1 /* 2 * Copyright 2004 The WebRTC Project Authors. All rights reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #if defined(WEBRTC_POSIX) 12 #include <sys/types.h> 13 #include <sys/socket.h> 14 #include <netinet/in.h> 15 #ifdef OPENBSD 16 #include <netinet/in_systm.h> 17 #endif 18 #ifndef __native_client__ 19 #include <netinet/ip.h> 20 #endif 21 #include <arpa/inet.h> 22 #include <netdb.h> 23 #include <unistd.h> 24 #endif 25 26 #include <stdio.h> 27 28 #include "webrtc/base/ipaddress.h" 29 #include "webrtc/base/byteorder.h" 30 #include "webrtc/base/checks.h" 31 #include "webrtc/base/logging.h" 32 #include "webrtc/base/nethelpers.h" 33 #include "webrtc/base/stringutils.h" 34 #include "webrtc/base/win32.h" 35 36 namespace rtc { 37 38 // Prefixes used for categorizing IPv6 addresses. 39 static const in6_addr kV4MappedPrefix = {{{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 40 0xFF, 0xFF, 0}}}; 41 static const in6_addr k6To4Prefix = {{{0x20, 0x02, 0}}}; 42 static const in6_addr kTeredoPrefix = {{{0x20, 0x01, 0x00, 0x00}}}; 43 static const in6_addr kV4CompatibilityPrefix = {{{0}}}; 44 static const in6_addr k6BonePrefix = {{{0x3f, 0xfe, 0}}}; 45 46 static bool IsPrivateV4(uint32_t ip); 47 static in_addr ExtractMappedAddress(const in6_addr& addr); 48 49 uint32_t IPAddress::v4AddressAsHostOrderInteger() const { 50 if (family_ == AF_INET) { 51 return NetworkToHost32(u_.ip4.s_addr); 52 } else { 53 return 0; 54 } 55 } 56 57 bool IPAddress::IsNil() const { 58 return IPIsUnspec(*this); 59 } 60 61 size_t IPAddress::Size() const { 62 switch (family_) { 63 case AF_INET: 64 return sizeof(in_addr); 65 case AF_INET6: 66 return sizeof(in6_addr); 67 } 68 return 0; 69 } 70 71 72 bool IPAddress::operator==(const IPAddress &other) const { 73 if (family_ != other.family_) { 74 return false; 75 } 76 if (family_ == AF_INET) { 77 return memcmp(&u_.ip4, &other.u_.ip4, sizeof(u_.ip4)) == 0; 78 } 79 if (family_ == AF_INET6) { 80 return memcmp(&u_.ip6, &other.u_.ip6, sizeof(u_.ip6)) == 0; 81 } 82 return family_ == AF_UNSPEC; 83 } 84 85 bool IPAddress::operator!=(const IPAddress &other) const { 86 return !((*this) == other); 87 } 88 89 bool IPAddress::operator >(const IPAddress &other) const { 90 return (*this) != other && !((*this) < other); 91 } 92 93 bool IPAddress::operator <(const IPAddress &other) const { 94 // IPv4 is 'less than' IPv6 95 if (family_ != other.family_) { 96 if (family_ == AF_UNSPEC) { 97 return true; 98 } 99 if (family_ == AF_INET && other.family_ == AF_INET6) { 100 return true; 101 } 102 return false; 103 } 104 // Comparing addresses of the same family. 105 switch (family_) { 106 case AF_INET: { 107 return NetworkToHost32(u_.ip4.s_addr) < 108 NetworkToHost32(other.u_.ip4.s_addr); 109 } 110 case AF_INET6: { 111 return memcmp(&u_.ip6.s6_addr, &other.u_.ip6.s6_addr, 16) < 0; 112 } 113 } 114 // Catches AF_UNSPEC and invalid addresses. 115 return false; 116 } 117 118 std::ostream& operator<<(std::ostream& os, const IPAddress& ip) { 119 os << ip.ToString(); 120 return os; 121 } 122 123 in6_addr IPAddress::ipv6_address() const { 124 return u_.ip6; 125 } 126 127 in_addr IPAddress::ipv4_address() const { 128 return u_.ip4; 129 } 130 131 std::string IPAddress::ToString() const { 132 if (family_ != AF_INET && family_ != AF_INET6) { 133 return std::string(); 134 } 135 char buf[INET6_ADDRSTRLEN] = {0}; 136 const void* src = &u_.ip4; 137 if (family_ == AF_INET6) { 138 src = &u_.ip6; 139 } 140 if (!rtc::inet_ntop(family_, src, buf, sizeof(buf))) { 141 return std::string(); 142 } 143 return std::string(buf); 144 } 145 146 std::string IPAddress::ToSensitiveString() const { 147 #if !defined(NDEBUG) 148 // Return non-stripped in debug. 