FindFile(file_proto.name()) != NULL) { 1499 // We've already loaded this file, and it apparently doesn't contain the 1500 // extension we're looking for. Some DescriptorDatabases return false 1501 // positives. 1502 return false; 1503 } 1504 1505 if (BuildFileFromDatabase(file_proto) == NULL) { 1506 return false; 1507 } 1508 1509 return true; 1510 } 1511 1512 // =================================================================== 1513 1514 string FieldDescriptor::DefaultValueAsString(bool quote_string_type) const { 1515 GOOGLE_CHECK(has_default_value()) << "No default value"; 1516 switch (cpp_type()) { 1517 case CPPTYPE_INT32: 1518 return SimpleItoa(default_value_int32()); 1519 break; 1520 case CPPTYPE_INT64: 1521 return SimpleItoa(default_value_int64()); 1522 break; 1523 case CPPTYPE_UINT32: 1524 return SimpleItoa(default_value_uint32()); 1525 break; 1526 case CPPTYPE_UINT64: 1527 return SimpleItoa(default_value_uint64()); 1528 break; 1529 case CPPTYPE_FLOAT: 1530 return SimpleFtoa(default_value_float()); 1531 break; 1532 case CPPTYPE_DOUBLE: 1533 return SimpleDtoa(default_value_double()); 1534 break; 1535 case CPPTYPE_BOOL: 1536 return default_value_bool() ? "true" : "false"; 1537 break; 1538 case CPPTYPE_STRING: 1539 if (quote_string_type) { 1540 return "\"" + CEscape(default_value_string()) + "\""; 1541 } else { 1542 if (type() == TYPE_BYTES) { 1543 return CEscape(default_value_string()); 1544 } else { 1545 return default_value_string(); 1546 } 1547 } 1548 break; 1549 case CPPTYPE_ENUM: 1550 return default_value_enum()->name(); 1551 break; 1552 case CPPTYPE_MESSAGE: 1553 GOOGLE_LOG(DFATAL) << "Messages can't have default values!"; 1554 break; 1555 } 1556 GOOGLE_LOG(FATAL) << "Can't get here: failed to get default value as string"; 1557 return ""; 1558 } 1559 1560 // CopyTo methods ==================================================== 1561 1562 void FileDescriptor::CopyTo(FileDescriptorProto* proto) const { 1563 proto->set_name(name()); 1564 if (!package().empty()) proto->set_package(package()); 1565 1566 for (int i = 0; i < dependency_count(); i++) { 1567 proto->add_dependency(dependency(i)->name()); 1568 } 1569 1570 for (int i = 0; i < public_dependency_count(); i++) { 1571 proto->add_public_dependency(public_dependencies_[i]); 1572 } 1573 1574 for (int i = 0; i < weak_dependency_count(); i++) { 1575 proto->add_weak_dependency(weak_dependencies_[i]); 1576 } 1577 1578 for (int i = 0; i < message_type_count(); i++) { 1579 message_type(i)->CopyTo(proto->add_message_type()); 1580 } 1581 for (int i = 0; i < enum_type_count(); i++) { 1582 enum_type(i)->CopyTo(proto->add_enum_type()); 1583 } 1584 for (int i = 0; i < service_count(); i++) { 1585 service(i)->CopyTo(proto->add_service()); 1586 } 1587 for (int i = 0; i < extension_count(); i++) { 1588 extension(i)->CopyTo(proto->add_extension()); 1589 } 1590 1591 if (&options() != &FileOptions::default_instance()) { 1592 proto->mutable_options()->CopyFrom(options()); 1593 } 1594 } 1595 1596 void FileDescriptor::CopySourceCodeInfoTo(FileDescriptorProto* proto) const { 1597 if (source_code_info_ != &SourceCodeInfo::default_instance()) { 1598 proto->mutable_source_code_info()->CopyFrom(*source_code_info_); 1599 } 1600 } 1601 1602 void Descriptor::CopyTo(DescriptorProto* proto) const { 1603 proto->set_name(name()); 1604 1605 for (int i = 0; i < field_count(); i++) { 1606 field(i)->CopyTo(proto->add_field()); 1607 } 1608 for (int i = 0; i < oneof_decl_count(); i++) { 1609 oneof_decl(i)->CopyTo(proto->add_oneof_decl()); 1610 } 1611 for (int i = 0; i < nested_type_count(); i++) { 1612 nested_type(i)->CopyTo(proto->add_nested_type()); 1613 } 1614 for (int i = 0; i < enum_type_count(); i++) { 1615 enum_type(i)->CopyTo(proto->add_enum_type()); 1616 } 1617 for (int i = 0; i < extension_range_count(); i++) { 1618 DescriptorProto::ExtensionRange* range = proto->add_extension_range(); 1619 range->set_start(extension_range(i)->start); 1620 range->set_end(extension_range(i)->end); 1621 } 1622 for (int i = 0; i < extension_count(); i++) { 1623 extension(i)->CopyTo(proto->add_extension()); 1624 } 1625 1626 if (&options() != &MessageOptions::default_instance()) { 1627 proto->mutable_options()->CopyFrom(options()); 1628 } 1629 } 1630 1631 void FieldDescriptor::CopyTo(FieldDescriptorProto* proto) const { 1632 proto->set_name(name()); 1633 proto->set_number(number()); 1634 1635 // Some compilers do not allow static_cast directly between two enum types, 1636 // so we must cast to int first. 1637 proto->set_label(static_cast<FieldDescriptorProto::Label>( 1638 implicit_cast<int>(label()))); 1639 proto->set_type(static_cast<FieldDescriptorProto::Type>( 1640 implicit_cast<int>(type()))); 1641 1642 if (is_extension()) { 1643 if (!containing_type()->is_unqualified_placeholder_) { 1644 proto->set_extendee("."); 1645 } 1646 proto->mutable_extendee()->append(containing_type()->full_name()); 1647 } 1648 1649 if (cpp_type() == CPPTYPE_MESSAGE) { 1650 if (message_type()->is_placeholder_) { 1651 // We don't actually know if the type is a message type. It could be 1652 // an enum. 1653 proto->clear_type(); 1654 } 1655 1656 if (!message_type()->is_unqualified_placeholder_) { 1657 proto->set_type_name("."); 1658 } 1659 proto->mutable_type_name()->append(message_type()->full_name()); 1660 } else if (cpp_type() == CPPTYPE_ENUM) { 1661 if (!enum_type()->is_unqualified_placeholder_) { 1662 proto->set_type_name("."); 1663 } 1664 proto->mutable_type_name()->append(enum_type()->full_name()); 1665 } 1666 1667 if (has_default_value()) { 1668 proto->set_default_value(DefaultValueAsString(false)); 1669 } 1670 1671 if (containing_oneof() != NULL && !is_extension()) { 1672 proto->set_oneof_index(containing_oneof()->index()); 1673 } 1674 1675 if (&options() != &FieldOptions::default_instance()) { 1676 proto->mutable_options()->CopyFrom(options()); 1677 } 1678 } 1679 1680 void OneofDescriptor::CopyTo(OneofDescriptorProto* proto) const { 1681 proto->set_name(name()); 1682 } 1683 1684 void EnumDescriptor::CopyTo(EnumDescriptorProto* proto) const { 1685 proto->set_name(name()); 1686 1687 for (int i = 0; i < value_count(); i++) { 1688 value(i)->CopyTo(proto->add_value()); 1689 } 1690 1691 if (&options() != &EnumOptions::default_instance()) { 1692 proto->mutable_options()->CopyFrom(options()); 1693 } 1694 } 1695 1696 void EnumValueDescriptor::CopyTo(EnumValueDescriptorProto* proto) const { 1697 proto->set_name(name()); 1698 proto->set_number(number()); 1699 1700 if (&options() != &EnumValueOptions::default_instance()) { 1701 proto->mutable_options()->CopyFrom(options()); 1702 } 1703 } 1704 1705 void ServiceDescriptor::CopyTo(ServiceDescriptorProto* proto) const { 1706 proto->set_name(name()); 1707 1708 for (int i = 0; i < method_count(); i++) { 1709 method(i)->CopyTo(proto->add_method()); 1710 } 1711 1712 if (&options() != &ServiceOptions::default_instance()) { 1713 proto->mutable_options()->CopyFrom(options()); 1714 } 1715 } 1716 1717 void MethodDescriptor::CopyTo(MethodDescriptorProto* proto) const { 1718 proto->set_name(name()); 1719 1720 if (!input_type()->is_unqualified_placeholder_) { 1721 proto->set_input_type("."); 1722 } 1723 proto->mutable_input_type()->append(input_type()->full_name()); 1724 1725 if (!output_type()->is_unqualified_placeholder_) { 1726 proto->set_output_type("."); 1727 } 1728 proto->mutable_output_type()->append(output_type()->full_name()); 1729 1730 if (&options() != &MethodOptions::default_instance()) { 1731 proto->mutable_options()->CopyFrom(options()); 1732 } 1733 } 1734 1735 // DebugString methods =============================================== 1736 1737 namespace { 1738 1739 // Used by each of the option formatters. 1740 bool RetrieveOptions(int depth, 1741 const Message &options, 1742 vector<string> *option_entries) { 1743 option_entries->clear(); 1744 const Reflection* reflection = options.GetReflection(); 1745 vector<const FieldDescriptor*> fields; 1746 reflection->ListFields(options, &fields); 1747 for (int i = 0; i < fields.size(); i++) { 1748 int count = 1; 1749 bool repeated = false; 1750 if (fields[i]->is_repeated()) { 1751 count = reflection->FieldSize(options, fields[i]); 1752 repeated = true; 1753 } 1754 for (int j = 0; j < count; j++) { 1755 string fieldval; 1756 if (fields[i]->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { 1757 string tmp; 1758 TextFormat::Printer printer; 1759 printer.SetInitialIndentLevel(depth + 1); 1760 printer.PrintFieldValueToString(options, fields[i], 1761 repeated ? j : -1, &tmp); 1762 fieldval.append("{\n"); 1763 fieldval.append(tmp); 1764 fieldval.append(depth * 2, ' '); 1765 fieldval.append("}"); 1766 } else { 1767 TextFormat::PrintFieldValueToString(options, fields[i], 1768 repeated ? j : -1, &fieldval); 1769 } 1770 string name; 1771 if (fields[i]->is_extension()) { 1772 name = "(." + fields[i]->full_name() + ")"; 1773 } else { 1774 name = fields[i]->name(); 1775 } 1776 option_entries->push_back(name + " = " + fieldval); 1777 } 1778 } 1779 return !option_entries->empty(); 1780 } 1781 1782 // Formats options that all appear together in brackets. Does not include 1783 // brackets. 1784 bool FormatBracketedOptions(int depth, const Message &options, string *output) { 1785 vector<string> all_options; 1786 if (RetrieveOptions(depth, options, &all_options)) { 1787 output->append(Join(all_options, ", ")); 1788 } 1789 return !all_options.empty(); 1790 } 1791 1792 // Formats options one per line 1793 bool FormatLineOptions(int depth, const Message &options, string *output) { 1794 string prefix(depth * 2, ' '); 1795 vector<string> all_options; 1796 if (RetrieveOptions(depth, options, &all_options)) { 1797 for (int i = 0; i < all_options.size(); i++) { 1798 strings::SubstituteAndAppend(output, "$0option $1;\n", 1799 prefix, all_options[i]); 1800 } 1801 } 1802 return !all_options.empty(); 1803 } 1804 1805 } // anonymous namespace 1806 1807 string FileDescriptor::DebugString() const { 1808 string contents = "syntax = \"proto2\";\n\n"; 1809 1810 set<int> public_dependencies; 1811 set<int> weak_dependencies; 1812 public_dependencies.insert(public_dependencies_, 1813 public_dependencies_ + public_dependency_count_); 1814 weak_dependencies.insert(weak_dependencies_, 1815 weak_dependencies_ + weak_dependency_count_); 1816 1817 for (int i = 0; i < dependency_count(); i++) { 1818 if (public_dependencies.count(i) > 0) { 1819 strings::SubstituteAndAppend(&contents, "import public \"$0\";\n", 1820 dependency(i)->name()); 1821 } else if (weak_dependencies.count(i) > 0) { 1822 strings::SubstituteAndAppend(&contents, "import weak \"$0\";\n", 1823 dependency(i)->name()); 1824 } else { 1825 strings::SubstituteAndAppend(&contents, "import \"$0\";\n", 1826 dependency(i)->name()); 1827 } 1828 } 1829 1830 if (!package().empty()) { 1831 strings::SubstituteAndAppend(&contents, "package $0;\n\n", package()); 1832 } 1833 1834 if (FormatLineOptions(0, options(), &contents)) { 1835 contents.append("\n"); // add some space if we had options 1836 } 1837 1838 for (int i = 0; i < enum_type_count(); i++) { 1839 enum_type(i)->DebugString(0, &contents); 1840 contents.append("\n"); 1841 } 1842 1843 // Find all the 'group' type extensions; we will not output their nested 1844 // definitions (those will be done with their group field descriptor). 1845 set<const Descriptor*> groups; 1846 for (int i = 0; i < extension_count(); i++) { 1847 if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) { 1848 groups.insert(extension(i)->message_type()); 1849 } 1850 } 1851 1852 for (int i = 0; i < message_type_count(); i++) { 1853 if (groups.count(message_type(i)) == 0) { 1854 strings::SubstituteAndAppend(&contents, "message $0", 1855 message_type(i)->name()); 1856 message_type(i)->DebugString(0, &contents); 1857 contents.append("\n"); 1858 } 1859 } 1860 1861 for (int i = 0; i < service_count(); i++) { 1862 service(i)->DebugString(&contents); 1863 contents.append("\n"); 1864 } 1865 1866 const Descriptor* containing_type = NULL; 1867 for (int i = 0; i < extension_count(); i++) { 1868 if (extension(i)->containing_type() != containing_type) { 1869 if (i > 0) contents.append("}\n\n"); 1870 containing_type = extension(i)->containing_type(); 1871 strings::SubstituteAndAppend(&contents, "extend .$0 {\n", 1872 containing_type->full_name()); 1873 } 1874 extension(i)->DebugString(1, FieldDescriptor::PRINT_LABEL, &contents); 1875 } 1876 if (extension_count() > 0) contents.append("}\n\n"); 1877 1878 return contents; 1879 } 1880 1881 string Descriptor::DebugString() const { 1882 string contents; 1883 strings::SubstituteAndAppend(&contents, "message $0", name()); 1884 DebugString(0, &contents); 1885 return contents; 1886 } 1887 1888 void Descriptor::DebugString(int depth, string *contents) const { 1889 string prefix(depth * 2, ' '); 1890 ++depth; 1891 contents->append(" {\n"); 1892 1893 FormatLineOptions(depth, options(), contents); 1894 1895 // Find all the 'group' types for fields and extensions; we will not output 1896 // their nested definitions (those will be done with their group field 1897 // descriptor). 1898 set<const Descriptor*> groups; 1899 for (int i = 0; i < field_count(); i++) { 1900 if (field(i)->type() == FieldDescriptor::TYPE_GROUP) { 1901 groups.insert(field(i)->message_type()); 1902 } 1903 } 1904 for (int i = 0; i < extension_count(); i++) { 1905 if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) { 1906 groups.insert(extension(i)->message_type()); 1907 } 1908 } 1909 1910 for (int i = 0; i < nested_type_count(); i++) { 1911 if (groups.count(nested_type(i)) == 0) { 1912 strings::SubstituteAndAppend(contents, "$0 message $1", 1913 prefix, nested_type(i)->name()); 1914 nested_type(i)->DebugString(depth, contents); 1915 } 1916 } 1917 for (int i = 0; i < enum_type_count(); i++) { 1918 enum_type(i)->DebugString(depth, contents); 1919 } 1920 for (int i = 0; i < field_count(); i++) { 1921 if (field(i)->containing_oneof() == NULL) { 1922 field(i)->DebugString(depth, FieldDescriptor::PRINT_LABEL, contents); 1923 } else if (field(i)->containing_oneof()->field(0) == field(i)) { 1924 // This is the first field in this oneof, so print the whole oneof. 1925 field(i)->containing_oneof()->DebugString(depth, contents); 1926 } 1927 } 1928 1929 for (int i = 0; i < extension_range_count(); i++) { 1930 strings::SubstituteAndAppend(contents, "$0 extensions $1 to $2;\n", 1931 prefix, 1932 extension_range(i)->start, 1933 extension_range(i)->end - 1); 1934 } 1935 1936 // Group extensions by what they extend, so they can be printed out together. 1937 const Descriptor* containing_type = NULL; 1938 for (int i = 0; i < extension_count(); i++) { 1939 if (extension(i)->containing_type() != containing_type) { 1940 if (i > 0) strings::SubstituteAndAppend(contents, "$0 }\n", prefix); 1941 containing_type = extension(i)->containing_type(); 1942 strings::SubstituteAndAppend(contents, "$0 extend .$1 {\n", 1943 prefix, containing_type->full_name()); 1944 } 1945 extension(i)->DebugString( 1946 depth + 1, FieldDescriptor::PRINT_LABEL, contents); 1947 } 1948 if (extension_count() > 0) 1949 strings::SubstituteAndAppend(contents, "$0 }\n", prefix); 1950 1951 strings::SubstituteAndAppend(contents, "$0}\n", prefix); 1952 } 1953 1954 string FieldDescriptor::DebugString() const { 1955 string contents; 1956 int depth = 0; 1957 if (is_extension()) { 1958 strings::SubstituteAndAppend(&contents, "extend .$0 {\n", 1959 containing_type()->full_name()); 1960 depth = 1; 1961 } 1962 DebugString(depth, PRINT_LABEL, &contents); 1963 if (is_extension()) { 1964 contents.append("}\n"); 1965 } 1966 return contents; 1967 } 1968 1969 void FieldDescriptor::DebugString(int depth, 1970 PrintLabelFlag print_label_flag, 1971 string *contents) const { 1972 string prefix(depth * 2, ' '); 1973 string field_type; 1974 switch (type()) { 1975 case TYPE_MESSAGE: 1976 field_type = "." + message_type()->full_name(); 1977 break; 1978 case TYPE_ENUM: 1979 field_type = "." + enum_type()->full_name(); 1980 break; 1981 default: 1982 field_type = kTypeToName[type()]; 1983 } 1984 1985 string label; 1986 if (print_label_flag == PRINT_LABEL) { 1987 label = kLabelToName[this->label()]; 1988 label.push_back(' '); 1989 } 1990 1991 strings::SubstituteAndAppend(contents, "$0$1$2 $3 = $4", 1992 prefix, 1993 label, 1994 field_type, 1995 type() == TYPE_GROUP ? message_type()->name() : 1996 name(), 1997 number()); 1998 1999 bool bracketed = false; 2000 if (has_default_value()) { 2001 bracketed = true; 2002 strings::SubstituteAndAppend(contents, " [default = $0", 2003 DefaultValueAsString(true)); 2004 } 2005 2006 string formatted_options; 2007 if (FormatBracketedOptions(depth, options(), &formatted_options)) { 2008 contents->append(bracketed ? ", " : " ["); 2009 bracketed = true; 2010 contents->append(formatted_options); 2011 } 2012 2013 if (bracketed) { 2014 contents->append("]"); 2015 } 2016 2017 if (type() == TYPE_GROUP) { 2018 message_type()->DebugString(depth, contents); 2019 } else { 2020 contents->append(";\n"); 2021 } 2022 } 2023 2024 string OneofDescriptor::DebugString() const { 2025 string contents; 2026 DebugString(0, &contents); 2027 return contents; 2028 } 2029 2030 void OneofDescriptor::DebugString(int depth, string* contents) const { 2031 string prefix(depth * 2, ' '); 2032 ++depth; 2033 strings::SubstituteAndAppend( 2034 contents, "$0 oneof $1 {\n", prefix, name()); 2035 for (int i = 0; i < field_count(); i++) { 2036 field(i)->DebugString(depth, FieldDescriptor::OMIT_LABEL, contents); 2037 } 2038 strings::SubstituteAndAppend(contents, "$0}\n", prefix); 2039 } 2040 2041 string EnumDescriptor::DebugString() const { 2042 string contents; 2043 DebugString(0, &contents); 2044 return contents; 2045 } 2046 2047 void EnumDescriptor::DebugString(int depth, string *contents) const { 2048 string prefix(depth * 2, ' '); 2049 ++depth; 2050 strings::SubstituteAndAppend(contents, "$0enum $1 {\n", 2051 prefix, name()); 2052 2053 FormatLineOptions(depth, options(), contents); 2054 2055 for (int i = 0; i < value_count(); i++) { 2056 value(i)->DebugString(depth, contents); 2057 } 2058 strings::SubstituteAndAppend(contents, "$0}\n", prefix); 2059 } 2060 2061 string EnumValueDescriptor::DebugString() const { 2062 string contents; 2063 DebugString(0, &contents); 2064 return contents; 2065 } 2066 2067 void EnumValueDescriptor::DebugString(int depth, string *contents) const { 2068 string prefix(depth * 2, ' '); 2069 strings::SubstituteAndAppend(contents, "$0$1 = $2", 2070 prefix, name(), number()); 2071 2072 string formatted_options; 2073 if (FormatBracketedOptions(depth, options(), &formatted_options)) { 2074 strings::SubstituteAndAppend(contents, " [$0]", formatted_options); 2075 } 2076 contents->append(";\n"); 2077 } 2078 2079 string ServiceDescriptor::DebugString() const { 2080 string contents; 2081 DebugString(&contents); 2082 return contents; 2083 } 2084 2085 void ServiceDescriptor::DebugString(string *contents) const { 2086 strings::SubstituteAndAppend(contents, "service $0 {\n", name()); 2087 2088 FormatLineOptions(1, options(), contents); 2089 2090 for (int i = 0; i < method_count(); i++) { 2091 method(i)->DebugString(1, contents); 2092 } 2093 2094 contents->append("}\n"); 2095 } 2096 2097 string MethodDescriptor::DebugString() const { 2098 string contents; 2099 DebugString(0, &contents); 2100 return contents; 2101 } 2102 2103 void MethodDescriptor::DebugString(int depth, string *contents) const { 2104 string prefix(depth * 2, ' '); 2105 ++depth; 2106 strings::SubstituteAndAppend(contents, "$0rpc $1(.$2) returns (.$3)", 2107 prefix, name(), 2108 input_type()->full_name(), 2109 output_type()->full_name()); 2110 2111 string formatted_options; 2112 if (FormatLineOptions(depth, options(), &formatted_options)) { 2113 strings::SubstituteAndAppend(contents, " {\n$0$1}\n", 2114 formatted_options, prefix); 2115 } else { 2116 contents->append(";\n"); 2117 } 2118 } 2119 2120 2121 // Location methods =============================================== 2122 2123 bool FileDescriptor::GetSourceLocation(const vector<int>& path, 2124 SourceLocation* out_location) const { 2125 GOOGLE_CHECK_NOTNULL(out_location); 2126 if (source_code_info_) { 2127 if (const SourceCodeInfo_Location* loc = 2128 tables_->GetSourceLocation(path, source_code_info_)) { 2129 const RepeatedField<int32>& span = loc->span(); 2130 if (span.size() == 3 || span.size() == 4) { 2131 out_location->start_line = span.Get(0); 2132 out_location->start_column = span.Get(1); 2133 out_location->end_line = span.Get(span.size() == 3 ? 0 : 2); 2134 out_location->end_column = span.Get(span.size() - 1); 2135 2136 out_location->leading_comments = loc->leading_comments(); 2137 out_location->trailing_comments = loc->trailing_comments(); 2138 return true; 2139 } 2140 } 2141 } 2142 return false; 2143 } 2144 2145 bool FieldDescriptor::is_packed() const { 2146 return is_packable() && (options_ != NULL) && options_->packed(); 2147 } 2148 2149 bool Descriptor::GetSourceLocation(SourceLocation* out_location) const { 2150 vector<int> path; 2151 GetLocationPath(&path); 2152 return file()->GetSourceLocation(path, out_location); 2153 } 2154 2155 bool FieldDescriptor::GetSourceLocation(SourceLocation* out_location) const { 2156 vector<int> path; 2157 GetLocationPath(&path); 2158 return file()->GetSourceLocation(path, out_location); 2159 } 2160 2161 bool OneofDescriptor::GetSourceLocation(SourceLocation* out_location) const { 2162 vector<int> path; 2163 GetLocationPath(&path); 2164 return containing_type()->file()->GetSourceLocation(path, out_location); 2165 } 2166 2167 bool EnumDescriptor::GetSourceLocation(SourceLocation* out_location) const { 2168 vector<int> path; 2169 GetLocationPath(&path); 2170 return file()->GetSourceLocation(path, out_location); 2171 } 2172 2173 bool MethodDescriptor::GetSourceLocation(SourceLocation* out_location) const { 2174 vector<int> path; 2175 GetLocationPath(&path); 2176 return service()->file()->GetSourceLocation(path, out_location); 2177 } 2178 2179 bool ServiceDescriptor::GetSourceLocation(SourceLocation* out_location) const { 2180 vector<int> path; 2181 GetLocationPath(&path); 2182 return file()->GetSourceLocation(path, out_location); 2183 } 2184 2185 bool EnumValueDescriptor::GetSourceLocation( 2186 SourceLocation* out_location) const { 2187 vector<int> path; 2188 GetLocationPath(&path); 2189 return type()->file()->GetSourceLocation(path, out_location); 2190 } 2191 2192 void Descriptor::GetLocationPath(vector<int>* output) const { 2193 if (containing_type()) { 2194 containing_type()->GetLocationPath(output); 2195 output->push_back(DescriptorProto::kNestedTypeFieldNumber); 2196 output->push_back(index()); 2197 } else { 2198 output->push_back(FileDescriptorProto::kMessageTypeFieldNumber); 2199 output->push_back(index()); 2200 } 2201 } 2202 2203 void FieldDescriptor::GetLocationPath(vector<int>* output) const { 2204 if (is_extension()) { 2205 if (extension_scope() == NULL) { 2206 output->push_back(FileDescriptorProto::kExtensionFieldNumber); 2207 output->push_back(index()); 2208 } else { 2209 extension_scope()->GetLocationPath(output); 2210 output->push_back(DescriptorProto::kExtensionFieldNumber); 2211 output->push_back(index()); 2212 } 2213 } else { 2214 containing_type()->GetLocationPath(output); 2215 output->push_back(DescriptorProto::kFieldFieldNumber); 2216 output->push_back(index()); 2217 } 2218 } 2219 2220 void OneofDescriptor::GetLocationPath(vector<int>* output) const { 2221 containing_type()->GetLocationPath(output); 2222 output->push_back(DescriptorProto::kOneofDeclFieldNumber); 2223 output->push_back(index()); 2224 } 2225 2226 void EnumDescriptor::GetLocationPath(vector<int>* output) const { 2227 if (containing_type()) { 2228 containing_type()->GetLocationPath(output); 2229 output->push_back(DescriptorProto::kEnumTypeFieldNumber); 2230 output->push_back(index()); 2231 } else { 2232 output->push_back(FileDescriptorProto::kEnumTypeFieldNumber); 2233 output->push_back(index()); 2234 } 2235 } 2236 2237 void EnumValueDescriptor::GetLocationPath(vector<int>* output) const { 2238 type()->GetLocationPath(output); 2239 output->push_back(EnumDescriptorProto::kValueFieldNumber); 2240 output->push_back(index()); 2241 } 2242 2243 void ServiceDescriptor::GetLocationPath(vector<int>* output) const { 2244 output->push_back(FileDescriptorProto::kServiceFieldNumber); 2245 output->push_back(index()); 2246 } 2247 2248 void MethodDescriptor::GetLocationPath(vector<int>* output) const { 2249 service()->GetLocationPath(output); 2250 output->push_back(ServiceDescriptorProto::kMethodFieldNumber); 2251 output->push_back(index()); 2252 } 2253 2254 // =================================================================== 2255 2256 namespace { 2257 2258 // Represents an options message to interpret. Extension names in the option 2259 // name are respolved relative to name_scope. element_name and orig_opt are 2260 // used only for error reporting (since the parser records locations against 2261 // pointers in the original options, not the mutable copy). The Message must be 2262 // one of the Options messages in descriptor.proto. 2263 struct OptionsToInterpret { 2264 OptionsToInterpret(const string& ns, 2265 const string& el, 2266 const Message* orig_opt, 2267 Message* opt) 2268 : name_scope(ns), 2269 element_name(el), 2270 original_options(orig_opt), 2271 options(opt) { 2272 } 2273 string name_scope; 2274 string element_name; 2275 const Message* original_options; 2276 Message* options; 2277 }; 2278 2279 } // namespace 2280 2281 class DescriptorBuilder { 2282 public: 2283 DescriptorBuilder(const DescriptorPool* pool, 2284 DescriptorPool::Tables* tables, 2285 DescriptorPool::ErrorCollector* error_collector); 2286 ~DescriptorBuilder(); 2287 2288 const FileDescriptor* BuildFile(const FileDescriptorProto& proto); 2289 2290 private: 2291 friend class OptionInterpreter; 2292 2293 const DescriptorPool* pool_; 2294 DescriptorPool::Tables* tables_; // for convenience 2295 DescriptorPool::ErrorCollector* error_collector_; 2296 2297 // As we build descriptors we store copies of the options messages in 2298 // them. We put pointers to those copies in this vector, as we build, so we 2299 // can later (after cross-linking) interpret those options. 2300 vector<OptionsToInterpret> options_to_interpret_; 2301 2302 bool had_errors_; 2303 string filename_; 2304 FileDescriptor* file_; 2305 FileDescriptorTables* file_tables_; 2306 set<const FileDescriptor*> dependencies_; 2307 2308 // unused_dependency_ is used to record the unused imported files. 2309 // Note: public import is not considered. 2310 set<const FileDescriptor*> unused_dependency_; 2311 2312 // If LookupSymbol() finds a symbol that is in a file which is not a declared 2313 // dependency of this file, it will fail, but will set 2314 // possible_undeclared_dependency_ to point at that file. This is only used 2315 // by AddNotDefinedError() to report a more useful error message. 2316 // possible_undeclared_dependency_name_ is the name of the symbol that was 2317 // actually found in possible_undeclared_dependency_, which may be a parent 2318 // of the symbol actually looked for. 2319 const FileDescriptor* possible_undeclared_dependency_; 2320 string possible_undeclared_dependency_name_; 2321 2322 // If LookupSymbol() could resolve a symbol which is not defined, 2323 // record the resolved name. This is only used by AddNotDefinedError() 2324 // to report a more useful error message. 2325 string undefine_resolved_name_; 2326 2327 void AddError(const string& element_name, 2328 const Message& descriptor, 2329 DescriptorPool::ErrorCollector::ErrorLocation location, 2330 const string& error); 2331 void AddError(const string& element_name, 2332 const Message& descriptor, 2333 DescriptorPool::ErrorCollector::ErrorLocation location, 2334 const char* error); 2335 void AddRecursiveImportError(const FileDescriptorProto& proto, int from_here); 2336 void AddTwiceListedError(const FileDescriptorProto& proto, int index); 2337 void AddImportError(const FileDescriptorProto& proto, int index); 2338 2339 // Adds an error indicating that undefined_symbol was not defined. Must 2340 // only be called after LookupSymbol() fails. 2341 void AddNotDefinedError( 2342 const string& element_name, 2343 const Message& descriptor, 2344 DescriptorPool::ErrorCollector::ErrorLocation location, 2345 const string& undefined_symbol); 2346 2347 void AddWarning(const string& element_name, const Message& descriptor, 2348 DescriptorPool::ErrorCollector::ErrorLocation location, 2349 const string& error); 2350 2351 // Silly helper which determines if the given file is in the given package. 2352 // I.e., either file->package() == package_name or file->package() is a 2353 // nested package within package_name. 2354 bool IsInPackage(const FileDescriptor* file, const string& package_name); 2355 2356 // Helper function which finds all public dependencies of the given file, and 2357 // stores the them in the dependencies_ set in the builder. 2358 void RecordPublicDependencies(const FileDescriptor* file); 2359 2360 // Like tables_->FindSymbol(), but additionally: 2361 // - Search the pool's underlay if not found in tables_. 2362 // - Insure that the resulting Symbol is from one of the file's declared 2363 // dependencies. 2364 Symbol FindSymbol(const string& name); 2365 2366 // Like FindSymbol() but does not require that the symbol is in one of the 2367 // file's declared dependencies. 2368 Symbol FindSymbolNotEnforcingDeps(const string& name); 2369 2370 // This implements the body of FindSymbolNotEnforcingDeps(). 2371 Symbol FindSymbolNotEnforcingDepsHelper(const DescriptorPool* pool, 2372 const string& name); 2373 2374 // Like FindSymbol(), but looks up the name relative to some other symbol 2375 // name. This first searches siblings of relative_to, then siblings of its 2376 // parents, etc. For example, LookupSymbol("foo.bar", "baz.qux.corge") makes 2377 // the following calls, returning the first non-null result: 2378 // FindSymbol("baz.qux.foo.bar"), FindSymbol("baz.foo.bar"), 2379 // FindSymbol("foo.bar"). If AllowUnknownDependencies() has been called 2380 // on the DescriptorPool, this will generate a placeholder type if 2381 // the name is not found (unless the name itself is malformed). The 2382 // placeholder_type parameter indicates what kind of placeholder should be 2383 // constructed in this case. The resolve_mode parameter determines whether 2384 // any symbol is returned, or only symbols that are types. Note, however, 2385 // that LookupSymbol may still return a non-type symbol in LOOKUP_TYPES mode, 2386 // if it believes that's all it could refer to. The caller should always 2387 // check that it receives the type of symbol it was expecting. 2388 enum PlaceholderType { 2389 PLACEHOLDER_MESSAGE, 2390 PLACEHOLDER_ENUM, 2391 PLACEHOLDER_EXTENDABLE_MESSAGE 2392 }; 2393 enum ResolveMode { 2394 LOOKUP_ALL, LOOKUP_TYPES 2395 }; 2396 Symbol LookupSymbol(const string& name, const string& relative_to, 2397 PlaceholderType placeholder_type = PLACEHOLDER_MESSAGE, 2398 ResolveMode resolve_mode = LOOKUP_ALL); 2399 2400 // Like LookupSymbol() but will not return a placeholder even if 2401 // AllowUnknownDependencies() has been used. 2402 Symbol LookupSymbolNoPlaceholder(const string& name, 2403 const string& relative_to, 2404 ResolveMode resolve_mode = LOOKUP_ALL); 2405 2406 // Creates a placeholder type suitable for return from LookupSymbol(). May 2407 // return kNullSymbol if the name is not a valid type name. 2408 Symbol NewPlaceholder(const string& name, PlaceholderType placeholder_type); 2409 2410 // Creates a placeholder file. Never returns NULL. This is used when an 2411 // import is not found and AllowUnknownDependencies() is enabled. 2412 const FileDescriptor* NewPlaceholderFile(const string& name); 2413 2414 // Calls tables_->AddSymbol() and records an error if it fails. Returns 2415 // true if successful or false if failed, though most callers can ignore 2416 // the return value since an error has already been recorded. 2417 bool AddSymbol(const string& full_name, 2418 const void* parent, const string& name, 2419 const Message& proto, Symbol symbol); 2420 2421 // Like AddSymbol(), but succeeds if the symbol is already defined as long 2422 // as the existing definition is also a package (because it's OK to define 2423 // the same package in two different files). Also adds all parents of the 2424 // packgae to the symbol table (e.g. AddPackage("foo.bar", ...) will add 2425 // "foo.bar" and "foo" to the table). 2426 void AddPackage(const string& name, const Message& proto, 2427 const FileDescriptor* file); 2428 2429 // Checks that the symbol name contains only alphanumeric characters and 2430 // underscores. Records an error otherwise. 2431 void ValidateSymbolName(const string& name, const string& full_name, 2432 const Message& proto); 2433 2434 // Like ValidateSymbolName(), but the name is allowed to contain periods and 2435 // an error is indicated by returning false (not recording the error). 2436 bool ValidateQualifiedName(const string& name); 2437 2438 // Used by BUILD_ARRAY macro (below) to avoid having to have the type 2439 // specified as a macro parameter. 2440 template <typename Type> 2441 inline void AllocateArray(int size, Type** output) { 2442 *output = tables_->AllocateArray<Type>(size); 2443 } 2444 2445 // Allocates a copy of orig_options in tables_ and stores it in the 2446 // descriptor. Remembers its uninterpreted options, to be interpreted 2447 // later. DescriptorT must be one of the Descriptor messages from 2448 // descriptor.proto. 2449 template<class DescriptorT> void AllocateOptions( 2450 const typename DescriptorT::OptionsType& orig_options, 2451 DescriptorT* descriptor); 2452 // Specialization for FileOptions. 2453 void AllocateOptions(const FileOptions& orig_options, 2454 FileDescriptor* descriptor); 2455 2456 // Implementation for AllocateOptions(). Don't call this directly. 2457 template<class DescriptorT> void AllocateOptionsImpl( 2458 const string& name_scope, 2459 const string& element_name, 2460 const typename DescriptorT::OptionsType& orig_options, 2461 DescriptorT* descriptor); 2462 2463 // These methods all have the same signature for the sake of the BUILD_ARRAY 2464 // macro, below. 2465 void BuildMessage(const DescriptorProto& proto, 2466 const Descriptor* parent, 2467 Descriptor* result); 2468 void BuildFieldOrExtension(const FieldDescriptorProto& proto, 2469 const Descriptor* parent, 2470 FieldDescriptor* result, 2471 bool is_extension); 2472 void BuildField(const FieldDescriptorProto& proto, 2473 const Descriptor* parent, 2474 FieldDescriptor* result) { 2475 BuildFieldOrExtension(proto, parent, result, false); 2476 } 2477 void BuildExtension(const FieldDescriptorProto& proto, 2478 const Descriptor* parent, 2479 FieldDescriptor* result) { 2480 BuildFieldOrExtension(proto, parent, result, true); 2481 } 2482 void BuildExtensionRange(const DescriptorProto::ExtensionRange& proto, 2483 const Descriptor* parent, 2484 Descriptor::ExtensionRange* result); 2485 void BuildOneof(const OneofDescriptorProto& proto, 2486 Descriptor* parent, 2487 OneofDescriptor* result); 2488 void BuildEnum(const EnumDescriptorProto& proto, 2489 const Descriptor* parent, 2490 EnumDescriptor* result); 2491 void BuildEnumValue(const EnumValueDescriptorProto& proto, 2492 const EnumDescriptor* parent, 2493 EnumValueDescriptor* result); 2494 void BuildService(const ServiceDescriptorProto& proto, 2495 const void* dummy, 2496 ServiceDescriptor* result); 2497 void BuildMethod(const MethodDescriptorProto& proto, 2498 const ServiceDescriptor* parent, 2499 MethodDescriptor* result); 2500 2501 void LogUnusedDependency(const FileDescriptor* result); 2502 2503 // Must be run only after building. 2504 // 2505 // NOTE: Options will not be available during cross-linking, as they 2506 // have not yet been interpreted. Defer any handling of options to the 2507 // Validate*Options methods. 2508 void CrossLinkFile(FileDescriptor* file, const FileDescriptorProto& proto); 2509 void CrossLinkMessage(Descriptor* message, const DescriptorProto& proto); 2510 void CrossLinkField(FieldDescriptor* field, 2511 const FieldDescriptorProto& proto); 2512 void CrossLinkEnum(EnumDescriptor* enum_type, 2513 const EnumDescriptorProto& proto); 2514 void CrossLinkEnumValue(EnumValueDescriptor* enum_value, 2515 const EnumValueDescriptorProto& proto); 2516 void CrossLinkService(ServiceDescriptor* service, 2517 const ServiceDescriptorProto& proto); 2518 void CrossLinkMethod(MethodDescriptor* method, 2519 const MethodDescriptorProto& proto); 2520 2521 // Must be run only after cross-linking. 2522 void InterpretOptions(); 2523 2524 // A helper class for interpreting options. 2525 class OptionInterpreter { 2526 public: 2527 // Creates an interpreter that operates in the context of the pool of the 2528 // specified builder, which must not be NULL. We don't take ownership of the 2529 // builder. 2530 explicit OptionInterpreter(DescriptorBuilder* builder); 2531 2532 ~OptionInterpreter(); 2533 2534 // Interprets the uninterpreted options in the specified Options message. 2535 // On error, calls AddError() on the underlying builder and returns false. 2536 // Otherwise returns true. 2537 bool InterpretOptions(OptionsToInterpret* options_to_interpret); 2538 2539 class AggregateOptionFinder; 2540 2541 private: 2542 // Interprets uninterpreted_option_ on the specified message, which 2543 // must be the mutable copy of the original options message to which 2544 // uninterpreted_option_ belongs. 2545 bool InterpretSingleOption(Message* options); 2546 2547 // Adds the uninterpreted_option to the given options message verbatim. 