149 return ToString(); 150 #else 151 switch (family_) { 152 case AF_INET: { 153 std::string address = ToString(); 154 size_t find_pos = address.rfind('.'); 155 if (find_pos == std::string::npos) 156 return std::string(); 157 address.resize(find_pos); 158 address += ".x"; 159 return address; 160 } 161 case AF_INET6: { 162 std::string result; 163 result.resize(INET6_ADDRSTRLEN); 164 in6_addr addr = ipv6_address(); 165 size_t len = 166 rtc::sprintfn(&(result[0]), result.size(), "%x:%x:%x:x:x:x:x:x", 167 (addr.s6_addr[0] << 8) + addr.s6_addr[1], 168 (addr.s6_addr[2] << 8) + addr.s6_addr[3], 169 (addr.s6_addr[4] << 8) + addr.s6_addr[5]); 170 result.resize(len); 171 return result; 172 } 173 } 174 return std::string(); 175 #endif 176 } 177 178 IPAddress IPAddress::Normalized() const { 179 if (family_ != AF_INET6) { 180 return *this; 181 } 182 if (!IPIsV4Mapped(*this)) { 183 return *this; 184 } 185 in_addr addr = ExtractMappedAddress(u_.ip6); 186 return IPAddress(addr); 187 } 188 189 IPAddress IPAddress::AsIPv6Address() const { 190 if (family_ != AF_INET) { 191 return *this; 192 } 193 in6_addr v6addr = kV4MappedPrefix; 194 ::memcpy(&v6addr.s6_addr[12], &u_.ip4.s_addr, sizeof(u_.ip4.s_addr)); 195 return IPAddress(v6addr); 196 } 197 198 bool InterfaceAddress::operator==(const InterfaceAddress &other) const { 199 return ipv6_flags_ == other.ipv6_flags() && 200 static_cast<const IPAddress&>(*this) == other; 201 } 202 203 bool InterfaceAddress::operator!=(const InterfaceAddress &other) const { 204 return !((*this) == other); 205 } 206 207 const InterfaceAddress& InterfaceAddress::operator=( 208 const InterfaceAddress& other) { 209 ipv6_flags_ = other.ipv6_flags_; 210 static_cast<IPAddress&>(*this) = other; 211 return *this; 212 } 213 214 std::ostream& operator<<(std::ostream& os, const InterfaceAddress& ip) { 215 os << static_cast<const IPAddress&>(ip); 216 217 if (ip.family() == AF_INET6) 218 os << "|flags:0x" << std::hex << ip.ipv6_flags(); 219 220 return os; 221 } 222 223 bool IsPrivateV4(uint32_t ip_in_host_order) { 224 return ((ip_in_host_order >> 24) == 127) || 225 ((ip_in_host_order >> 24) == 10) || 226 ((ip_in_host_order >> 20) == ((172 << 4) | 1)) || 227 ((ip_in_host_order >> 16) == ((192 << 8) | 168)) || 228 ((ip_in_host_order >> 16) == ((169 << 8) | 254)); 229 } 230 231 in_addr ExtractMappedAddress(const in6_addr& in6) { 232 in_addr ipv4; 233 ::memcpy(&ipv4.s_addr, &in6.s6_addr[12], sizeof(ipv4.s_addr)); 234 return ipv4; 235 } 236 237 bool IPFromAddrInfo(struct addrinfo* info, IPAddress* out) { 238 if (!info || !info->ai_addr) { 239 return false; 240 } 241 if (info->ai_addr->sa_family == AF_INET) { 242 sockaddr_in* addr = reinterpret_cast<sockaddr_in*>(info->ai_addr); 243 *out = IPAddress(addr->sin_addr); 244 return true; 245 } else if (info->ai_addr->sa_family == AF_INET6) { 246 sockaddr_in6* addr = reinterpret_cast<sockaddr_in6*>(info->ai_addr); 247 *out = IPAddress(addr->sin6_addr); 248 return true; 249 } 250 return false; 251 } 252 253 bool IPFromString(const std::string& str, IPAddress* out) { 254 if (!out) { 255 return false; 256 } 257 in_addr addr; 258 if (rtc::inet_pton(AF_INET, str.c_str(), &addr) == 0) { 259 in6_addr addr6; 260 if (rtc::inet_pton(AF_INET6, str.c_str(), &addr6) == 0) { 261 *out = IPAddress(); 262 return false; 263 } 264 *out = IPAddress(addr6); 265 } else { 266 *out = IPAddress(addr); 267 } 