2548 // Used when AllowUnknownDependencies() is in effect and we can't find 2549 // the option's definition. 2550 void AddWithoutInterpreting(const UninterpretedOption& uninterpreted_option, 2551 Message* options); 2552 2553 // A recursive helper function that drills into the intermediate fields 2554 // in unknown_fields to check if field innermost_field is set on the 2555 // innermost message. Returns false and sets an error if so. 2556 bool ExamineIfOptionIsSet( 2557 vector<const FieldDescriptor*>::const_iterator intermediate_fields_iter, 2558 vector<const FieldDescriptor*>::const_iterator intermediate_fields_end, 2559 const FieldDescriptor* innermost_field, const string& debug_msg_name, 2560 const UnknownFieldSet& unknown_fields); 2561 2562 // Validates the value for the option field of the currently interpreted 2563 // option and then sets it on the unknown_field. 2564 bool SetOptionValue(const FieldDescriptor* option_field, 2565 UnknownFieldSet* unknown_fields); 2566 2567 // Parses an aggregate value for a CPPTYPE_MESSAGE option and 2568 // saves it into *unknown_fields. 2569 bool SetAggregateOption(const FieldDescriptor* option_field, 2570 UnknownFieldSet* unknown_fields); 2571 2572 // Convenience functions to set an int field the right way, depending on 2573 // its wire type (a single int CppType can represent multiple wire types). 2574 void SetInt32(int number, int32 value, FieldDescriptor::Type type, 2575 UnknownFieldSet* unknown_fields); 2576 void SetInt64(int number, int64 value, FieldDescriptor::Type type, 2577 UnknownFieldSet* unknown_fields); 2578 void SetUInt32(int number, uint32 value, FieldDescriptor::Type type, 2579 UnknownFieldSet* unknown_fields); 2580 void SetUInt64(int number, uint64 value, FieldDescriptor::Type type, 2581 UnknownFieldSet* unknown_fields); 2582 2583 // A helper function that adds an error at the specified location of the 2584 // option we're currently interpreting, and returns false. 2585 bool AddOptionError(DescriptorPool::ErrorCollector::ErrorLocation location, 2586 const string& msg) { 2587 builder_->AddError(options_to_interpret_->element_name, 2588 *uninterpreted_option_, location, msg); 2589 return false; 2590 } 2591 2592 // A helper function that adds an error at the location of the option name 2593 // and returns false. 2594 bool AddNameError(const string& msg) { 2595 return AddOptionError(DescriptorPool::ErrorCollector::OPTION_NAME, msg); 2596 } 2597 2598 // A helper function that adds an error at the location of the option name 2599 // and returns false. 2600 bool AddValueError(const string& msg) { 2601 return AddOptionError(DescriptorPool::ErrorCollector::OPTION_VALUE, msg); 2602 } 2603 2604 // We interpret against this builder's pool. Is never NULL. We don't own 2605 // this pointer. 2606 DescriptorBuilder* builder_; 2607 2608 // The options we're currently interpreting, or NULL if we're not in a call 2609 // to InterpretOptions. 2610 const OptionsToInterpret* options_to_interpret_; 2611 2612 // The option we're currently interpreting within options_to_interpret_, or 2613 // NULL if we're not in a call to InterpretOptions(). This points to a 2614 // submessage of the original option, not the mutable copy. Therefore we 2615 // can use it to find locations recorded by the parser. 2616 const UninterpretedOption* uninterpreted_option_; 2617 2618 // Factory used to create the dynamic messages we need to parse 2619 // any aggregate option values we encounter. 2620 DynamicMessageFactory dynamic_factory_; 2621 2622 GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(OptionInterpreter); 2623 }; 2624 2625 // Work-around for broken compilers: According to the C++ standard, 2626 // OptionInterpreter should have access to the private members of any class 2627 // which has declared DescriptorBuilder as a friend. Unfortunately some old 2628 // versions of GCC and other compilers do not implement this correctly. So, 2629 // we have to have these intermediate methods to provide access. We also 2630 // redundantly declare OptionInterpreter a friend just to make things extra 2631 // clear for these bad compilers. 2632 friend class OptionInterpreter; 2633 friend class OptionInterpreter::AggregateOptionFinder; 2634 2635 static inline bool get_allow_unknown(const DescriptorPool* pool) { 2636 return pool->allow_unknown_; 2637 } 2638 static inline bool get_enforce_weak(const DescriptorPool* pool) { 2639 return pool->enforce_weak_; 2640 } 2641 static inline bool get_is_placeholder(const Descriptor* descriptor) { 2642 return descriptor->is_placeholder_; 2643 } 2644 static inline void assert_mutex_held(const DescriptorPool* pool) { 2645 if (pool->mutex_ != NULL) { 2646 pool->mutex_->AssertHeld(); 2647 } 2648 } 2649 2650 // Must be run only after options have been interpreted. 2651 // 2652 // NOTE: Validation code must only reference the options in the mutable 2653 // descriptors, which are the ones that have been interpreted. The const 2654 // proto references are passed in only so they can be provided to calls to 2655 // AddError(). Do not look at their options, which have not been interpreted. 2656 void ValidateFileOptions(FileDescriptor* file, 2657 const FileDescriptorProto& proto); 2658 void ValidateMessageOptions(Descriptor* message, 2659 const DescriptorProto& proto); 2660 void ValidateFieldOptions(FieldDescriptor* field, 2661 const FieldDescriptorProto& proto); 2662 void ValidateEnumOptions(EnumDescriptor* enm, 2663 const EnumDescriptorProto& proto); 2664 void ValidateEnumValueOptions(EnumValueDescriptor* enum_value, 2665 const EnumValueDescriptorProto& proto); 2666 void ValidateServiceOptions(ServiceDescriptor* service, 2667 const ServiceDescriptorProto& proto); 2668 void ValidateMethodOptions(MethodDescriptor* method, 2669 const MethodDescriptorProto& proto); 2670 2671 void ValidateMapKey(FieldDescriptor* field, 2672 const FieldDescriptorProto& proto); 2673 2674 }; 2675 2676 const FileDescriptor* DescriptorPool::BuildFile( 2677 const FileDescriptorProto& proto) { 2678 GOOGLE_CHECK(fallback_database_ == NULL) 2679 << "Cannot call BuildFile on a DescriptorPool that uses a " 2680 "DescriptorDatabase. You must instead find a way to get your file " 2681 "into the underlying database."; 2682 GOOGLE_CHECK(mutex_ == NULL); // Implied by the above GOOGLE_CHECK. 2683 tables_->known_bad_symbols_.clear(); 2684 tables_->known_bad_files_.clear(); 2685 return DescriptorBuilder(this, tables_.get(), NULL).BuildFile(proto); 2686 } 2687 2688 const FileDescriptor* DescriptorPool::BuildFileCollectingErrors( 2689 const FileDescriptorProto& proto, 2690 ErrorCollector* error_collector) { 2691 GOOGLE_CHECK(fallback_database_ == NULL) 2692 << "Cannot call BuildFile on a DescriptorPool that uses a " 2693 "DescriptorDatabase. You must instead find a way to get your file " 2694 "into the underlying database."; 2695 GOOGLE_CHECK(mutex_ == NULL); // Implied by the above GOOGLE_CHECK. 2696 tables_->known_bad_symbols_.clear(); 2697 tables_->known_bad_files_.clear(); 2698 return DescriptorBuilder(this, tables_.get(), 2699 error_collector).BuildFile(proto); 2700 } 2701 2702 const FileDescriptor* DescriptorPool::BuildFileFromDatabase( 2703 const FileDescriptorProto& proto) const { 2704 mutex_->AssertHeld(); 2705 if (tables_->known_bad_files_.count(proto.name()) > 0) { 2706 return NULL; 2707 } 2708 const FileDescriptor* result = 2709 DescriptorBuilder(this, tables_.get(), 2710 default_error_collector_).BuildFile(proto); 2711 if (result == NULL) { 2712 tables_->known_bad_files_.insert(proto.name()); 2713 } 2714 return result; 2715 } 2716 2717 DescriptorBuilder::DescriptorBuilder( 2718 const DescriptorPool* pool, 2719 DescriptorPool::Tables* tables, 2720 DescriptorPool::ErrorCollector* error_collector) 2721 : pool_(pool), 2722 tables_(tables), 2723 error_collector_(error_collector), 2724 had_errors_(false), 2725 possible_undeclared_dependency_(NULL), 2726 undefine_resolved_name_("") {} 2727 2728 DescriptorBuilder::~DescriptorBuilder() {} 2729 2730 void DescriptorBuilder::AddError( 2731 const string& element_name, 2732 const Message& descriptor, 2733 DescriptorPool::ErrorCollector::ErrorLocation location, 2734 const string& error) { 2735 if (error_collector_ == NULL) { 2736 if (!had_errors_) { 2737 GOOGLE_LOG(ERROR) << "Invalid proto descriptor for file \"" << filename_ 2738 << "\":"; 2739 } 2740 GOOGLE_LOG(ERROR) << " " << element_name << ": " << error; 2741 } else { 2742 error_collector_->AddError(filename_, element_name, 2743 &descriptor, location, error); 2744 } 2745 had_errors_ = true; 2746 } 2747 2748 void DescriptorBuilder::AddError( 2749 const string& element_name, 2750 const Message& descriptor, 2751 DescriptorPool::ErrorCollector::ErrorLocation location, 2752 const char* error) { 2753 AddError(element_name, descriptor, location, string(error)); 2754 } 2755 2756 void DescriptorBuilder::AddNotDefinedError( 2757 const string& element_name, 2758 const Message& descriptor, 2759 DescriptorPool::ErrorCollector::ErrorLocation location, 2760 const string& undefined_symbol) { 2761 if (possible_undeclared_dependency_ == NULL && 2762 undefine_resolved_name_.empty()) { 2763 AddError(element_name, descriptor, location, 2764 "\"" + undefined_symbol + "\" is not defined."); 2765 } else { 2766 if (possible_undeclared_dependency_ != NULL) { 2767 AddError(element_name, descriptor, location, 2768 "\"" + possible_undeclared_dependency_name_ + 2769 "\" seems to be defined in \"" + 2770 possible_undeclared_dependency_->name() + "\", which is not " 2771 "imported by \"" + filename_ + "\". To use it here, please " 2772 "add the necessary import."); 2773 } 2774 if (!undefine_resolved_name_.empty()) { 2775 AddError(element_name, descriptor, location, 2776 "\"" + undefined_symbol + "\" is resolved to \"" + 2777 undefine_resolved_name_ + "\", which is not defined. " 2778 "The innermost scope is searched first in name resolution. " 2779 "Consider using a leading '.'(i.e., \"." 2780 + undefined_symbol + 2781 "\") to start from the outermost scope."); 2782 } 2783 } 2784 } 2785 2786 void DescriptorBuilder::AddWarning( 2787 const string& element_name, const Message& descriptor, 2788 DescriptorPool::ErrorCollector::ErrorLocation location, 2789 const string& error) { 2790 if (error_collector_ == NULL) { 2791 GOOGLE_LOG(WARNING) << filename_ << " " << element_name << ": " << error; 2792 } else { 2793 error_collector_->AddWarning(filename_, element_name, &descriptor, location, 2794 error); 2795 } 2796 } 2797 2798 bool DescriptorBuilder::IsInPackage(const FileDescriptor* file, 2799 const string& package_name) { 2800 return HasPrefixString(file->package(), package_name) && 2801 (file->package().size() == package_name.size() || 2802 file->package()[package_name.size()] == '.'); 2803 } 2804 2805 void DescriptorBuilder::RecordPublicDependencies(const FileDescriptor* file) { 2806 if (file == NULL || !dependencies_.insert(file).second) return; 2807 for (int i = 0; file != NULL && i < file->public_dependency_count(); i++) { 2808 RecordPublicDependencies(file->public_dependency(i)); 2809 } 2810 } 2811 2812 Symbol DescriptorBuilder::FindSymbolNotEnforcingDepsHelper( 2813 const DescriptorPool* pool, const string& name) { 2814 // If we are looking at an underlay, we must lock its mutex_, since we are 2815 // accessing the underlay's tables_ directly. 2816 MutexLockMaybe lock((pool == pool_) ? NULL : pool->mutex_); 2817 2818 Symbol result = pool->tables_->FindSymbol(name); 2819 if (result.IsNull() && pool->underlay_ != NULL) { 2820 // Symbol not found; check the underlay. 2821 result = FindSymbolNotEnforcingDepsHelper(pool->underlay_, name); 2822 } 2823 2824 if (result.IsNull()) { 2825 // In theory, we shouldn't need to check fallback_database_ because the 2826 // symbol should be in one of its file's direct dependencies, and we have 2827 // already loaded those by the time we get here. But we check anyway so 2828 // that we can generate better error message when dependencies are missing 2829 // (i.e., "missing dependency" rather than "type is not defined"). 2830 if (pool->TryFindSymbolInFallbackDatabase(name)) { 2831 result = pool->tables_->FindSymbol(name); 2832 } 2833 } 2834 2835 return result; 2836 } 2837 2838 Symbol DescriptorBuilder::FindSymbolNotEnforcingDeps(const string& name) { 2839 return FindSymbolNotEnforcingDepsHelper(pool_, name); 2840 } 2841 2842 Symbol DescriptorBuilder::FindSymbol(const string& name) { 2843 Symbol result = FindSymbolNotEnforcingDeps(name); 2844 2845 if (result.IsNull()) return result; 2846 2847 if (!pool_->enforce_dependencies_) { 2848 // Hack for CompilerUpgrader. 2849 return result; 2850 } 2851 2852 // Only find symbols which were defined in this file or one of its 2853 // dependencies. 2854 const FileDescriptor* file = result.GetFile(); 2855 if (file == file_ || dependencies_.count(file) > 0) { 2856 unused_dependency_.erase(file); 2857 return result; 2858 } 2859 2860 if (result.type == Symbol::PACKAGE) { 2861 // Arg, this is overcomplicated. The symbol is a package name. It could 2862 // be that the package was defined in multiple files. result.GetFile() 2863 // returns the first file we saw that used this package. We've determined 2864 // that that file is not a direct dependency of the file we are currently 2865 // building, but it could be that some other file which *is* a direct 2866 // dependency also defines the same package. We can't really rule out this 2867 // symbol unless none of the dependencies define it. 2868 if (IsInPackage(file_, name)) return result; 2869 for (set<const FileDescriptor*>::const_iterator it = dependencies_.begin(); 2870 it != dependencies_.end(); ++it) { 2871 // Note: A dependency may be NULL if it was not found or had errors. 2872 if (*it != NULL && IsInPackage(*it, name)) return result; 2873 } 2874 } 2875 2876 possible_undeclared_dependency_ = file; 2877 possible_undeclared_dependency_name_ = name; 2878 return kNullSymbol; 2879 } 2880 2881 Symbol DescriptorBuilder::LookupSymbolNoPlaceholder( 2882 const string& name, const string& relative_to, ResolveMode resolve_mode) { 2883 possible_undeclared_dependency_ = NULL; 2884 undefine_resolved_name_.clear(); 2885 2886 if (name.size() > 0 && name[0] == '.') { 2887 // Fully-qualified name. 2888 return FindSymbol(name.substr(1)); 2889 } 2890 2891 // If name is something like "Foo.Bar.baz", and symbols named "Foo" are 2892 // defined in multiple parent scopes, we only want to find "Bar.baz" in the 2893 // innermost one. E.g., the following should produce an error: 2894 // message Bar { message Baz {} } 2895 // message Foo { 2896 // message Bar { 2897 // } 2898 // optional Bar.Baz baz = 1; 2899 // } 2900 // So, we look for just "Foo" first, then look for "Bar.baz" within it if 2901 // found. 2902 string::size_type name_dot_pos = name.find_first_of('.'); 2903 string first_part_of_name; 2904 if (name_dot_pos == string::npos) { 2905 first_part_of_name = name; 2906 } else { 2907 first_part_of_name = name.substr(0, name_dot_pos); 2908 } 2909 2910 string scope_to_try(relative_to); 2911 2912 while (true) { 2913 // Chop off the last component of the scope. 2914 string::size_type dot_pos = scope_to_try.find_last_of('.'); 2915 if (dot_pos == string::npos) { 2916 return FindSymbol(name); 2917 } else { 2918 scope_to_try.erase(dot_pos); 2919 } 2920 2921 // Append ".first_part_of_name" and try to find. 2922 string::size_type old_size = scope_to_try.size(); 2923 scope_to_try.append(1, '.'); 2924 scope_to_try.append(first_part_of_name); 2925 Symbol result = FindSymbol(scope_to_try); 2926 if (!result.IsNull()) { 2927 if (first_part_of_name.size() < name.size()) { 2928 // name is a compound symbol, of which we only found the first part. 2929 // Now try to look up the rest of it. 2930 if (result.IsAggregate()) { 2931 scope_to_try.append(name, first_part_of_name.size(), 2932 name.size() - first_part_of_name.size()); 2933 result = FindSymbol(scope_to_try); 2934 if (result.IsNull()) { 2935 undefine_resolved_name_ = scope_to_try; 2936 } 2937 return result; 2938 } else { 2939 // We found a symbol but it's not an aggregate. Continue the loop. 2940 } 2941 } else { 2942 if (resolve_mode == LOOKUP_TYPES && !result.IsType()) { 2943 // We found a symbol but it's not a type. Continue the loop. 2944 } else { 2945 return result; 2946 } 2947 } 2948 } 2949 2950 // Not found. Remove the name so we can try again. 2951 scope_to_try.erase(old_size); 2952 } 2953 } 2954 2955 Symbol DescriptorBuilder::LookupSymbol( 2956 const string& name, const string& relative_to, 2957 PlaceholderType placeholder_type, ResolveMode resolve_mode) { 2958 Symbol result = LookupSymbolNoPlaceholder( 2959 name, relative_to, resolve_mode); 2960 if (result.IsNull() && pool_->allow_unknown_) { 2961 // Not found, but AllowUnknownDependencies() is enabled. Return a 2962 // placeholder instead. 2963 result = NewPlaceholder(name, placeholder_type); 2964 } 2965 return result; 2966 } 2967 2968 Symbol DescriptorBuilder::NewPlaceholder(const string& name, 2969 PlaceholderType placeholder_type) { 2970 // Compute names. 2971 const string* placeholder_full_name; 2972 const string* placeholder_name; 2973 const string* placeholder_package; 2974 2975 if (!ValidateQualifiedName(name)) return kNullSymbol; 2976 if (name[0] == '.') { 2977 // Fully-qualified. 2978 placeholder_full_name = tables_->AllocateString(name.substr(1)); 2979 } else { 2980 placeholder_full_name = tables_->AllocateString(name); 2981 } 2982 2983 string::size_type dotpos = placeholder_full_name->find_last_of('.'); 2984 if (dotpos != string::npos) { 2985 placeholder_package = tables_->AllocateString( 2986 placeholder_full_name->substr(0, dotpos)); 2987 placeholder_name = tables_->AllocateString( 2988 placeholder_full_name->substr(dotpos + 1)); 2989 } else { 2990 placeholder_package = &internal::GetEmptyString(); 2991 placeholder_name = placeholder_full_name; 2992 } 2993 2994 // Create the placeholders. 2995 FileDescriptor* placeholder_file = tables_->Allocate<FileDescriptor>(); 2996 memset(placeholder_file, 0, sizeof(*placeholder_file)); 2997 2998 placeholder_file->source_code_info_ = &SourceCodeInfo::default_instance(); 2999 3000 placeholder_file->name_ = 3001 tables_->AllocateString(*placeholder_full_name + ".placeholder.proto"); 3002 placeholder_file->package_ = placeholder_package; 3003 placeholder_file->pool_ = pool_; 3004 placeholder_file->options_ = &FileOptions::default_instance(); 3005 placeholder_file->tables_ = &FileDescriptorTables::kEmpty; 3006 placeholder_file->is_placeholder_ = true; 3007 // All other fields are zero or NULL. 3008 3009 if (placeholder_type == PLACEHOLDER_ENUM) { 3010 placeholder_file->enum_type_count_ = 1; 3011 placeholder_file->enum_types_ = 3012 tables_->AllocateArray<EnumDescriptor>(1); 3013 3014 EnumDescriptor* placeholder_enum = &placeholder_file->enum_types_[0]; 3015 memset(placeholder_enum, 0, sizeof(*placeholder_enum)); 3016 3017 placeholder_enum->full_name_ = placeholder_full_name; 3018 placeholder_enum->name_ = placeholder_name; 3019 placeholder_enum->file_ = placeholder_file; 3020 placeholder_enum->options_ = &EnumOptions::default_instance(); 3021 placeholder_enum->is_placeholder_ = true; 3022 placeholder_enum->is_unqualified_placeholder_ = (name[0] != '.'); 3023 3024 // Enums must have at least one value. 3025 placeholder_enum->value_count_ = 1; 3026 placeholder_enum->values_ = tables_->AllocateArray<EnumValueDescriptor>(1); 3027 3028 EnumValueDescriptor* placeholder_value = &placeholder_enum->values_[0]; 3029 memset(placeholder_value, 0, sizeof(*placeholder_value)); 3030 3031 placeholder_value->name_ = tables_->AllocateString("PLACEHOLDER_VALUE"); 3032 // Note that enum value names are siblings of their type, not children. 3033 placeholder_value->full_name_ = 3034 placeholder_package->empty() ? placeholder_value->name_ : 3035 tables_->AllocateString(*placeholder_package + ".PLACEHOLDER_VALUE"); 3036 3037 placeholder_value->number_ = 0; 3038 placeholder_value->type_ = placeholder_enum; 3039 placeholder_value->options_ = &EnumValueOptions::default_instance(); 3040 3041 return Symbol(placeholder_enum); 3042 } else { 3043 placeholder_file->message_type_count_ = 1; 3044 placeholder_file->message_types_ = 3045 tables_->AllocateArray<Descriptor>(1); 3046 3047 Descriptor* placeholder_message = &placeholder_file->message_types_[0]; 3048 memset(placeholder_message, 0, sizeof(*placeholder_message)); 3049 3050 placeholder_message->full_name_ = placeholder_full_name; 3051 placeholder_message->name_ = placeholder_name; 3052 placeholder_message->file_ = placeholder_file; 3053 placeholder_message->options_ = &MessageOptions::default_instance(); 3054 placeholder_message->is_placeholder_ = true; 3055 placeholder_message->is_unqualified_placeholder_ = (name[0] != '.'); 3056 3057 if (placeholder_type == PLACEHOLDER_EXTENDABLE_MESSAGE) { 3058 placeholder_message->extension_range_count_ = 1; 3059 placeholder_message->extension_ranges_ = 3060 tables_->AllocateArray<Descriptor::ExtensionRange>(1); 3061 placeholder_message->extension_ranges_->start = 1; 3062 // kMaxNumber + 1 because ExtensionRange::end is exclusive. 3063 placeholder_message->extension_ranges_->end = 3064 FieldDescriptor::kMaxNumber + 1; 3065 } 3066 3067 return Symbol(placeholder_message); 3068 } 3069 } 3070 3071 const FileDescriptor* DescriptorBuilder::NewPlaceholderFile( 3072 const string& name) { 3073 FileDescriptor* placeholder = tables_->Allocate<FileDescriptor>(); 3074 memset(placeholder, 0, sizeof(*placeholder)); 3075 3076 placeholder->name_ = tables_->AllocateString(name); 3077 placeholder->package_ = &internal::GetEmptyString(); 3078 placeholder->pool_ = pool_; 3079 placeholder->options_ = &FileOptions::default_instance(); 3080 placeholder->tables_ = &FileDescriptorTables::kEmpty; 3081 placeholder->is_placeholder_ = true; 3082 // All other fields are zero or NULL. 3083 3084 return placeholder; 3085 } 3086 3087 bool DescriptorBuilder::AddSymbol( 3088 const string& full_name, const void* parent, const string& name, 3089 const Message& proto, Symbol symbol) { 3090 // If the caller passed NULL for the parent, the symbol is at file scope. 3091 // Use its file as the parent instead. 3092 if (parent == NULL) parent = file_; 3093 3094 if (tables_->AddSymbol(full_name, symbol)) { 3095 if (!file_tables_->AddAliasUnderParent(parent, name, symbol)) { 3096 GOOGLE_LOG(DFATAL) << "\"" << full_name << "\" not previously defined in " 3097 "symbols_by_name_, but was defined in symbols_by_parent_; " 3098 "this shouldn't be possible."; 3099 return false; 3100 } 3101 return true; 3102 } else { 3103 const FileDescriptor* other_file = tables_->FindSymbol(full_name).GetFile(); 3104 if (other_file == file_) { 3105 string::size_type dot_pos = full_name.find_last_of('.'); 3106 if (dot_pos == string::npos) { 3107 AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME, 3108 "\"" + full_name + "\" is already defined."); 3109 } else { 3110 AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME, 3111 "\"" + full_name.substr(dot_pos + 1) + 3112 "\" is already defined in \"" + 3113 full_name.substr(0, dot_pos) + "\"."); 3114 } 3115 } else { 3116 // Symbol seems to have been defined in a different file. 3117 AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME, 3118 "\"" + full_name + "\" is already defined in file \"" + 3119 other_file->name() + "\"."); 3120 } 3121 return false; 3122 } 3123 } 3124 3125 void DescriptorBuilder::AddPackage( 3126 const string& name, const Message& proto, const FileDescriptor* file) { 3127 if (tables_->AddSymbol(name, Symbol(file))) { 3128 // Success. Also add parent package, if any. 3129 string::size_type dot_pos = name.find_last_of('.'); 3130 if (dot_pos == string::npos) { 3131 // No parents. 3132 ValidateSymbolName(name, name, proto); 3133 } else { 3134 // Has parent. 3135 string* parent_name = tables_->AllocateString(name.substr(0, dot_pos)); 3136 AddPackage(*parent_name, proto, file); 3137 ValidateSymbolName(name.substr(dot_pos + 1), name, proto); 3138 } 3139 } else { 3140 Symbol existing_symbol = tables_->FindSymbol(name); 3141 // It's OK to redefine a package. 3142 if (existing_symbol.type != Symbol::PACKAGE) { 3143 // Symbol seems to have been defined in a different file. 3144 AddError(name, proto, DescriptorPool::ErrorCollector::NAME, 3145 "\"" + name + "\" is already defined (as something other than " 3146 "a package) in file \"" + existing_symbol.GetFile()->name() + 3147 "\"."); 3148 } 3149 } 3150 } 3151 3152 void DescriptorBuilder::ValidateSymbolName( 3153 const string& name, const string& full_name, const Message& proto) { 3154 if (name.empty()) { 3155 AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME, 3156 "Missing name."); 3157 } else { 3158 for (int i = 0; i < name.size(); i++) { 3159 // I don't trust isalnum() due to locales. :( 3160 if ((name[i] < 'a' || 'z' < name[i]) && 3161 (name[i] < 'A' || 'Z' < name[i]) && 3162 (name[i] < '0' || '9' < name[i]) && 3163 (name[i] != '_')) { 3164 AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME, 3165 "\"" + name + "\" is not a valid identifier."); 3166 } 3167 } 3168 } 3169 } 3170 3171 bool DescriptorBuilder::ValidateQualifiedName(const string& name) { 3172 bool last_was_period = false; 3173 3174 for (int i = 0; i < name.size(); i++) { 3175 // I don't trust isalnum() due to locales. :( 3176 if (('a' <= name[i] && name[i] <= 'z') || 3177 ('A' <= name[i] && name[i] <= 'Z') || 3178 ('0' <= name[i] && name[i] <= '9') || 3179 (name[i] == '_')) { 3180 last_was_period = false; 3181 } else if (name[i] == '.') { 3182 if (last_was_period) return false; 3183 last_was_period = true; 3184 } else { 3185 return false; 3186 } 3187 } 3188 3189 return !name.empty() && !last_was_period; 3190 } 3191 3192 // ------------------------------------------------------------------- 3193 3194 // This generic implementation is good for all descriptors except 3195 // FileDescriptor. 3196 template<class DescriptorT> void DescriptorBuilder::AllocateOptions( 3197 const typename DescriptorT::OptionsType& orig_options, 3198 DescriptorT* descriptor) { 3199 AllocateOptionsImpl(descriptor->full_name(), descriptor->full_name(), 3200 orig_options, descriptor); 3201 } 3202 3203 // We specialize for FileDescriptor. 3204 void DescriptorBuilder::AllocateOptions(const FileOptions& orig_options, 3205 FileDescriptor* descriptor) { 3206 // We add the dummy token so that LookupSymbol does the right thing. 3207 AllocateOptionsImpl(descriptor->package() + ".dummy", descriptor->name(), 3208 orig_options, descriptor); 3209 } 3210 3211 template<class DescriptorT> void DescriptorBuilder::AllocateOptionsImpl( 3212 const string& name_scope, 3213 const string& element_name, 3214 const typename DescriptorT::OptionsType& orig_options, 3215 DescriptorT* descriptor) { 3216 // We need to use a dummy pointer to work around a bug in older versions of 3217 // GCC. Otherwise, the following two lines could be replaced with: 3218 // typename DescriptorT::OptionsType* options = 3219 // tables_->AllocateMessage<typename DescriptorT::OptionsType>(); 3220 typename DescriptorT::OptionsType* const dummy = NULL; 3221 typename DescriptorT::OptionsType* options = tables_->AllocateMessage(dummy); 3222 // Avoid using MergeFrom()/CopyFrom() in this class to make it -fno-rtti 3223 // friendly. Without RTTI, MergeFrom() and CopyFrom() will fallback to the 3224 // reflection based method, which requires the Descriptor. However, we are in 3225 // the middle of building the descriptors, thus the deadlock. 3226 options->ParseFromString(orig_options.SerializeAsString()); 3227 descriptor->options_ = options; 3228 3229 // Don't add to options_to_interpret_ unless there were uninterpreted 3230 // options. This not only avoids unnecessary work, but prevents a 3231 // bootstrapping problem when building descriptors for descriptor.proto. 3232 // descriptor.proto does not contain any uninterpreted options, but 3233 // attempting to interpret options anyway will cause 3234 // OptionsType::GetDescriptor() to be called which may then deadlock since 3235 // we're still trying to build it. 3236 if (options->uninterpreted_option_size() > 0) { 3237 options_to_interpret_.push_back( 3238 OptionsToInterpret(name_scope, element_name, &orig_options, options)); 3239 } 3240 } 3241 3242 3243 // A common pattern: We want to convert a repeated field in the descriptor 3244 // to an array of values, calling some method to build each value. 3245 #define BUILD_ARRAY(INPUT, OUTPUT, NAME, METHOD, PARENT) \ 3246 OUTPUT->NAME##_count_ = INPUT.NAME##_size(); \ 3247 AllocateArray(INPUT.NAME##_size(), &OUTPUT->NAME##s_); \ 3248 for (int i = 0; i < INPUT.NAME##_size(); i++) { \ 3249 METHOD(INPUT.NAME(i), PARENT, OUTPUT->NAME##s_ + i); \ 3250 } 3251 3252 void DescriptorBuilder::AddRecursiveImportError( 3253 const FileDescriptorProto& proto, int from_here) { 3254 string error_message("File recursively imports itself: "); 3255 for (int i = from_here; i < tables_->pending_files_.size(); i++) { 3256 error_message.append(tables_->pending_files_[i]); 3257 error_message.append(" -> "); 3258 } 3259 error_message.append(proto.name()); 3260 3261 AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER, 3262 error_message); 3263 } 3264 3265 void DescriptorBuilder::AddTwiceListedError(const FileDescriptorProto& proto, 3266 int index) { 3267 AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER, 3268 "Import \"" + proto.dependency(index) + "\" was listed twice."); 3269 } 3270 3271 void DescriptorBuilder::AddImportError(const FileDescriptorProto& proto, 3272 int index) { 3273 string message; 3274 if (pool_->fallback_database_ == NULL) { 3275 message = "Import \"" + proto.dependency(index) + 3276 "\" has not been loaded."; 3277 } else { 3278 message = "Import \"" + proto.dependency(index) + 3279 "\" was not found or had errors."; 3280 } 3281 AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER, message); 3282 } 3283 3284 static bool ExistingFileMatchesProto(const FileDescriptor* existing_file, 3285 const FileDescriptorProto& proto) { 3286 FileDescriptorProto existing_proto; 3287 existing_file->CopyTo(&existing_proto); 3288 return existing_proto.SerializeAsString() == proto.SerializeAsString(); 3289 } 3290 3291 const FileDescriptor* DescriptorBuilder::BuildFile( 3292 const FileDescriptorProto& proto) { 3293 filename_ = proto.name(); 3294 3295 // Check if the file already exists and is identical to the one being built. 3296 // Note: This only works if the input is canonical -- that is, it 3297 // fully-qualifies all type names, has no UninterpretedOptions, etc. 3298 // This is fine, because this idempotency "feature" really only exists to 3299 // accomodate one hack in the proto1->proto2 migration layer. 3300 const FileDescriptor* existing_file = tables_->FindFile(filename_); 3301 if (existing_file != NULL) { 3302 // File already in pool. Compare the existing one to the input. 3303 if (ExistingFileMatchesProto(existing_file, proto)) { 3304 // They're identical. Return the existing descriptor. 3305 return existing_file; 3306 } 3307 3308 // Not a match. The error will be detected and handled later. 3309 } 3310 3311 // Check to see if this file is already on the pending files list. 3312 // TODO(kenton): Allow recursive imports? It may not work with some 3313 // (most?) programming languages. E.g., in C++, a forward declaration 3314 // of a type is not sufficient to allow it to be used even in a 3315 // generated header file due to inlining. This could perhaps be 3316 // worked around using tricks involving inserting #include statements 3317 // mid-file, but that's pretty ugly, and I'm pretty sure there are 3318 // some languages out there that do not allow recursive dependencies 3319 // at all. 3320 for (int i = 0; i < tables_->pending_files_.size(); i++) { 3321 if (tables_->pending_files_[i] == proto.name()) { 3322 AddRecursiveImportError(proto, i); 3323 return NULL; 3324 } 3325 } 3326 3327 // If we have a fallback_database_, attempt to load all dependencies now, 3328 // before checkpointing tables_. This avoids confusion with recursive 3329 // checkpoints. 3330 if (pool_->fallback_database_ != NULL) { 3331 tables_->pending_files_.push_back(proto.name()); 3332 for (int i = 0; i < proto.dependency_size(); i++) { 3333 if (tables_->FindFile(proto.dependency(i)) == NULL && 3334 (pool_->underlay_ == NULL || 3335 pool_->underlay_->FindFileByName(proto.dependency(i)) == NULL)) { 3336 // We don't care what this returns since we'll find out below anyway. 3337 pool_->TryFindFileInFallbackDatabase(proto.dependency(i)); 3338 } 3339 } 3340 tables_->pending_files_.pop_back(); 3341 } 3342 3343 // Checkpoint the tables so that we can roll back if something goes wrong. 3344 tables_->AddCheckpoint(); 3345 3346 FileDescriptor* result = tables_->Allocate<FileDescriptor>(); 3347 file_ = result; 3348 3349 result->is_placeholder_ = false; 3350 if (proto.has_source_code_info()) { 3351 SourceCodeInfo *info = tables_->AllocateMessage<SourceCodeInfo>(); 3352 info->CopyFrom(proto.source_code_info()); 3353 result->source_code_info_ = info; 3354 } else { 3355 result->source_code_info_ = &SourceCodeInfo::default_instance(); 3356 } 3357 3358 file_tables_ = tables_->AllocateFileTables(); 3359 file_->tables_ = file_tables_; 3360 3361 if (!proto.has_name()) { 3362 AddError("", proto, DescriptorPool::ErrorCollector::OTHER, 3363 "Missing field: FileDescriptorProto.name."); 3364 } 3365 3366 result->name_ = tables_->AllocateString(proto.name()); 3367 if (proto.has_package()) { 3368 result->package_ = tables_->AllocateString(proto.package()); 3369 } else { 3370 // We cannot rely on proto.package() returning a valid string if 3371 // proto.has_package() is false, because we might be running at static 3372 // initialization time, in which case default values have not yet been 3373 // initialized. 3374 result->package_ = tables_->AllocateString(""); 3375 } 3376 result->pool_ = pool_; 3377 3378 // Add to tables. 3379 if (!tables_->AddFile(result)) { 3380 AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER, 3381 "A file with this name is already in the pool."); 3382 // Bail out early so that if this is actually the exact same file, we 3383 // don't end up reporting that every single symbol is already defined. 3384 tables_->RollbackToLastCheckpoint(); 3385 return NULL; 3386 } 3387 if (!result->package().empty()) { 3388 AddPackage(result->package(), proto, result); 3389 } 3390 3391 // Make sure all dependencies are loaded. 3392 set<string> seen_dependencies; 3393 result->dependency_count_ = proto.dependency_size(); 3394 result->dependencies_ = 3395 tables_->AllocateArray<const FileDescriptor*>(proto.dependency_size()); 3396 unused_dependency_.clear(); 3397 set<int> weak_deps; 3398 for (int i = 0; i < proto.weak_dependency_size(); ++i) { 3399 weak_deps.insert(proto.weak_dependency(i)); 3400 } 3401 for (int i = 0; i < proto.dependency_size(); i++) { 3402 if (!seen_dependencies.insert(proto.dependency(i)).second) { 3403 AddTwiceListedError(proto, i); 3404 } 3405 3406 const FileDescriptor* dependency = tables_->FindFile(proto.dependency(i)); 3407 if (dependency == NULL && pool_->underlay_ != NULL) { 3408 dependency = pool_->underlay_->FindFileByName(proto.dependency(i)); 3409 } 3410 3411 if (dependency == NULL) { 3412 if (pool_->allow_unknown_ || 3413 (!pool_->enforce_weak_ && weak_deps.find(i) != weak_deps.end())) { 3414 dependency = NewPlaceholderFile(proto.dependency(i)); 3415 } else { 3416 AddImportError(proto, i); 3417 } 3418 } else { 3419 // Add to unused_dependency_ to track unused imported files. 3420 // Note: do not track unused imported files for public import. 3421 if (pool_->enforce_dependencies_ && 3422 (pool_->unused_import_track_files_.find(proto.name()) != 3423 pool_->unused_import_track_files_.end()) && 3424 (dependency->public_dependency_count() == 0)) { 3425 unused_dependency_.insert(dependency); 3426 } 3427 } 3428 3429 result->dependencies_[i] = dependency; 3430 } 3431 3432 // Check public dependencies. 3433 int public_dependency_count = 0; 3434 result->public_dependencies_ = tables_->AllocateArray<int>( 3435 proto.public_dependency_size()); 3436 for (int i = 0; i < proto.public_dependency_size(); i++) { 3437 // Only put valid public dependency indexes. 3438 int index = proto.public_dependency(i); 3439 if (index >= 0 && index < proto.dependency_size()) { 3440 result->public_dependencies_[public_dependency_count++] = index; 3441 // Do not track unused imported files for public import. 3442 unused_dependency_.erase(result->dependency(index)); 3443 } else { 3444 AddError(proto.name(), proto, 3445 DescriptorPool::ErrorCollector::OTHER, 3446 "Invalid public dependency index."); 3447 } 3448 } 3449 result->public_dependency_count_ = public_dependency_count; 3450 3451 // Build dependency set 3452 dependencies_.clear(); 3453 for (int i = 0; i < result->dependency_count(); i++) { 3454 RecordPublicDependencies(result->dependency(i)); 3455 } 3456 3457 // Check weak dependencies. 3458 int weak_dependency_count = 0; 3459 result->weak_dependencies_ = tables_->AllocateArray<int>( 3460 proto.weak_dependency_size()); 3461 for (int i = 0; i < proto.weak_dependency_size(); i++) { 3462 int index = proto.weak_dependency(i); 3463 if (index >= 0 && index < proto.dependency_size()) { 3464 result->weak_dependencies_[weak_dependency_count++] = index; 3465 } else { 3466 AddError(proto.name(), proto, 3467 DescriptorPool::ErrorCollector::OTHER, 3468 "Invalid weak dependency index."); 3469 } 3470 } 3471 result->weak_dependency_count_ = weak_dependency_count; 3472 3473 // Convert children. 3474 BUILD_ARRAY(proto, result, message_type, BuildMessage , NULL); 3475 BUILD_ARRAY(proto, result, enum_type , BuildEnum , NULL); 3476 BUILD_ARRAY(proto, result, service , BuildService , NULL); 3477 BUILD_ARRAY(proto, result, extension , BuildExtension, NULL); 3478 3479 // Copy options. 