268 return true; 269 } 270 271 bool IPFromString(const std::string& str, int flags, 272 InterfaceAddress* out) { 273 IPAddress ip; 274 if (!IPFromString(str, &ip)) { 275 return false; 276 } 277 278 *out = InterfaceAddress(ip, flags); 279 return true; 280 } 281 282 bool IPIsAny(const IPAddress& ip) { 283 switch (ip.family()) { 284 case AF_INET: 285 return ip == IPAddress(INADDR_ANY); 286 case AF_INET6: 287 return ip == IPAddress(in6addr_any) || ip == IPAddress(kV4MappedPrefix); 288 case AF_UNSPEC: 289 return false; 290 } 291 return false; 292 } 293 294 bool IPIsLoopback(const IPAddress& ip) { 295 switch (ip.family()) { 296 case AF_INET: { 297 return ip == IPAddress(INADDR_LOOPBACK); 298 } 299 case AF_INET6: { 300 return ip == IPAddress(in6addr_loopback); 301 } 302 } 303 return false; 304 } 305 306 bool IPIsPrivate(const IPAddress& ip) { 307 switch (ip.family()) { 308 case AF_INET: { 309 return IsPrivateV4(ip.v4AddressAsHostOrderInteger()); 310 } 311 case AF_INET6: { 312 return IPIsLinkLocal(ip) || IPIsLoopback(ip); 313 } 314 } 315 return false; 316 } 317 318 bool IPIsUnspec(const IPAddress& ip) { 319 return ip.family() == AF_UNSPEC; 320 } 321 322 size_t HashIP(const IPAddress& ip) { 323 switch (ip.family()) { 324 case AF_INET: { 325 return ip.ipv4_address().s_addr; 326 } 327 case AF_INET6: { 328 in6_addr v6addr = ip.ipv6_address(); 329 const uint32_t* v6_as_ints = 330 reinterpret_cast<const uint32_t*>(&v6addr.s6_addr); 331 return v6_as_ints[0] ^ v6_as_ints[1] ^ v6_as_ints[2] ^ v6_as_ints[3]; 332 } 333 } 334 return 0; 335 } 336 337 IPAddress TruncateIP(const IPAddress& ip, int length) { 338 if (length < 0) { 339 return IPAddress(); 340 } 341 if (ip.family() == AF_INET) { 342 if (length > 31) { 343 return ip; 344 } 345 if (length == 0) { 346 return IPAddress(INADDR_ANY); 347 } 348 int mask = (0xFFFFFFFF << (32 - length)); 349 uint32_t host_order_ip = NetworkToHost32(ip.ipv4_address().s_addr); 350 in_addr masked; 351 masked.s_addr = HostToNetwork32(host_order_ip & mask); 352 return IPAddress(masked); 353 } else if (ip.family() == AF_INET6) { 354 if (length > 127) { 355 return ip; 356 } 357 if (length == 0) { 358 return IPAddress(in6addr_any); 359 } 360 in6_addr v6addr = ip.ipv6_address(); 361 int position = length / 32; 362 int inner_length = 32 - (length - (position * 32)); 363 // Note: 64bit mask constant needed to allow possible 32-bit left shift. 364 uint32_t inner_mask = 0xFFFFFFFFLL << inner_length; 365 uint32_t* v6_as_ints = reinterpret_cast<uint32_t*>(&v6addr.s6_addr); 366 for (int i = 0; i < 4; ++i) { 367 if (i == position) { 368 uint32_t host_order_inner = NetworkToHost32(v6_as_ints[i]); 369 v6_as_ints[i] = HostToNetwork32(host_order_inner & inner_mask); 370 } else if (i > position) { 371 v6_as_ints[i] = 0; 372 } 373 } 374 return IPAddress(v6addr); 375 } 376 return IPAddress(); 377 } 378 379 int CountIPMaskBits(IPAddress mask) { 380 uint32_t word_to_count = 0; 381 int bits = 0; 382 switch (mask.family()) { 383 case AF_INET: { 384 word_to_count = NetworkToHost32(mask.ipv4_address().s_addr); 385 break; 386 } 387 case AF_INET6: { 388 in6_addr v6addr = mask.ipv6_address(); 389 const uint32_t* v6_as_ints = 390 reinterpret_cast<const uint32_t*>(&v6addr.s6_addr); 391 int i = 0; 392 for (; i < 4; ++i) { 393 if (v6_as_ints[i] != 0xFFFFFFFF) { 394 break; 395 } 396 } 397 if (i < 4) { 398 word_to_count = NetworkToHost32(v6_as_ints[i]); 399 } 400 bits = (i * 32); 401 break; 402 } 403 default: { 404 return 0; 405 } 406 } 407 if (word_to_count == 0) { 408 return bits; 409 } 410 