3480 if (!proto.has_options()) { 3481 result->options_ = NULL; // Will set to default_instance later. 3482 } else { 3483 AllocateOptions(proto.options(), result); 3484 } 3485 3486 // Note that the following steps must occur in exactly the specified order. 3487 3488 // Cross-link. 3489 CrossLinkFile(result, proto); 3490 3491 // Interpret any remaining uninterpreted options gathered into 3492 // options_to_interpret_ during descriptor building. Cross-linking has made 3493 // extension options known, so all interpretations should now succeed. 3494 if (!had_errors_) { 3495 OptionInterpreter option_interpreter(this); 3496 for (vector<OptionsToInterpret>::iterator iter = 3497 options_to_interpret_.begin(); 3498 iter != options_to_interpret_.end(); ++iter) { 3499 option_interpreter.InterpretOptions(&(*iter)); 3500 } 3501 options_to_interpret_.clear(); 3502 } 3503 3504 // Validate options. 3505 if (!had_errors_) { 3506 ValidateFileOptions(result, proto); 3507 } 3508 3509 3510 if (!unused_dependency_.empty()) { 3511 LogUnusedDependency(result); 3512 } 3513 3514 if (had_errors_) { 3515 tables_->RollbackToLastCheckpoint(); 3516 return NULL; 3517 } else { 3518 tables_->ClearLastCheckpoint(); 3519 return result; 3520 } 3521 } 3522 3523 void DescriptorBuilder::BuildMessage(const DescriptorProto& proto, 3524 const Descriptor* parent, 3525 Descriptor* result) { 3526 const string& scope = (parent == NULL) ? 3527 file_->package() : parent->full_name(); 3528 string* full_name = tables_->AllocateString(scope); 3529 if (!full_name->empty()) full_name->append(1, '.'); 3530 full_name->append(proto.name()); 3531 3532 ValidateSymbolName(proto.name(), *full_name, proto); 3533 3534 result->name_ = tables_->AllocateString(proto.name()); 3535 result->full_name_ = full_name; 3536 result->file_ = file_; 3537 result->containing_type_ = parent; 3538 result->is_placeholder_ = false; 3539 result->is_unqualified_placeholder_ = false; 3540 3541 // Build oneofs first so that fields and extension ranges can refer to them. 3542 BUILD_ARRAY(proto, result, oneof_decl , BuildOneof , result); 3543 BUILD_ARRAY(proto, result, field , BuildField , result); 3544 BUILD_ARRAY(proto, result, nested_type , BuildMessage , result); 3545 BUILD_ARRAY(proto, result, enum_type , BuildEnum , result); 3546 BUILD_ARRAY(proto, result, extension_range, BuildExtensionRange, result); 3547 BUILD_ARRAY(proto, result, extension , BuildExtension , result); 3548 3549 // Copy options. 3550 if (!proto.has_options()) { 3551 result->options_ = NULL; // Will set to default_instance later. 3552 } else { 3553 AllocateOptions(proto.options(), result); 3554 } 3555 3556 AddSymbol(result->full_name(), parent, result->name(), 3557 proto, Symbol(result)); 3558 3559 // Check that no fields have numbers in extension ranges. 3560 for (int i = 0; i < result->field_count(); i++) { 3561 const FieldDescriptor* field = result->field(i); 3562 for (int j = 0; j < result->extension_range_count(); j++) { 3563 const Descriptor::ExtensionRange* range = result->extension_range(j); 3564 if (range->start <= field->number() && field->number() < range->end) { 3565 AddError(field->full_name(), proto.extension_range(j), 3566 DescriptorPool::ErrorCollector::NUMBER, 3567 strings::Substitute( 3568 "Extension range $0 to $1 includes field \"$2\" ($3).", 3569 range->start, range->end - 1, 3570 field->name(), field->number())); 3571 } 3572 } 3573 } 3574 3575 // Check that extension ranges don't overlap. 3576 for (int i = 0; i < result->extension_range_count(); i++) { 3577 const Descriptor::ExtensionRange* range1 = result->extension_range(i); 3578 for (int j = i + 1; j < result->extension_range_count(); j++) { 3579 const Descriptor::ExtensionRange* range2 = result->extension_range(j); 3580 if (range1->end > range2->start && range2->end > range1->start) { 3581 AddError(result->full_name(), proto.extension_range(j), 3582 DescriptorPool::ErrorCollector::NUMBER, 3583 strings::Substitute("Extension range $0 to $1 overlaps with " 3584 "already-defined range $2 to $3.", 3585 range2->start, range2->end - 1, 3586 range1->start, range1->end - 1)); 3587 } 3588 } 3589 } 3590 } 3591 3592 void DescriptorBuilder::BuildFieldOrExtension(const FieldDescriptorProto& proto, 3593 const Descriptor* parent, 3594 FieldDescriptor* result, 3595 bool is_extension) { 3596 const string& scope = (parent == NULL) ? 3597 file_->package() : parent->full_name(); 3598 string* full_name = tables_->AllocateString(scope); 3599 if (!full_name->empty()) full_name->append(1, '.'); 3600 full_name->append(proto.name()); 3601 3602 ValidateSymbolName(proto.name(), *full_name, proto); 3603 3604 result->name_ = tables_->AllocateString(proto.name()); 3605 result->full_name_ = full_name; 3606 result->file_ = file_; 3607 result->number_ = proto.number(); 3608 result->is_extension_ = is_extension; 3609 3610 // If .proto files follow the style guide then the name should already be 3611 // lower-cased. If that's the case we can just reuse the string we already 3612 // allocated rather than allocate a new one. 3613 string lowercase_name(proto.name()); 3614 LowerString(&lowercase_name); 3615 if (lowercase_name == proto.name()) { 3616 result->lowercase_name_ = result->name_; 3617 } else { 3618 result->lowercase_name_ = tables_->AllocateString(lowercase_name); 3619 } 3620 3621 // Don't bother with the above optimization for camel-case names since 3622 // .proto files that follow the guide shouldn't be using names in this 3623 // format, so the optimization wouldn't help much. 3624 result->camelcase_name_ = tables_->AllocateString(ToCamelCase(proto.name())); 3625 3626 // Some compilers do not allow static_cast directly between two enum types, 3627 // so we must cast to int first. 3628 result->type_ = static_cast<FieldDescriptor::Type>( 3629 implicit_cast<int>(proto.type())); 3630 result->label_ = static_cast<FieldDescriptor::Label>( 3631 implicit_cast<int>(proto.label())); 3632 3633 // An extension cannot have a required field (b/13365836). 3634 if (result->is_extension_ && 3635 result->label_ == FieldDescriptor::LABEL_REQUIRED) { 3636 AddError(result->full_name(), proto, 3637 // Error location `TYPE`: we would really like to indicate 3638 // `LABEL`, but the `ErrorLocation` enum has no entry for this, and 3639 // we don't necessarily know about all implementations of the 3640 // `ErrorCollector` interface to extend them to handle the new 3641 // error location type properly. 3642 DescriptorPool::ErrorCollector::TYPE, 3643 "Message extensions cannot have required fields."); 3644 } 3645 3646 // Some of these may be filled in when cross-linking. 3647 result->containing_type_ = NULL; 3648 result->extension_scope_ = NULL; 3649 result->experimental_map_key_ = NULL; 3650 result->message_type_ = NULL; 3651 result->enum_type_ = NULL; 3652 3653 result->has_default_value_ = proto.has_default_value(); 3654 if (proto.has_default_value() && result->is_repeated()) { 3655 AddError(result->full_name(), proto, 3656 DescriptorPool::ErrorCollector::DEFAULT_VALUE, 3657 "Repeated fields can't have default values."); 3658 } 3659 3660 if (proto.has_type()) { 3661 if (proto.has_default_value()) { 3662 char* end_pos = NULL; 3663 switch (result->cpp_type()) { 3664 case FieldDescriptor::CPPTYPE_INT32: 3665 result->default_value_int32_ = 3666 strtol(proto.default_value().c_str(), &end_pos, 0); 3667 break; 3668 case FieldDescriptor::CPPTYPE_INT64: 3669 result->default_value_int64_ = 3670 strto64(proto.default_value().c_str(), &end_pos, 0); 3671 break; 3672 case FieldDescriptor::CPPTYPE_UINT32: 3673 result->default_value_uint32_ = 3674 strtoul(proto.default_value().c_str(), &end_pos, 0); 3675 break; 3676 case FieldDescriptor::CPPTYPE_UINT64: 3677 result->default_value_uint64_ = 3678 strtou64(proto.default_value().c_str(), &end_pos, 0); 3679 break; 3680 case FieldDescriptor::CPPTYPE_FLOAT: 3681 if (proto.default_value() == "inf") { 3682 result->default_value_float_ = numeric_limits<float>::infinity(); 3683 } else if (proto.default_value() == "-inf") { 3684 result->default_value_float_ = -numeric_limits<float>::infinity(); 3685 } else if (proto.default_value() == "nan") { 3686 result->default_value_float_ = numeric_limits<float>::quiet_NaN(); 3687 } else { 3688 result->default_value_float_ = 3689 io::NoLocaleStrtod(proto.default_value().c_str(), &end_pos); 3690 } 3691 break; 3692 case FieldDescriptor::CPPTYPE_DOUBLE: 3693 if (proto.default_value() == "inf") { 3694 result->default_value_double_ = numeric_limits<double>::infinity(); 3695 } else if (proto.default_value() == "-inf") { 3696 result->default_value_double_ = -numeric_limits<double>::infinity(); 3697 } else if (proto.default_value() == "nan") { 3698 result->default_value_double_ = numeric_limits<double>::quiet_NaN(); 3699 } else { 3700 result->default_value_double_ = 3701 io::NoLocaleStrtod(proto.default_value().c_str(), &end_pos); 3702 } 3703 break; 3704 case FieldDescriptor::CPPTYPE_BOOL: 3705 if (proto.default_value() == "true") { 3706 result->default_value_bool_ = true; 3707 } else if (proto.default_value() == "false") { 3708 result->default_value_bool_ = false; 3709 } else { 3710 AddError(result->full_name(), proto, 3711 DescriptorPool::ErrorCollector::DEFAULT_VALUE, 3712 "Boolean default must be true or false."); 3713 } 3714 break; 3715 case FieldDescriptor::CPPTYPE_ENUM: 3716 // This will be filled in when cross-linking. 3717 result->default_value_enum_ = NULL; 3718 break; 3719 case FieldDescriptor::CPPTYPE_STRING: 3720 if (result->type() == FieldDescriptor::TYPE_BYTES) { 3721 result->default_value_string_ = tables_->AllocateString( 3722 UnescapeCEscapeString(proto.default_value())); 3723 } else { 3724 result->default_value_string_ = 3725 tables_->AllocateString(proto.default_value()); 3726 } 3727 break; 3728 case FieldDescriptor::CPPTYPE_MESSAGE: 3729 AddError(result->full_name(), proto, 3730 DescriptorPool::ErrorCollector::DEFAULT_VALUE, 3731 "Messages can't have default values."); 3732 result->has_default_value_ = false; 3733 break; 3734 } 3735 3736 if (end_pos != NULL) { 3737 // end_pos is only set non-NULL by the parsers for numeric types, above. 3738 // This checks that the default was non-empty and had no extra junk 3739 // after the end of the number. 3740 if (proto.default_value().empty() || *end_pos != '\0') { 3741 AddError(result->full_name(), proto, 3742 DescriptorPool::ErrorCollector::DEFAULT_VALUE, 3743 "Couldn't parse default value \"" + proto.default_value() + 3744 "\"."); 3745 } 3746 } 3747 } else { 3748 // No explicit default value 3749 switch (result->cpp_type()) { 3750 case FieldDescriptor::CPPTYPE_INT32: 3751 result->default_value_int32_ = 0; 3752 break; 3753 case FieldDescriptor::CPPTYPE_INT64: 3754 result->default_value_int64_ = 0; 3755 break; 3756 case FieldDescriptor::CPPTYPE_UINT32: 3757 result->default_value_uint32_ = 0; 3758 break; 3759 case FieldDescriptor::CPPTYPE_UINT64: 3760 result->default_value_uint64_ = 0; 3761 break; 3762 case FieldDescriptor::CPPTYPE_FLOAT: 3763 result->default_value_float_ = 0.0f; 3764 break; 3765 case FieldDescriptor::CPPTYPE_DOUBLE: 3766 result->default_value_double_ = 0.0; 3767 break; 3768 case FieldDescriptor::CPPTYPE_BOOL: 3769 result->default_value_bool_ = false; 3770 break; 3771 case FieldDescriptor::CPPTYPE_ENUM: 3772 // This will be filled in when cross-linking. 3773 result->default_value_enum_ = NULL; 3774 break; 3775 case FieldDescriptor::CPPTYPE_STRING: 3776 result->default_value_string_ = &internal::GetEmptyString(); 3777 break; 3778 case FieldDescriptor::CPPTYPE_MESSAGE: 3779 break; 3780 } 3781 } 3782 } 3783 3784 if (result->number() <= 0) { 3785 AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, 3786 "Field numbers must be positive integers."); 3787 } else if (!is_extension && result->number() > FieldDescriptor::kMaxNumber) { 3788 // Only validate that the number is within the valid field range if it is 3789 // not an extension. Since extension numbers are validated with the 3790 // extendee's valid set of extension numbers, and those are in turn 3791 // validated against the max allowed number, the check is unnecessary for 3792 // extension fields. 3793 // This avoids cross-linking issues that arise when attempting to check if 3794 // the extendee is a message_set_wire_format message, which has a higher max 3795 // on extension numbers. 3796 AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, 3797 strings::Substitute("Field numbers cannot be greater than $0.", 3798 FieldDescriptor::kMaxNumber)); 3799 } else if (result->number() >= FieldDescriptor::kFirstReservedNumber && 3800 result->number() <= FieldDescriptor::kLastReservedNumber) { 3801 AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, 3802 strings::Substitute( 3803 "Field numbers $0 through $1 are reserved for the protocol " 3804 "buffer library implementation.", 3805 FieldDescriptor::kFirstReservedNumber, 3806 FieldDescriptor::kLastReservedNumber)); 3807 } 3808 3809 if (is_extension) { 3810 if (!proto.has_extendee()) { 3811 AddError(result->full_name(), proto, 3812 DescriptorPool::ErrorCollector::EXTENDEE, 3813 "FieldDescriptorProto.extendee not set for extension field."); 3814 } 3815 3816 result->extension_scope_ = parent; 3817 3818 if (proto.has_oneof_index()) { 3819 AddError(result->full_name(), proto, 3820 DescriptorPool::ErrorCollector::OTHER, 3821 "FieldDescriptorProto.oneof_index should not be set for " 3822 "extensions."); 3823 } 3824 3825 // Fill in later (maybe). 3826 result->containing_oneof_ = NULL; 3827 } else { 3828 if (proto.has_extendee()) { 3829 AddError(result->full_name(), proto, 3830 DescriptorPool::ErrorCollector::EXTENDEE, 3831 "FieldDescriptorProto.extendee set for non-extension field."); 3832 } 3833 3834 result->containing_type_ = parent; 3835 3836 if (proto.has_oneof_index()) { 3837 if (proto.oneof_index() < 0 || 3838 proto.oneof_index() >= parent->oneof_decl_count()) { 3839 AddError(result->full_name(), proto, 3840 DescriptorPool::ErrorCollector::OTHER, 3841 strings::Substitute("FieldDescriptorProto.oneof_index $0 is " 3842 "out of range for type \"$1\".", 3843 proto.oneof_index(), 3844 parent->name())); 3845 result->containing_oneof_ = NULL; 3846 } else { 3847 result->containing_oneof_ = parent->oneof_decl(proto.oneof_index()); 3848 } 3849 } else { 3850 result->containing_oneof_ = NULL; 3851 } 3852 } 3853 3854 // Copy options. 3855 if (!proto.has_options()) { 3856 result->options_ = NULL; // Will set to default_instance later. 3857 } else { 3858 AllocateOptions(proto.options(), result); 3859 } 3860 3861 AddSymbol(result->full_name(), parent, result->name(), 3862 proto, Symbol(result)); 3863 } 3864 3865 void DescriptorBuilder::BuildExtensionRange( 3866 const DescriptorProto::ExtensionRange& proto, 3867 const Descriptor* parent, 3868 Descriptor::ExtensionRange* result) { 3869 result->start = proto.start(); 3870 result->end = proto.end(); 3871 if (result->start <= 0) { 3872 AddError(parent->full_name(), proto, 3873 DescriptorPool::ErrorCollector::NUMBER, 3874 "Extension numbers must be positive integers."); 3875 } 3876 3877 // Checking of the upper bound of the extension range is deferred until after 3878 // options interpreting. This allows messages with message_set_wire_format to 3879 // have extensions beyond FieldDescriptor::kMaxNumber, since the extension 3880 // numbers are actually used as int32s in the message_set_wire_format. 3881 3882 if (result->start >= result->end) { 3883 AddError(parent->full_name(), proto, 3884 DescriptorPool::ErrorCollector::NUMBER, 3885 "Extension range end number must be greater than start number."); 3886 } 3887 } 3888 3889 void DescriptorBuilder::BuildOneof(const OneofDescriptorProto& proto, 3890 Descriptor* parent, 3891 OneofDescriptor* result) { 3892 string* full_name = tables_->AllocateString(parent->full_name()); 3893 full_name->append(1, '.'); 3894 full_name->append(proto.name()); 3895 3896 ValidateSymbolName(proto.name(), *full_name, proto); 3897 3898 result->name_ = tables_->AllocateString(proto.name()); 3899 result->full_name_ = full_name; 3900 3901 result->containing_type_ = parent; 3902 3903 // We need to fill these in later. 3904 result->field_count_ = 0; 3905 result->fields_ = NULL; 3906 3907 AddSymbol(result->full_name(), parent, result->name(), 3908 proto, Symbol(result)); 3909 } 3910 3911 void DescriptorBuilder::BuildEnum(const EnumDescriptorProto& proto, 3912 const Descriptor* parent, 3913 EnumDescriptor* result) { 3914 const string& scope = (parent == NULL) ? 3915 file_->package() : parent->full_name(); 3916 string* full_name = tables_->AllocateString(scope); 3917 if (!full_name->empty()) full_name->append(1, '.'); 3918 full_name->append(proto.name()); 3919 3920 ValidateSymbolName(proto.name(), *full_name, proto); 3921 3922 result->name_ = tables_->AllocateString(proto.name()); 3923 result->full_name_ = full_name; 3924 result->file_ = file_; 3925 result->containing_type_ = parent; 3926 result->is_placeholder_ = false; 3927 result->is_unqualified_placeholder_ = false; 3928 3929 if (proto.value_size() == 0) { 3930 // We cannot allow enums with no values because this would mean there 3931 // would be no valid default value for fields of this type. 3932 AddError(result->full_name(), proto, 3933 DescriptorPool::ErrorCollector::NAME, 3934 "Enums must contain at least one value."); 3935 } 3936 3937 BUILD_ARRAY(proto, result, value, BuildEnumValue, result); 3938 3939 // Copy options. 3940 if (!proto.has_options()) { 3941 result->options_ = NULL; // Will set to default_instance later. 3942 } else { 3943 AllocateOptions(proto.options(), result); 3944 } 3945 3946 AddSymbol(result->full_name(), parent, result->name(), 3947 proto, Symbol(result)); 3948 } 3949 3950 void DescriptorBuilder::BuildEnumValue(const EnumValueDescriptorProto& proto, 3951 const EnumDescriptor* parent, 3952 EnumValueDescriptor* result) { 3953 result->name_ = tables_->AllocateString(proto.name()); 3954 result->number_ = proto.number(); 3955 result->type_ = parent; 3956 3957 // Note: full_name for enum values is a sibling to the parent's name, not a 3958 // child of it. 3959 string* full_name = tables_->AllocateString(*parent->full_name_); 3960 full_name->resize(full_name->size() - parent->name_->size()); 3961 full_name->append(*result->name_); 3962 result->full_name_ = full_name; 3963 3964 ValidateSymbolName(proto.name(), *full_name, proto); 3965 3966 // Copy options. 3967 if (!proto.has_options()) { 3968 result->options_ = NULL; // Will set to default_instance later. 3969 } else { 3970 AllocateOptions(proto.options(), result); 3971 } 3972 3973 // Again, enum values are weird because we makes them appear as siblings 3974 // of the enum type instead of children of it. So, we use 3975 // parent->containing_type() as the value's parent. 3976 bool added_to_outer_scope = 3977 AddSymbol(result->full_name(), parent->containing_type(), result->name(), 3978 proto, Symbol(result)); 3979 3980 // However, we also want to be able to search for values within a single 3981 // enum type, so we add it as a child of the enum type itself, too. 3982 // Note: This could fail, but if it does, the error has already been 3983 // reported by the above AddSymbol() call, so we ignore the return code. 3984 bool added_to_inner_scope = 3985 file_tables_->AddAliasUnderParent(parent, result->name(), Symbol(result)); 3986 3987 if (added_to_inner_scope && !added_to_outer_scope) { 3988 // This value did not conflict with any values defined in the same enum, 3989 // but it did conflict with some other symbol defined in the enum type's 3990 // scope. Let's print an additional error to explain this. 3991 string outer_scope; 3992 if (parent->containing_type() == NULL) { 3993 outer_scope = file_->package(); 3994 } else { 3995 outer_scope = parent->containing_type()->full_name(); 3996 } 3997 3998 if (outer_scope.empty()) { 3999 outer_scope = "the global scope"; 4000 } else { 4001 outer_scope = "\"" + outer_scope + "\""; 4002 } 4003 4004 AddError(result->full_name(), proto, 4005 DescriptorPool::ErrorCollector::NAME, 4006 "Note that enum values use C++ scoping rules, meaning that " 4007 "enum values are siblings of their type, not children of it. " 4008 "Therefore, \"" + result->name() + "\" must be unique within " 4009 + outer_scope + ", not just within \"" + parent->name() + "\"."); 4010 } 4011 4012 // An enum is allowed to define two numbers that refer to the same value. 4013 // FindValueByNumber() should return the first such value, so we simply 4014 // ignore AddEnumValueByNumber()'s return code. 4015 file_tables_->AddEnumValueByNumber(result); 4016 } 4017 4018 void DescriptorBuilder::BuildService(const ServiceDescriptorProto& proto, 4019 const void* /* dummy */, 4020 ServiceDescriptor* result) { 4021 string* full_name = tables_->AllocateString(file_->package()); 4022 if (!full_name->empty()) full_name->append(1, '.'); 4023 full_name->append(proto.name()); 4024 4025 ValidateSymbolName(proto.name(), *full_name, proto); 4026 4027 result->name_ = tables_->AllocateString(proto.name()); 4028 result->full_name_ = full_name; 4029 result->file_ = file_; 4030 4031 BUILD_ARRAY(proto, result, method, BuildMethod, result); 4032 4033 // Copy options. 4034 if (!proto.has_options()) { 4035 result->options_ = NULL; // Will set to default_instance later. 4036 } else { 4037 AllocateOptions(proto.options(), result); 4038 } 4039 4040 AddSymbol(result->full_name(), NULL, result->name(), 4041 proto, Symbol(result)); 4042 } 4043 4044 void DescriptorBuilder::BuildMethod(const MethodDescriptorProto& proto, 4045 const ServiceDescriptor* parent, 4046 MethodDescriptor* result) { 4047 result->name_ = tables_->AllocateString(proto.name()); 4048 result->service_ = parent; 4049 4050 string* full_name = tables_->AllocateString(parent->full_name()); 4051 full_name->append(1, '.'); 4052 full_name->append(*result->name_); 4053 result->full_name_ = full_name; 4054 4055 ValidateSymbolName(proto.name(), *full_name, proto); 4056 4057 // These will be filled in when cross-linking. 4058 result->input_type_ = NULL; 4059 result->output_type_ = NULL; 4060 4061 // Copy options. 4062 if (!proto.has_options()) { 4063 result->options_ = NULL; // Will set to default_instance later. 4064 } else { 4065 AllocateOptions(proto.options(), result); 4066 } 4067 4068 AddSymbol(result->full_name(), parent, result->name(), 4069 proto, Symbol(result)); 4070 } 4071 4072 #undef BUILD_ARRAY 4073 4074 // ------------------------------------------------------------------- 4075 4076 void DescriptorBuilder::CrossLinkFile( 4077 FileDescriptor* file, const FileDescriptorProto& proto) { 4078 if (file->options_ == NULL) { 4079 file->options_ = &FileOptions::default_instance(); 4080 } 4081 4082 for (int i = 0; i < file->message_type_count(); i++) { 4083 CrossLinkMessage(&file->message_types_[i], proto.message_type(i)); 4084 } 4085 4086 for (int i = 0; i < file->extension_count(); i++) { 4087 CrossLinkField(&file->extensions_[i], proto.extension(i)); 4088 } 4089 4090 for (int i = 0; i < file->enum_type_count(); i++) { 4091 CrossLinkEnum(&file->enum_types_[i], proto.enum_type(i)); 4092 } 4093 4094 for (int i = 0; i < file->service_count(); i++) { 4095 CrossLinkService(&file->services_[i], proto.service(i)); 4096 } 4097 } 4098 4099 void DescriptorBuilder::CrossLinkMessage( 4100 Descriptor* message, const DescriptorProto& proto) { 4101 if (message->options_ == NULL) { 4102 message->options_ = &MessageOptions::default_instance(); 4103 } 4104 4105 for (int i = 0; i < message->nested_type_count(); i++) { 4106 CrossLinkMessage(&message->nested_types_[i], proto.nested_type(i)); 4107 } 4108 4109 for (int i = 0; i < message->enum_type_count(); i++) { 4110 CrossLinkEnum(&message->enum_types_[i], proto.enum_type(i)); 4111 } 4112 4113 for (int i = 0; i < message->field_count(); i++) { 4114 CrossLinkField(&message->fields_[i], proto.field(i)); 4115 } 4116 4117 for (int i = 0; i < message->extension_count(); i++) { 4118 CrossLinkField(&message->extensions_[i], proto.extension(i)); 4119 } 4120 4121 // Set up field array for each oneof. 4122 4123 // First count the number of fields per oneof. 4124 for (int i = 0; i < message->field_count(); i++) { 4125 const OneofDescriptor* oneof_decl = message->field(i)->containing_oneof(); 4126 if (oneof_decl != NULL) { 4127 // Must go through oneof_decls_ array to get a non-const version of the 4128 // OneofDescriptor. 4129 ++message->oneof_decls_[oneof_decl->index()].field_count_; 4130 } 4131 } 4132 4133 // Then allocate the arrays. 4134 for (int i = 0; i < message->oneof_decl_count(); i++) { 4135 OneofDescriptor* oneof_decl = &message->oneof_decls_[i]; 4136 4137 if (oneof_decl->field_count() == 0) { 4138 AddError(message->full_name() + "." + oneof_decl->name(), 4139 proto.oneof_decl(i), 4140 DescriptorPool::ErrorCollector::NAME, 4141 "Oneof must have at least one field."); 4142 } 4143 4144 oneof_decl->fields_ = 4145 tables_->AllocateArray<const FieldDescriptor*>(oneof_decl->field_count_); 4146 oneof_decl->field_count_ = 0; 4147 } 4148 4149 // Then fill them in. 4150 for (int i = 0; i < message->field_count(); i++) { 4151 const OneofDescriptor* oneof_decl = message->field(i)->containing_oneof(); 4152 if (oneof_decl != NULL) { 4153 OneofDescriptor* mutable_oneof_decl = 4154 &message->oneof_decls_[oneof_decl->index()]; 4155 message->fields_[i].index_in_oneof_ = mutable_oneof_decl->field_count_; 4156 mutable_oneof_decl->fields_[mutable_oneof_decl->field_count_++] = 4157 message->field(i); 4158 } 4159 } 4160 } 4161 4162 void DescriptorBuilder::CrossLinkField( 4163 FieldDescriptor* field, const FieldDescriptorProto& proto) { 4164 if (field->options_ == NULL) { 4165 field->options_ = &FieldOptions::default_instance(); 4166 } 4167 4168 if (proto.has_extendee()) { 4169 Symbol extendee = LookupSymbol(proto.extendee(), field->full_name(), 4170 PLACEHOLDER_EXTENDABLE_MESSAGE); 4171 if (extendee.IsNull()) { 4172 AddNotDefinedError(field->full_name(), proto, 4173 DescriptorPool::ErrorCollector::EXTENDEE, 4174 proto.extendee()); 4175 return; 4176 } else if (extendee.type != Symbol::MESSAGE) { 4177 AddError(field->full_name(), proto, 4178 DescriptorPool::ErrorCollector::EXTENDEE, 4179 "\"" + proto.extendee() + "\" is not a message type."); 4180 return; 4181 } 4182 field->containing_type_ = extendee.descriptor; 4183 4184 const Descriptor::ExtensionRange* extension_range = field->containing_type() 4185 ->FindExtensionRangeContainingNumber(field->number()); 4186 4187 if (extension_range == NULL) { 4188 AddError(field->full_name(), proto, 4189 DescriptorPool::ErrorCollector::NUMBER, 4190 strings::Substitute("\"$0\" does not declare $1 as an " 4191 "extension number.", 4192 field->containing_type()->full_name(), 4193 field->number())); 4194 } 4195 } 4196 4197 if (field->containing_oneof() != NULL) { 4198 if (field->label() != FieldDescriptor::LABEL_OPTIONAL) { 4199 // Note that this error will never happen when parsing .proto files. 4200 // It can only happen if you manually construct a FileDescriptorProto 4201 // that is incorrect. 4202 AddError(field->full_name(), proto, 4203 DescriptorPool::ErrorCollector::NAME, 4204 "Fields of oneofs must themselves have label LABEL_OPTIONAL."); 4205 } 4206 } 4207 4208 if (proto.has_type_name()) { 4209 // Assume we are expecting a message type unless the proto contains some 4210 // evidence that it expects an enum type. This only makes a difference if 4211 // we end up creating a placeholder. 4212 bool expecting_enum = (proto.type() == FieldDescriptorProto::TYPE_ENUM) || 4213 proto.has_default_value(); 4214 4215 Symbol type = 4216 LookupSymbol(proto.type_name(), field->full_name(), 4217 expecting_enum ? PLACEHOLDER_ENUM : PLACEHOLDER_MESSAGE, 4218 LOOKUP_TYPES); 4219 4220 // If the type is a weak type, we change the type to a google.protobuf.Empty field. 4221 if (type.IsNull() && !pool_->enforce_weak_ && proto.options().weak()) { 4222 type = FindSymbol(kNonLinkedWeakMessageReplacementName); 4223 } 4224 4225 if (type.IsNull()) { 4226 AddNotDefinedError(field->full_name(), proto, 4227 DescriptorPool::ErrorCollector::TYPE, 4228 proto.type_name()); 4229 return; 4230 } 4231 4232 if (!proto.has_type()) { 4233 // Choose field type based on symbol. 4234 if (type.type == Symbol::MESSAGE) { 4235 field->type_ = FieldDescriptor::TYPE_MESSAGE; 4236 } else if (type.type == Symbol::ENUM) { 4237 field->type_ = FieldDescriptor::TYPE_ENUM; 4238 } else { 4239 AddError(field->full_name(), proto, 4240 DescriptorPool::ErrorCollector::TYPE, 4241 "\"" + proto.type_name() + "\" is not a type."); 4242 return; 4243 } 4244 } 4245 4246 if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { 4247 if (type.type != Symbol::MESSAGE) { 4248 AddError(field->full_name(), proto, 4249 DescriptorPool::ErrorCollector::TYPE, 4250 "\"" + proto.type_name() + "\" is not a message type."); 4251 return; 4252 } 4253 field->message_type_ = type.descriptor; 4254 4255 if (field->has_default_value()) { 4256 AddError(field->full_name(), proto, 4257 DescriptorPool::ErrorCollector::DEFAULT_VALUE, 4258 "Messages can't have default values."); 4259 } 4260 } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) { 4261 if (type.type != Symbol::ENUM) { 4262 AddError(field->full_name(), proto, 4263 DescriptorPool::ErrorCollector::TYPE, 4264 "\"" + proto.type_name() + "\" is not an enum type."); 4265 return; 4266 } 4267 field->enum_type_ = type.enum_descriptor; 4268 4269 if (field->enum_type()->is_placeholder_) { 4270 // We can't look up default values for placeholder types. We'll have 4271 // to just drop them. 4272 field->has_default_value_ = false; 4273 } 4274 4275 if (field->has_default_value()) { 4276 // Ensure that the default value is an identifier. Parser cannot always 4277 // verify this because it does not have complete type information. 4278 // N.B. that this check yields better error messages but is not 4279 // necessary for correctness (an enum symbol must be a valid identifier 4280 // anyway), only for better errors. 4281 if (!io::Tokenizer::IsIdentifier(proto.default_value())) { 4282 AddError(field->full_name(), proto, 4283 DescriptorPool::ErrorCollector::DEFAULT_VALUE, 4284 "Default value for an enum field must be an identifier."); 4285 } else { 4286 // We can't just use field->enum_type()->FindValueByName() here 4287 // because that locks the pool's mutex, which we have already locked 4288 // at this point. 4289 Symbol default_value = 4290 LookupSymbolNoPlaceholder(proto.default_value(), 4291 field->enum_type()->full_name()); 4292 4293 if (default_value.type == Symbol::ENUM_VALUE && 4294 default_value.enum_value_descriptor->type() == 4295 field->enum_type()) { 4296 field->default_value_enum_ = default_value.enum_value_descriptor; 4297 } else { 4298 AddError(field->full_name(), proto, 4299 DescriptorPool::ErrorCollector::DEFAULT_VALUE, 4300 "Enum type \"" + field->enum_type()->full_name() + 4301 "\" has no value named \"" + proto.default_value() + 4302 "\"."); 4303 } 4304 } 4305 } else if (field->enum_type()->value_count() > 0) { 4306 // All enums must have at least one value, or we would have reported 4307 // an error elsewhere. We use the first defined value as the default 4308 // if a default is not explicitly defined. 4309 field->default_value_enum_ = field->enum_type()->value(0); 4310 } 4311 } else { 4312 AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, 4313 "Field with primitive type has type_name."); 4314 } 4315 } else { 4316 if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE || 4317 field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) { 4318 AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, 4319 "Field with message or enum type missing type_name."); 4320 } 4321 } 4322 4323 // Add the field to the fields-by-number table. 4324 // Note: We have to do this *after* cross-linking because extensions do not 4325 // know their containing type until now. 4326 if (!file_tables_->AddFieldByNumber(field)) { 4327 const FieldDescriptor* conflicting_field = 4328 file_tables_->FindFieldByNumber(field->containing_type(), 4329 field->number()); 4330 if (field->is_extension()) { 4331 AddError(field->full_name(), proto, 4332 DescriptorPool::ErrorCollector::NUMBER, 4333 strings::Substitute("Extension number $0 has already been used " 4334 "in \"$1\" by extension \"$2\".", 4335 field->number(), 4336 field->containing_type()->full_name(), 4337 conflicting_field->full_name())); 4338 } else { 4339 AddError(field->full_name(), proto, 4340 DescriptorPool::ErrorCollector::NUMBER, 4341 strings::Substitute("Field number $0 has already been used in " 4342 "\"$1\" by field \"$2\".", 4343 field->number(), 4344 field->containing_type()->full_name(), 4345 conflicting_field->name())); 4346 } 4347 } else { 4348 if (field->is_extension()) { 4349 if (!tables_->AddExtension(field)) { 4350 const FieldDescriptor* conflicting_field = 4351 tables_->FindExtension(field->containing_type(), field->number()); 4352 string error_msg = strings::Substitute( 4353 "Extension number $0 has already been used in \"$1\" by extension " 4354 "\"$2\" defined in $3.", 4355 field->number(), 4356 field->containing_type()->full_name(), 4357 conflicting_field->full_name(), 4358 conflicting_field->file()->name()); 4359 // Conflicting extension numbers should be an error. However, before 4360 // turning this into an error we need to fix all existing broken 4361 // protos first. 4362 // TODO(xiaofeng): Change this to an error. 4363 AddWarning(field->full_name(), proto, 4364 DescriptorPool::ErrorCollector::NUMBER, error_msg); 4365 } 4366 } 4367 } 4368 4369 // Add the field to the lowercase-name and camelcase-name tables. 4370 file_tables_->AddFieldByStylizedNames(field); 4371 } 4372 4373 void DescriptorBuilder::CrossLinkEnum( 4374 EnumDescriptor* enum_type, const EnumDescriptorProto& proto) { 4375 if (enum_type->options_ == NULL) { 4376 enum_type->options_ = &EnumOptions::default_instance(); 4377 } 4378 4379 for (int i = 0; i < enum_type->value_count(); i++) { 4380 CrossLinkEnumValue(&enum_type->values_[i], proto.value(i)); 4381 } 4382 } 4383 4384 void DescriptorBuilder::CrossLinkEnumValue( 4385 EnumValueDescriptor* enum_value, 4386 const EnumValueDescriptorProto& /* proto */) { 4387 if (enum_value->options_ == NULL) { 4388 enum_value->options_ = &EnumValueOptions::default_instance(); 4389 } 4390 } 4391 4392 void DescriptorBuilder::CrossLinkService( 4393 ServiceDescriptor* service, const ServiceDescriptorProto& proto) { 4394 if (service->options_ == NULL) { 4395 service->options_ = &ServiceOptions::default_instance(); 4396 } 4397 4398 for (int i = 0; i < service->method_count(); i++) { 4399 CrossLinkMethod(&service->methods_[i], proto.method(i)); 4400 } 4401 } 4402 4403 void DescriptorBuilder::CrossLinkMethod( 4404 MethodDescriptor* method, const MethodDescriptorProto& proto) { 4405 if (method->options_ == NULL) { 4406 method->options_ = &MethodOptions::default_instance(); 4407 } 4408 4409 Symbol input_type = LookupSymbol(proto.input_type(), method->full_name()); 4410 if (input_type.IsNull()) { 4411 AddNotDefinedError(method->full_name(), proto, 4412 DescriptorPool::ErrorCollector::INPUT_TYPE, 4413 proto.input_type()); 4414 } else if (input_type.type != Symbol::MESSAGE) { 4415 AddError(method->full_name(), proto, 4416 DescriptorPool::ErrorCollector::INPUT_TYPE, 4417 "\"" + proto.input_type() + "\" is not a message type."); 4418 } else { 4419 method->input_type_ = input_type.descriptor; 4420 } 4421 4422 Symbol output_type = LookupSymbol(proto.output_type(), method->full_name()); 4423 if (output_type.IsNull()) { 4424 AddNotDefinedError(method->full_name(), proto, 4425 DescriptorPool::ErrorCollector::OUTPUT_TYPE, 4426 proto.output_type()); 4427 } else if (output_type.type != Symbol::MESSAGE) { 4428 AddError(method->full_name(), proto, 4429 DescriptorPool::ErrorCollector::OUTPUT_TYPE, 4430 "\"" + proto.output_type() + "\" is not a message type."); 4431 } else { 4432 method->output_type_ = output_type.descriptor; 4433 } 4434 } 4435 4436 // ------------------------------------------------------------------- 4437 4438 #define VALIDATE_OPTIONS_FROM_ARRAY(descriptor, array_name, type) \ 4439 for (int i = 0; i < descriptor->array_name##_count(); ++i) { \ 4440 Validate##type##Options(descriptor->array_name##s_ + i, \ 4441 proto.array_name(i)); \ 4442 } 4443 4444 // Determine if the file uses optimize_for = LITE_RUNTIME, being careful to 4445 // avoid problems that exist at init time. 4446 static bool IsLite(const FileDescriptor* file) { 4447 // TODO(kenton): I don't even remember how many of these conditions are 4448 // actually possible. I'm just being super-safe. 4449 return file != NULL && 4450 &file->options() != &FileOptions::default_instance() && 4451 file->options().optimize_for() == FileOptions::LITE_RUNTIME; 4452 } 4453 4454 void DescriptorBuilder::ValidateFileOptions(FileDescriptor* file, 4455 const FileDescriptorProto& proto) { 4456 VALIDATE_OPTIONS_FROM_ARRAY(file, message_type, Message); 4457 VALIDATE_OPTIONS_FROM_ARRAY(file, enum_type, Enum); 4458 VALIDATE_OPTIONS_FROM_ARRAY(file, service, Service); 4459 VALIDATE_OPTIONS_FROM_ARRAY(file, extension, Field); 4460 4461 // Lite files can only be imported by other Lite files. 