411 // Public domain bit-twiddling hack from: 412 // http://graphics.stanford.edu/~seander/bithacks.html 413 // Counts the trailing 0s in the word. 414 unsigned int zeroes = 32; 415 word_to_count &= -static_cast<int32_t>(word_to_count); 416 if (word_to_count) zeroes--; 417 if (word_to_count & 0x0000FFFF) zeroes -= 16; 418 if (word_to_count & 0x00FF00FF) zeroes -= 8; 419 if (word_to_count & 0x0F0F0F0F) zeroes -= 4; 420 if (word_to_count & 0x33333333) zeroes -= 2; 421 if (word_to_count & 0x55555555) zeroes -= 1; 422 423 return bits + (32 - zeroes); 424 } 425 426 bool IPIsHelper(const IPAddress& ip, const in6_addr& tomatch, int length) { 427 // Helper method for checking IP prefix matches (but only on whole byte 428 // lengths). Length is in bits. 429 in6_addr addr = ip.ipv6_address(); 430 return ::memcmp(&addr, &tomatch, (length >> 3)) == 0; 431 } 432 433 bool IPIs6Bone(const IPAddress& ip) { 434 return IPIsHelper(ip, k6BonePrefix, 16); 435 } 436 437 bool IPIs6To4(const IPAddress& ip) { 438 return IPIsHelper(ip, k6To4Prefix, 16); 439 } 440 441 bool IPIsLinkLocal(const IPAddress& ip) { 442 // Can't use the helper because the prefix is 10 bits. 443 in6_addr addr = ip.ipv6_address(); 444 return addr.s6_addr[0] == 0xFE && addr.s6_addr[1] == 0x80; 445 } 446 447 // According to http://www.ietf.org/rfc/rfc2373.txt, Appendix A, page 19. An 448 // address which contains MAC will have its 11th and 12th bytes as FF:FE as well 449 // as the U/L bit as 1. 450 bool IPIsMacBased(const IPAddress& ip) { 451 in6_addr addr = ip.ipv6_address(); 452 return ((addr.s6_addr[8] & 0x02) && addr.s6_addr[11] == 0xFF && 453 addr.s6_addr[12] == 0xFE); 454 } 455 456 bool IPIsSiteLocal(const IPAddress& ip) { 457 // Can't use the helper because the prefix is 10 bits. 458 in6_addr addr = ip.ipv6_address(); 459 return addr.s6_addr[0] == 0xFE && (addr.s6_addr[1] & 0xC0) == 0xC0; 460 } 461 462 bool IPIsULA(const IPAddress& ip) { 463 // Can't use the helper because the prefix is 7 bits. 464 in6_addr addr = ip.ipv6_address(); 465 return (addr.s6_addr[0] & 0xFE) == 0xFC; 466 } 467 468 bool IPIsTeredo(const IPAddress& ip) { 469 return IPIsHelper(ip, kTeredoPrefix, 32); 470 } 471 472 bool IPIsV4Compatibility(const IPAddress& ip) { 473 return IPIsHelper(ip, kV4CompatibilityPrefix, 96); 474 } 475 476 bool IPIsV4Mapped(const IPAddress& ip) { 477 return IPIsHelper(ip, kV4MappedPrefix, 96); 478 } 479 480 int IPAddressPrecedence(const IPAddress& ip) { 481 // Precedence values from RFC 3484-bis. Prefers native v4 over 6to4/Teredo. 482 if (ip.family() == AF_INET) { 483 return 30; 484 } else if (ip.family() == AF_INET6) { 485 if (IPIsLoopback(ip)) { 486 return 60; 487 } else if (IPIsULA(ip)) { 488 return 50; 489 } else if (IPIsV4Mapped(ip)) { 490 return 30; 491 } else if (IPIs6To4(ip)) { 492 return 20; 493 } else if (IPIsTeredo(ip)) { 494 return 10; 495 } else if (IPIsV4Compatibility(ip) || IPIsSiteLocal(ip) || IPIs6Bone(ip)) { 496 return 1; 497 } else { 498 // A 'normal' IPv6 address. 499 return 40; 500 } 501 } 502 return 0; 503 } 504 505 IPAddress GetLoopbackIP(int family) { 506 if (family == AF_INET) { 507 return rtc::IPAddress(INADDR_LOOPBACK); 508 } 509 if (family == AF_INET6) { 510 return rtc::IPAddress(in6addr_loopback); 511 } 512 return rtc::IPAddress(); 513 } 514 515 IPAddress GetAnyIP(int family) { 516 if (family == AF_INET) { 517 return rtc::IPAddress(INADDR_ANY); 518 } 519 if (family == AF_INET6) { 520 return rtc::IPAddress(in6addr_any); 521 } 522 return rtc::IPAddress(); 523 } 524 525 } // Namespace rtc 526