4462 if (!IsLite(file)) { 4463 for (int i = 0; i < file->dependency_count(); i++) { 4464 if (IsLite(file->dependency(i))) { 4465 AddError( 4466 file->name(), proto, 4467 DescriptorPool::ErrorCollector::OTHER, 4468 "Files that do not use optimize_for = LITE_RUNTIME cannot import " 4469 "files which do use this option. This file is not lite, but it " 4470 "imports \"" + file->dependency(i)->name() + "\" which is."); 4471 break; 4472 } 4473 } 4474 } 4475 } 4476 4477 4478 void DescriptorBuilder::ValidateMessageOptions(Descriptor* message, 4479 const DescriptorProto& proto) { 4480 VALIDATE_OPTIONS_FROM_ARRAY(message, field, Field); 4481 VALIDATE_OPTIONS_FROM_ARRAY(message, nested_type, Message); 4482 VALIDATE_OPTIONS_FROM_ARRAY(message, enum_type, Enum); 4483 VALIDATE_OPTIONS_FROM_ARRAY(message, extension, Field); 4484 4485 const int64 max_extension_range = 4486 static_cast<int64>(message->options().message_set_wire_format() ? 4487 kint32max : 4488 FieldDescriptor::kMaxNumber); 4489 for (int i = 0; i < message->extension_range_count(); ++i) { 4490 if (message->extension_range(i)->end > max_extension_range + 1) { 4491 AddError( 4492 message->full_name(), proto.extension_range(i), 4493 DescriptorPool::ErrorCollector::NUMBER, 4494 strings::Substitute("Extension numbers cannot be greater than $0.", 4495 max_extension_range)); 4496 } 4497 } 4498 } 4499 4500 void DescriptorBuilder::ValidateFieldOptions(FieldDescriptor* field, 4501 const FieldDescriptorProto& proto) { 4502 if (field->options().has_experimental_map_key()) { 4503 ValidateMapKey(field, proto); 4504 } 4505 4506 // Only message type fields may be lazy. 4507 if (field->options().lazy()) { 4508 if (field->type() != FieldDescriptor::TYPE_MESSAGE) { 4509 AddError(field->full_name(), proto, 4510 DescriptorPool::ErrorCollector::TYPE, 4511 "[lazy = true] can only be specified for submessage fields."); 4512 } 4513 } 4514 4515 // Only repeated primitive fields may be packed. 4516 if (field->options().packed() && !field->is_packable()) { 4517 AddError( 4518 field->full_name(), proto, 4519 DescriptorPool::ErrorCollector::TYPE, 4520 "[packed = true] can only be specified for repeated primitive fields."); 4521 } 4522 4523 // Note: Default instance may not yet be initialized here, so we have to 4524 // avoid reading from it. 4525 if (field->containing_type_ != NULL && 4526 &field->containing_type()->options() != 4527 &MessageOptions::default_instance() && 4528 field->containing_type()->options().message_set_wire_format()) { 4529 if (field->is_extension()) { 4530 if (!field->is_optional() || 4531 field->type() != FieldDescriptor::TYPE_MESSAGE) { 4532 AddError(field->full_name(), proto, 4533 DescriptorPool::ErrorCollector::TYPE, 4534 "Extensions of MessageSets must be optional messages."); 4535 } 4536 } else { 4537 AddError(field->full_name(), proto, 4538 DescriptorPool::ErrorCollector::NAME, 4539 "MessageSets cannot have fields, only extensions."); 4540 } 4541 } 4542 4543 // Lite extensions can only be of Lite types. 4544 if (IsLite(field->file()) && 4545 field->containing_type_ != NULL && 4546 !IsLite(field->containing_type()->file())) { 4547 AddError(field->full_name(), proto, 4548 DescriptorPool::ErrorCollector::EXTENDEE, 4549 "Extensions to non-lite types can only be declared in non-lite " 4550 "files. Note that you cannot extend a non-lite type to contain " 4551 "a lite type, but the reverse is allowed."); 4552 } 4553 4554 } 4555 4556 void DescriptorBuilder::ValidateEnumOptions(EnumDescriptor* enm, 4557 const EnumDescriptorProto& proto) { 4558 VALIDATE_OPTIONS_FROM_ARRAY(enm, value, EnumValue); 4559 if (!enm->options().has_allow_alias() || !enm->options().allow_alias()) { 4560 map<int, string> used_values; 4561 for (int i = 0; i < enm->value_count(); ++i) { 4562 const EnumValueDescriptor* enum_value = enm->value(i); 4563 if (used_values.find(enum_value->number()) != used_values.end()) { 4564 string error = 4565 "\"" + enum_value->full_name() + 4566 "\" uses the same enum value as \"" + 4567 used_values[enum_value->number()] + "\". If this is intended, set " 4568 "'option allow_alias = true;' to the enum definition."; 4569 if (!enm->options().allow_alias()) { 4570 // Generate error if duplicated enum values are explicitly disallowed. 4571 AddError(enm->full_name(), proto, 4572 DescriptorPool::ErrorCollector::NUMBER, 4573 error); 4574 } else { 4575 // Generate warning if duplicated values are found but the option 4576 // isn't set. 4577 GOOGLE_LOG(ERROR) << error; 4578 } 4579 } else { 4580 used_values[enum_value->number()] = enum_value->full_name(); 4581 } 4582 } 4583 } 4584 } 4585 4586 void DescriptorBuilder::ValidateEnumValueOptions( 4587 EnumValueDescriptor* /* enum_value */, 4588 const EnumValueDescriptorProto& /* proto */) { 4589 // Nothing to do so far. 4590 } 4591 void DescriptorBuilder::ValidateServiceOptions(ServiceDescriptor* service, 4592 const ServiceDescriptorProto& proto) { 4593 if (IsLite(service->file()) && 4594 (service->file()->options().cc_generic_services() || 4595 service->file()->options().java_generic_services())) { 4596 AddError(service->full_name(), proto, 4597 DescriptorPool::ErrorCollector::NAME, 4598 "Files with optimize_for = LITE_RUNTIME cannot define services " 4599 "unless you set both options cc_generic_services and " 4600 "java_generic_sevices to false."); 4601 } 4602 4603 VALIDATE_OPTIONS_FROM_ARRAY(service, method, Method); 4604 } 4605 4606 void DescriptorBuilder::ValidateMethodOptions(MethodDescriptor* /* method */, 4607 const MethodDescriptorProto& /* proto */) { 4608 // Nothing to do so far. 4609 } 4610 4611 void DescriptorBuilder::ValidateMapKey(FieldDescriptor* field, 4612 const FieldDescriptorProto& proto) { 4613 if (!field->is_repeated()) { 4614 AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, 4615 "map type is only allowed for repeated fields."); 4616 return; 4617 } 4618 4619 if (field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) { 4620 AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, 4621 "map type is only allowed for fields with a message type."); 4622 return; 4623 } 4624 4625 const Descriptor* item_type = field->message_type(); 4626 if (item_type == NULL) { 4627 AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, 4628 "Could not find field type."); 4629 return; 4630 } 4631 4632 // Find the field in item_type named by "experimental_map_key" 4633 const string& key_name = field->options().experimental_map_key(); 4634 const Symbol key_symbol = LookupSymbol( 4635 key_name, 4636 // We append ".key_name" to the containing type's name since 4637 // LookupSymbol() searches for peers of the supplied name, not 4638 // children of the supplied name. 4639 item_type->full_name() + "." + key_name); 4640 4641 if (key_symbol.IsNull() || key_symbol.field_descriptor->is_extension()) { 4642 AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, 4643 "Could not find field named \"" + key_name + "\" in type \"" + 4644 item_type->full_name() + "\"."); 4645 return; 4646 } 4647 const FieldDescriptor* key_field = key_symbol.field_descriptor; 4648 4649 if (key_field->is_repeated()) { 4650 AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, 4651 "map_key must not name a repeated field."); 4652 return; 4653 } 4654 4655 if (key_field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { 4656 AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, 4657 "map key must name a scalar or string field."); 4658 return; 4659 } 4660 4661 field->experimental_map_key_ = key_field; 4662 } 4663 4664 4665 #undef VALIDATE_OPTIONS_FROM_ARRAY 4666 4667 // ------------------------------------------------------------------- 4668 4669 DescriptorBuilder::OptionInterpreter::OptionInterpreter( 4670 DescriptorBuilder* builder) : builder_(builder) { 4671 GOOGLE_CHECK(builder_); 4672 } 4673 4674 DescriptorBuilder::OptionInterpreter::~OptionInterpreter() { 4675 } 4676 4677 bool DescriptorBuilder::OptionInterpreter::InterpretOptions( 4678 OptionsToInterpret* options_to_interpret) { 4679 // Note that these may be in different pools, so we can't use the same 4680 // descriptor and reflection objects on both. 4681 Message* options = options_to_interpret->options; 4682 const Message* original_options = options_to_interpret->original_options; 4683 4684 bool failed = false; 4685 options_to_interpret_ = options_to_interpret; 4686 4687 // Find the uninterpreted_option field in the mutable copy of the options 4688 // and clear them, since we're about to interpret them. 4689 const FieldDescriptor* uninterpreted_options_field = 4690 options->GetDescriptor()->FindFieldByName("uninterpreted_option"); 4691 GOOGLE_CHECK(uninterpreted_options_field != NULL) 4692 << "No field named \"uninterpreted_option\" in the Options proto."; 4693 options->GetReflection()->ClearField(options, uninterpreted_options_field); 4694 4695 // Find the uninterpreted_option field in the original options. 4696 const FieldDescriptor* original_uninterpreted_options_field = 4697 original_options->GetDescriptor()-> 4698 FindFieldByName("uninterpreted_option"); 4699 GOOGLE_CHECK(original_uninterpreted_options_field != NULL) 4700 << "No field named \"uninterpreted_option\" in the Options proto."; 4701 4702 const int num_uninterpreted_options = original_options->GetReflection()-> 4703 FieldSize(*original_options, original_uninterpreted_options_field); 4704 for (int i = 0; i < num_uninterpreted_options; ++i) { 4705 uninterpreted_option_ = down_cast<const UninterpretedOption*>( 4706 &original_options->GetReflection()->GetRepeatedMessage( 4707 *original_options, original_uninterpreted_options_field, i)); 4708 if (!InterpretSingleOption(options)) { 4709 // Error already added by InterpretSingleOption(). 4710 failed = true; 4711 break; 4712 } 4713 } 4714 // Reset these, so we don't have any dangling pointers. 4715 uninterpreted_option_ = NULL; 4716 options_to_interpret_ = NULL; 4717 4718 if (!failed) { 4719 // InterpretSingleOption() added the interpreted options in the 4720 // UnknownFieldSet, in case the option isn't yet known to us. Now we 4721 // serialize the options message and deserialize it back. That way, any 4722 // option fields that we do happen to know about will get moved from the 4723 // UnknownFieldSet into the real fields, and thus be available right away. 4724 // If they are not known, that's OK too. They will get reparsed into the 4725 // UnknownFieldSet and wait there until the message is parsed by something 4726 // that does know about the options. 4727 string buf; 4728 options->AppendToString(&buf); 4729 GOOGLE_CHECK(options->ParseFromString(buf)) 4730 << "Protocol message serialized itself in invalid fashion."; 4731 } 4732 4733 return !failed; 4734 } 4735 4736 bool DescriptorBuilder::OptionInterpreter::InterpretSingleOption( 4737 Message* options) { 4738 // First do some basic validation. 4739 if (uninterpreted_option_->name_size() == 0) { 4740 // This should never happen unless the parser has gone seriously awry or 4741 // someone has manually created the uninterpreted option badly. 4742 return AddNameError("Option must have a name."); 4743 } 4744 if (uninterpreted_option_->name(0).name_part() == "uninterpreted_option") { 4745 return AddNameError("Option must not use reserved name " 4746 "\"uninterpreted_option\"."); 4747 } 4748 4749 const Descriptor* options_descriptor = NULL; 4750 // Get the options message's descriptor from the builder's pool, so that we 4751 // get the version that knows about any extension options declared in the 4752 // file we're currently building. The descriptor should be there as long as 4753 // the file we're building imported "google/protobuf/descriptors.proto". 4754 4755 // Note that we use DescriptorBuilder::FindSymbolNotEnforcingDeps(), not 4756 // DescriptorPool::FindMessageTypeByName() because we're already holding the 4757 // pool's mutex, and the latter method locks it again. We don't use 4758 // FindSymbol() because files that use custom options only need to depend on 4759 // the file that defines the option, not descriptor.proto itself. 4760 Symbol symbol = builder_->FindSymbolNotEnforcingDeps( 4761 options->GetDescriptor()->full_name()); 4762 if (!symbol.IsNull() && symbol.type == Symbol::MESSAGE) { 4763 options_descriptor = symbol.descriptor; 4764 } else { 4765 // The options message's descriptor was not in the builder's pool, so use 4766 // the standard version from the generated pool. We're not holding the 4767 // generated pool's mutex, so we can search it the straightforward way. 4768 options_descriptor = options->GetDescriptor(); 4769 } 4770 GOOGLE_CHECK(options_descriptor); 4771 4772 // We iterate over the name parts to drill into the submessages until we find 4773 // the leaf field for the option. As we drill down we remember the current 4774 // submessage's descriptor in |descriptor| and the next field in that 4775 // submessage in |field|. We also track the fields we're drilling down 4776 // through in |intermediate_fields|. As we go, we reconstruct the full option 4777 // name in |debug_msg_name|, for use in error messages. 4778 const Descriptor* descriptor = options_descriptor; 4779 const FieldDescriptor* field = NULL; 4780 vector<const FieldDescriptor*> intermediate_fields; 4781 string debug_msg_name = ""; 4782 4783 for (int i = 0; i < uninterpreted_option_->name_size(); ++i) { 4784 const string& name_part = uninterpreted_option_->name(i).name_part(); 4785 if (debug_msg_name.size() > 0) { 4786 debug_msg_name += "."; 4787 } 4788 if (uninterpreted_option_->name(i).is_extension()) { 4789 debug_msg_name += "(" + name_part + ")"; 4790 // Search for the extension's descriptor as an extension in the builder's 4791 // pool. Note that we use DescriptorBuilder::LookupSymbol(), not 4792 // DescriptorPool::FindExtensionByName(), for two reasons: 1) It allows 4793 // relative lookups, and 2) because we're already holding the pool's 4794 // mutex, and the latter method locks it again. 4795 symbol = builder_->LookupSymbol(name_part, 4796 options_to_interpret_->name_scope); 4797 if (!symbol.IsNull() && symbol.type == Symbol::FIELD) { 4798 field = symbol.field_descriptor; 4799 } 4800 // If we don't find the field then the field's descriptor was not in the 4801 // builder's pool, but there's no point in looking in the generated 4802 // pool. We require that you import the file that defines any extensions 4803 // you use, so they must be present in the builder's pool. 4804 } else { 4805 debug_msg_name += name_part; 4806 // Search for the field's descriptor as a regular field. 4807 field = descriptor->FindFieldByName(name_part); 4808 } 4809 4810 if (field == NULL) { 4811 if (get_allow_unknown(builder_->pool_)) { 4812 // We can't find the option, but AllowUnknownDependencies() is enabled, 4813 // so we will just leave it as uninterpreted. 4814 AddWithoutInterpreting(*uninterpreted_option_, options); 4815 return true; 4816 } else if (!(builder_->undefine_resolved_name_).empty()) { 4817 // Option is resolved to a name which is not defined. 4818 return AddNameError( 4819 "Option \"" + debug_msg_name + "\" is resolved to \"(" + 4820 builder_->undefine_resolved_name_ + 4821 ")\", which is not defined. The innermost scope is searched first " 4822 "in name resolution. Consider using a leading '.'(i.e., \"(." + 4823 debug_msg_name.substr(1) + 4824 "\") to start from the outermost scope."); 4825 } else { 4826 return AddNameError("Option \"" + debug_msg_name + "\" unknown."); 4827 } 4828 } else if (field->containing_type() != descriptor) { 4829 if (get_is_placeholder(field->containing_type())) { 4830 // The field is an extension of a placeholder type, so we can't 4831 // reliably verify whether it is a valid extension to use here (e.g. 4832 // we don't know if it is an extension of the correct *Options message, 4833 // or if it has a valid field number, etc.). Just leave it as 4834 // uninterpreted instead. 4835 AddWithoutInterpreting(*uninterpreted_option_, options); 4836 return true; 4837 } else { 4838 // This can only happen if, due to some insane misconfiguration of the 4839 // pools, we find the options message in one pool but the field in 4840 // another. This would probably imply a hefty bug somewhere. 4841 return AddNameError("Option field \"" + debug_msg_name + 4842 "\" is not a field or extension of message \"" + 4843 descriptor->name() + "\"."); 4844 } 4845 } else if (i < uninterpreted_option_->name_size() - 1) { 4846 if (field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) { 4847 return AddNameError("Option \"" + debug_msg_name + 4848 "\" is an atomic type, not a message."); 4849 } else if (field->is_repeated()) { 4850 return AddNameError("Option field \"" + debug_msg_name + 4851 "\" is a repeated message. Repeated message " 4852 "options must be initialized using an " 4853 "aggregate value."); 4854 } else { 4855 // Drill down into the submessage. 4856 intermediate_fields.push_back(field); 4857 descriptor = field->message_type(); 4858 } 4859 } 4860 } 4861 4862 // We've found the leaf field. Now we use UnknownFieldSets to set its value 4863 // on the options message. We do so because the message may not yet know 4864 // about its extension fields, so we may not be able to set the fields 4865 // directly. But the UnknownFieldSets will serialize to the same wire-format 4866 // message, so reading that message back in once the extension fields are 4867 // known will populate them correctly. 4868 4869 // First see if the option is already set. 4870 if (!field->is_repeated() && !ExamineIfOptionIsSet( 4871 intermediate_fields.begin(), 4872 intermediate_fields.end(), 4873 field, debug_msg_name, 4874 options->GetReflection()->GetUnknownFields(*options))) { 4875 return false; // ExamineIfOptionIsSet() already added the error. 4876 } 4877 4878 4879 // First set the value on the UnknownFieldSet corresponding to the 4880 // innermost message. 4881 scoped_ptr<UnknownFieldSet> unknown_fields(new UnknownFieldSet()); 4882 if (!SetOptionValue(field, unknown_fields.get())) { 4883 return false; // SetOptionValue() already added the error. 4884 } 4885 4886 // Now wrap the UnknownFieldSet with UnknownFieldSets corresponding to all 4887 // the intermediate messages. 4888 for (vector<const FieldDescriptor*>::reverse_iterator iter = 4889 intermediate_fields.rbegin(); 4890 iter != intermediate_fields.rend(); ++iter) { 4891 scoped_ptr<UnknownFieldSet> parent_unknown_fields(new UnknownFieldSet()); 4892 switch ((*iter)->type()) { 4893 case FieldDescriptor::TYPE_MESSAGE: { 4894 io::StringOutputStream outstr( 4895 parent_unknown_fields->AddLengthDelimited((*iter)->number())); 4896 io::CodedOutputStream out(&outstr); 4897 internal::WireFormat::SerializeUnknownFields(*unknown_fields, &out); 4898 GOOGLE_CHECK(!out.HadError()) 4899 << "Unexpected failure while serializing option submessage " 4900 << debug_msg_name << "\"."; 4901 break; 4902 } 4903 4904 case FieldDescriptor::TYPE_GROUP: { 4905 parent_unknown_fields->AddGroup((*iter)->number()) 4906 ->MergeFrom(*unknown_fields); 4907 break; 4908 } 4909 4910 default: 4911 GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: " 4912 << (*iter)->type(); 4913 return false; 4914 } 4915 unknown_fields.reset(parent_unknown_fields.release()); 4916 } 4917 4918 // Now merge the UnknownFieldSet corresponding to the top-level message into 4919 // the options message. 4920 options->GetReflection()->MutableUnknownFields(options)->MergeFrom( 4921 *unknown_fields); 4922 4923 return true; 4924 } 4925 4926 void DescriptorBuilder::OptionInterpreter::AddWithoutInterpreting( 4927 const UninterpretedOption& uninterpreted_option, Message* options) { 4928 const FieldDescriptor* field = 4929 options->GetDescriptor()->FindFieldByName("uninterpreted_option"); 4930 GOOGLE_CHECK(field != NULL); 4931 4932 options->GetReflection()->AddMessage(options, field) 4933 ->CopyFrom(uninterpreted_option); 4934 } 4935 4936 bool DescriptorBuilder::OptionInterpreter::ExamineIfOptionIsSet( 4937 vector<const FieldDescriptor*>::const_iterator intermediate_fields_iter, 4938 vector<const FieldDescriptor*>::const_iterator intermediate_fields_end, 4939 const FieldDescriptor* innermost_field, const string& debug_msg_name, 4940 const UnknownFieldSet& unknown_fields) { 4941 // We do linear searches of the UnknownFieldSet and its sub-groups. This 4942 // should be fine since it's unlikely that any one options structure will 4943 // contain more than a handful of options. 4944 4945 if (intermediate_fields_iter == intermediate_fields_end) { 4946 // We're at the innermost submessage. 4947 for (int i = 0; i < unknown_fields.field_count(); i++) { 4948 if (unknown_fields.field(i).number() == innermost_field->number()) { 4949 return AddNameError("Option \"" + debug_msg_name + 4950 "\" was already set."); 4951 } 4952 } 4953 return true; 4954 } 4955 4956 for (int i = 0; i < unknown_fields.field_count(); i++) { 4957 if (unknown_fields.field(i).number() == 4958 (*intermediate_fields_iter)->number()) { 4959 const UnknownField* unknown_field = &unknown_fields.field(i); 4960 FieldDescriptor::Type type = (*intermediate_fields_iter)->type(); 4961 // Recurse into the next submessage. 4962 switch (type) { 4963 case FieldDescriptor::TYPE_MESSAGE: 4964 if (unknown_field->type() == UnknownField::TYPE_LENGTH_DELIMITED) { 4965 UnknownFieldSet intermediate_unknown_fields; 4966 if (intermediate_unknown_fields.ParseFromString( 4967 unknown_field->length_delimited()) && 4968 !ExamineIfOptionIsSet(intermediate_fields_iter + 1, 4969 intermediate_fields_end, 4970 innermost_field, debug_msg_name, 4971 intermediate_unknown_fields)) { 4972 return false; // Error already added. 4973 } 4974 } 4975 break; 4976 4977 case FieldDescriptor::TYPE_GROUP: 4978 if (unknown_field->type() == UnknownField::TYPE_GROUP) { 4979 if (!ExamineIfOptionIsSet(intermediate_fields_iter + 1, 4980 intermediate_fields_end, 4981 innermost_field, debug_msg_name, 4982 unknown_field->group())) { 4983 return false; // Error already added. 4984 } 4985 } 4986 break; 4987 4988 default: 4989 GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_MESSAGE: " << type; 4990 return false; 4991 } 4992 } 4993 } 4994 return true; 4995 } 4996 4997 bool DescriptorBuilder::OptionInterpreter::SetOptionValue( 4998 const FieldDescriptor* option_field, 4999 UnknownFieldSet* unknown_fields) { 5000 // We switch on the CppType to validate. 5001 switch (option_field->cpp_type()) { 5002 5003 case FieldDescriptor::CPPTYPE_INT32: 5004 if (uninterpreted_option_->has_positive_int_value()) { 5005 if (uninterpreted_option_->positive_int_value() > 5006 static_cast<uint64>(kint32max)) { 5007 return AddValueError("Value out of range for int32 option \"" + 5008 option_field->full_name() + "\"."); 5009 } else { 5010 SetInt32(option_field->number(), 5011 uninterpreted_option_->positive_int_value(), 5012 option_field->type(), unknown_fields); 5013 } 5014 } else if (uninterpreted_option_->has_negative_int_value()) { 5015 if (uninterpreted_option_->negative_int_value() < 5016 static_cast<int64>(kint32min)) { 5017 return AddValueError("Value out of range for int32 option \"" + 5018 option_field->full_name() + "\"."); 5019 } else { 5020 SetInt32(option_field->number(), 5021 uninterpreted_option_->negative_int_value(), 5022 option_field->type(), unknown_fields); 5023 } 5024 } else { 5025 return AddValueError("Value must be integer for int32 option \"" + 5026 option_field->full_name() + "\"."); 5027 } 5028 break; 5029 5030 case FieldDescriptor::CPPTYPE_INT64: 5031 if (uninterpreted_option_->has_positive_int_value()) { 5032 if (uninterpreted_option_->positive_int_value() > 5033 static_cast<uint64>(kint64max)) { 5034 return AddValueError("Value out of range for int64 option \"" + 5035 option_field->full_name() + "\"."); 5036 } else { 5037 SetInt64(option_field->number(), 5038 uninterpreted_option_->positive_int_value(), 5039 option_field->type(), unknown_fields); 5040 } 5041 } else if (uninterpreted_option_->has_negative_int_value()) { 5042 SetInt64(option_field->number(), 5043 uninterpreted_option_->negative_int_value(), 5044 option_field->type(), unknown_fields); 5045 } else { 5046 return AddValueError("Value must be integer for int64 option \"" + 5047 option_field->full_name() + "\"."); 5048 } 5049 break; 5050 5051 case FieldDescriptor::CPPTYPE_UINT32: 5052 if (uninterpreted_option_->has_positive_int_value()) { 5053 if (uninterpreted_option_->positive_int_value() > kuint32max) { 5054 return AddValueError("Value out of range for uint32 option \"" + 5055 option_field->name() + "\"."); 5056 } else { 5057 SetUInt32(option_field->number(), 5058 uninterpreted_option_->positive_int_value(), 5059 option_field->type(), unknown_fields); 5060 } 5061 } else { 5062 return AddValueError("Value must be non-negative integer for uint32 " 5063 "option \"" + option_field->full_name() + "\"."); 5064 } 5065 break; 5066 5067 case FieldDescriptor::CPPTYPE_UINT64: 5068 if (uninterpreted_option_->has_positive_int_value()) { 5069 SetUInt64(option_field->number(), 5070 uninterpreted_option_->positive_int_value(), 5071 option_field->type(), unknown_fields); 5072 } else { 5073 return AddValueError("Value must be non-negative integer for uint64 " 5074 "option \"" + option_field->full_name() + "\"."); 5075 } 5076 break; 5077 5078 case FieldDescriptor::CPPTYPE_FLOAT: { 5079 float value; 5080 if (uninterpreted_option_->has_double_value()) { 5081 value = uninterpreted_option_->double_value(); 5082 } else if (uninterpreted_option_->has_positive_int_value()) { 5083 value = uninterpreted_option_->positive_int_value(); 5084 } else if (uninterpreted_option_->has_negative_int_value()) { 5085 value = uninterpreted_option_->negative_int_value(); 5086 } else { 5087 return AddValueError("Value must be number for float option \"" + 5088 option_field->full_name() + "\"."); 5089 } 5090 unknown_fields->AddFixed32(option_field->number(), 5091 google::protobuf::internal::WireFormatLite::EncodeFloat(value)); 5092 break; 5093 } 5094 5095 case FieldDescriptor::CPPTYPE_DOUBLE: { 5096 double value; 5097 if (uninterpreted_option_->has_double_value()) { 5098 value = uninterpreted_option_->double_value(); 5099 } else if (uninterpreted_option_->has_positive_int_value()) { 5100 value = uninterpreted_option_->positive_int_value(); 5101 } else if (uninterpreted_option_->has_negative_int_value()) { 5102 value = uninterpreted_option_->negative_int_value(); 5103 } else { 5104 return AddValueError("Value must be number for double option \"" + 5105 option_field->full_name() + "\"."); 5106 } 5107 unknown_fields->AddFixed64(option_field->number(), 5108 google::protobuf::internal::WireFormatLite::EncodeDouble(value)); 5109 break; 5110 } 5111 5112 case FieldDescriptor::CPPTYPE_BOOL: 5113 uint64 value; 5114 if (!uninterpreted_option_->has_identifier_value()) { 5115 return AddValueError("Value must be identifier for boolean option " 5116 "\"" + option_field->full_name() + "\"."); 5117 } 5118 if (uninterpreted_option_->identifier_value() == "true") { 5119 value = 1; 5120 } else if (uninterpreted_option_->identifier_value() == "false") { 5121 value = 0; 5122 } else { 5123 return AddValueError("Value must be \"true\" or \"false\" for boolean " 5124 "option \"" + option_field->full_name() + "\"."); 5125 } 5126 unknown_fields->AddVarint(option_field->number(), value); 5127 break; 5128 5129 case FieldDescriptor::CPPTYPE_ENUM: { 5130 if (!uninterpreted_option_->has_identifier_value()) { 5131 return AddValueError("Value must be identifier for enum-valued option " 5132 "\"" + option_field->full_name() + "\"."); 5133 } 5134 const EnumDescriptor* enum_type = option_field->enum_type(); 5135 const string& value_name = uninterpreted_option_->identifier_value(); 5136 const EnumValueDescriptor* enum_value = NULL; 5137 5138 if (enum_type->file()->pool() != DescriptorPool::generated_pool()) { 5139 // Note that the enum value's fully-qualified name is a sibling of the 5140 // enum's name, not a child of it. 5141 string fully_qualified_name = enum_type->full_name(); 5142 fully_qualified_name.resize(fully_qualified_name.size() - 5143 enum_type->name().size()); 5144 fully_qualified_name += value_name; 5145 5146 // Search for the enum value's descriptor in the builder's pool. Note 5147 // that we use DescriptorBuilder::FindSymbolNotEnforcingDeps(), not 5148 // DescriptorPool::FindEnumValueByName() because we're already holding 5149 // the pool's mutex, and the latter method locks it again. 5150 Symbol symbol = 5151 builder_->FindSymbolNotEnforcingDeps(fully_qualified_name); 5152 if (!symbol.IsNull() && symbol.type == Symbol::ENUM_VALUE) { 5153 if (symbol.enum_value_descriptor->type() != enum_type) { 5154 return AddValueError("Enum type \"" + enum_type->full_name() + 5155 "\" has no value named \"" + value_name + "\" for option \"" + 5156 option_field->full_name() + 5157 "\". This appears to be a value from a sibling type."); 5158 } else { 5159 enum_value = symbol.enum_value_descriptor; 5160 } 5161 } 5162 } else { 5163 // The enum type is in the generated pool, so we can search for the 5164 // value there. 5165 enum_value = enum_type->FindValueByName(value_name); 5166 } 5167 5168 if (enum_value == NULL) { 5169 return AddValueError("Enum type \"" + 5170 option_field->enum_type()->full_name() + 5171 "\" has no value named \"" + value_name + "\" for " 5172 "option \"" + option_field->full_name() + "\"."); 5173 } else { 5174 // Sign-extension is not a problem, since we cast directly from int32 to 5175 // uint64, without first going through uint32. 5176 unknown_fields->AddVarint(option_field->number(), 5177 static_cast<uint64>(static_cast<int64>(enum_value->number()))); 5178 } 5179 break; 5180 } 5181 5182 case FieldDescriptor::CPPTYPE_STRING: 5183 if (!uninterpreted_option_->has_string_value()) { 5184 return AddValueError("Value must be quoted string for string option " 5185 "\"" + option_field->full_name() + "\"."); 5186 } 5187 // The string has already been unquoted and unescaped by the parser. 5188 unknown_fields->AddLengthDelimited(option_field->number(), 5189 uninterpreted_option_->string_value()); 5190 break; 5191 5192 case FieldDescriptor::CPPTYPE_MESSAGE: 5193 if (!SetAggregateOption(option_field, unknown_fields)) { 5194 return false; 5195 } 5196 break; 5197 } 5198 5199 return true; 5200 } 5201 5202 class DescriptorBuilder::OptionInterpreter::AggregateOptionFinder 5203 : public TextFormat::Finder { 5204 public: 5205 DescriptorBuilder* builder_; 5206 5207 virtual const FieldDescriptor* FindExtension( 5208 Message* message, const string& name) const { 5209 assert_mutex_held(builder_->pool_); 5210 const Descriptor* descriptor = message->GetDescriptor(); 5211 Symbol result = builder_->LookupSymbolNoPlaceholder( 5212 name, descriptor->full_name()); 5213 if (result.type == Symbol::FIELD && 5214 result.field_descriptor->is_extension()) { 5215 return result.field_descriptor; 5216 } else if (result.type == Symbol::MESSAGE && 5217 descriptor->options().message_set_wire_format()) { 5218 const Descriptor* foreign_type = result.descriptor; 5219 // The text format allows MessageSet items to be specified using 5220 // the type name, rather than the extension identifier. If the symbol 5221 // lookup returned a Message, and the enclosing Message has 5222 // message_set_wire_format = true, then return the message set 5223 // extension, if one exists. 5224 for (int i = 0; i < foreign_type->extension_count(); i++) { 5225 const FieldDescriptor* extension = foreign_type->extension(i); 5226 if (extension->containing_type() == descriptor && 5227 extension->type() == FieldDescriptor::TYPE_MESSAGE && 5228 extension->is_optional() && 5229 extension->message_type() == foreign_type) { 5230 // Found it. 5231 return extension; 5232 } 5233 } 5234 } 5235 return NULL; 5236 } 5237 }; 5238 5239 // A custom error collector to record any text-format parsing errors 5240 namespace { 5241 class AggregateErrorCollector : public io::ErrorCollector { 5242 public: 5243 string error_; 5244 5245 virtual void AddError(int /* line */, int /* column */, 5246 const string& message) { 5247 if (!error_.empty()) { 5248 error_ += "; "; 5249 } 5250 error_ += message; 5251 } 5252 5253 virtual void AddWarning(int /* line */, int /* column */, 5254 const string& /* message */) { 5255 // Ignore warnings 5256 } 5257 }; 5258 } 5259 5260 // We construct a dynamic message of the type corresponding to 5261 // option_field, parse the supplied text-format string into this 5262 // message, and serialize the resulting message to produce the value. 5263 bool DescriptorBuilder::OptionInterpreter::SetAggregateOption( 5264 const FieldDescriptor* option_field, 5265 UnknownFieldSet* unknown_fields) { 5266 if (!uninterpreted_option_->has_aggregate_value()) { 5267 return AddValueError("Option \"" + option_field->full_name() + 5268 "\" is a message. To set the entire message, use " 5269 "syntax like \"" + option_field->name() + 5270 " = { <proto text format> }\". " 5271 "To set fields within it, use " 5272 "syntax like \"" + option_field->name() + 5273 ".foo = value\"."); 5274 } 5275 5276 const Descriptor* type = option_field->message_type(); 5277 scoped_ptr<Message> dynamic(dynamic_factory_.GetPrototype(type)->New()); 5278 GOOGLE_CHECK(dynamic.get() != NULL) 5279 << "Could not create an instance of " << option_field->DebugString(); 5280 5281 AggregateErrorCollector collector; 5282 AggregateOptionFinder finder; 5283 finder.builder_ = builder_; 5284 TextFormat::Parser parser; 5285 parser.RecordErrorsTo(&collector); 5286 parser.SetFinder(&finder); 5287 if (!parser.ParseFromString(uninterpreted_option_->aggregate_value(), 5288 dynamic.get())) { 5289 AddValueError("Error while parsing option value for \"" + 5290 option_field->name() + "\": " + collector.error_); 5291 return false; 5292 } else { 5293 string serial; 5294 dynamic->SerializeToString(&serial); // Never fails 5295 if (option_field->type() == FieldDescriptor::TYPE_MESSAGE) { 5296 unknown_fields->AddLengthDelimited(option_field->number(), serial); 5297 } else { 5298 GOOGLE_CHECK_EQ(option_field->type(), FieldDescriptor::TYPE_GROUP); 5299 UnknownFieldSet* group = unknown_fields->AddGroup(option_field->number()); 5300 group->ParseFromString(serial); 5301 } 5302 return true; 5303 } 5304 } 5305 5306 void DescriptorBuilder::OptionInterpreter::SetInt32(int number, int32 value, 5307 FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) { 5308 switch (type) { 5309 case FieldDescriptor::TYPE_INT32: 5310 unknown_fields->AddVarint(number, 5311 static_cast<uint64>(static_cast<int64>(value))); 5312 break; 5313 5314 case FieldDescriptor::TYPE_SFIXED32: 5315 unknown_fields->AddFixed32(number, static_cast<uint32>(value)); 5316 break; 5317 5318 case FieldDescriptor::TYPE_SINT32: 5319 unknown_fields->AddVarint(number, 5320 google::protobuf::internal::WireFormatLite::ZigZagEncode32(value)); 5321 break; 5322 5323 default: 5324 GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT32: " << type; 5325 break; 5326 } 5327 } 5328 5329 void DescriptorBuilder::OptionInterpreter::SetInt64(int number, int64 value, 5330 FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) { 5331 switch (type) { 5332 case FieldDescriptor::TYPE_INT64: 5333 unknown_fields->AddVarint(number, static_cast<uint64>(value)); 5334 break; 5335 5336 case FieldDescriptor::TYPE_SFIXED64: 5337 unknown_fields->AddFixed64(number, static_cast<uint64>(value)); 5338 break; 5339 5340 case FieldDescriptor::TYPE_SINT64: 5341 unknown_fields->AddVarint(number, 5342 google::protobuf::internal::WireFormatLite::ZigZagEncode64(value)); 5343 break; 5344 5345 default: 5346 GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_INT64: " << type; 5347 break; 5348 } 5349 } 5350 5351 void DescriptorBuilder::OptionInterpreter::SetUInt32(int number, uint32 value, 5352 FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) { 5353 switch (type) { 5354 case FieldDescriptor::TYPE_UINT32: 5355 unknown_fields->AddVarint(number, static_cast<uint64>(value)); 5356 break; 5357 5358 case FieldDescriptor::TYPE_FIXED32: 5359 unknown_fields->AddFixed32(number, static_cast<uint32>(value)); 5360 break; 5361 5362 default: 5363 GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT32: " << type; 5364 break; 5365 } 5366 } 5367 5368 void DescriptorBuilder::OptionInterpreter::SetUInt64(int number, uint64 value, 5369 FieldDescriptor::Type type, UnknownFieldSet* unknown_fields) { 5370 switch (type) { 5371 case FieldDescriptor::TYPE_UINT64: 5372 unknown_fields->AddVarint(number, value); 5373 break; 5374 5375 case FieldDescriptor::TYPE_FIXED64: 5376 unknown_fields->AddFixed64(number, value); 5377 break; 5378 5379 default: 5380 GOOGLE_LOG(FATAL) << "Invalid wire type for CPPTYPE_UINT64: " << type; 5381 break; 5382 } 5383 } 5384 5385 void DescriptorBuilder::LogUnusedDependency(const FileDescriptor* result) { 5386 5387 if (!unused_dependency_.empty()) { 5388 std::set<string> annotation_extensions; 5389 annotation_extensions.insert("google.protobuf.MessageOptions"); 5390 annotation_extensions.insert("google.protobuf.FileOptions"); 5391 annotation_extensions.insert("google.protobuf.FieldOptions"); 5392 annotation_extensions.insert("google.protobuf.EnumOptions"); 5393 annotation_extensions.insert("google.protobuf.EnumValueOptions"); 5394 annotation_extensions.insert("google.protobuf.ServiceOptions"); 5395 annotation_extensions.insert("google.protobuf.MethodOptions"); 5396 annotation_extensions.insert("google.protobuf.StreamOptions"); 5397 for (set<const FileDescriptor*>::const_iterator 5398 it = unused_dependency_.begin(); 5399 it != unused_dependency_.end(); ++it) { 5400 // Do not log warnings for proto files which extend annotations. 5401 int i; 5402 for (i = 0 ; i < (*it)->extension_count(); ++i) { 5403 if (annotation_extensions.find( 5404 (*it)->extension(i)->containing_type()->full_name()) 5405 != annotation_extensions.end()) { 5406 break; 5407 } 5408 } 5409 // Log warnings for unused imported files. 5410 if (i == (*it)->extension_count()) { 5411 GOOGLE_LOG(WARNING) << "Warning: Unused import: \"" << result->name() 5412 << "\" imports \"" << (*it)->name() 5413 << "\" which is not used."; 5414 } 5415 } 5416 } 5417 } 5418 5419 } // namespace protobuf 5420 } // namespace google 5421