Home | History | Annotate | Download | only in Hexagon
      1 //===--- HexagonCommonGEP.cpp ---------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #define DEBUG_TYPE "commgep"
     11 
     12 #include "llvm/Pass.h"
     13 #include "llvm/ADT/FoldingSet.h"
     14 #include "llvm/ADT/STLExtras.h"
     15 #include "llvm/Analysis/LoopInfo.h"
     16 #include "llvm/Analysis/PostDominators.h"
     17 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
     18 #include "llvm/IR/Constants.h"
     19 #include "llvm/IR/Dominators.h"
     20 #include "llvm/IR/Function.h"
     21 #include "llvm/IR/Instructions.h"
     22 #include "llvm/IR/Verifier.h"
     23 #include "llvm/Support/Allocator.h"
     24 #include "llvm/Support/CommandLine.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include "llvm/Transforms/Scalar.h"
     28 #include "llvm/Transforms/Utils/Local.h"
     29 
     30 #include <map>
     31 #include <set>
     32 #include <vector>
     33 
     34 #include "HexagonTargetMachine.h"
     35 
     36 using namespace llvm;
     37 
     38 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true),
     39   cl::Hidden, cl::ZeroOrMore);
     40 
     41 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden,
     42   cl::ZeroOrMore);
     43 
     44 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true),
     45   cl::Hidden, cl::ZeroOrMore);
     46 
     47 namespace llvm {
     48   void initializeHexagonCommonGEPPass(PassRegistry&);
     49 }
     50 
     51 namespace {
     52   struct GepNode;
     53   typedef std::set<GepNode*> NodeSet;
     54   typedef std::map<GepNode*,Value*> NodeToValueMap;
     55   typedef std::vector<GepNode*> NodeVect;
     56   typedef std::map<GepNode*,NodeVect> NodeChildrenMap;
     57   typedef std::set<Use*> UseSet;
     58   typedef std::map<GepNode*,UseSet> NodeToUsesMap;
     59 
     60   // Numbering map for gep nodes. Used to keep track of ordering for
     61   // gep nodes.
     62   struct NodeOrdering {
     63     NodeOrdering() : LastNum(0) {}
     64 
     65     void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); }
     66     void clear() { Map.clear(); }
     67 
     68     bool operator()(const GepNode *N1, const GepNode *N2) const {
     69       auto F1 = Map.find(N1), F2 = Map.find(N2);
     70       assert(F1 != Map.end() && F2 != Map.end());
     71       return F1->second < F2->second;
     72     }
     73 
     74   private:
     75     std::map<const GepNode *, unsigned> Map;
     76     unsigned LastNum;
     77   };
     78 
     79   class HexagonCommonGEP : public FunctionPass {
     80   public:
     81     static char ID;
     82     HexagonCommonGEP() : FunctionPass(ID) {
     83       initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry());
     84     }
     85     virtual bool runOnFunction(Function &F);
     86     virtual const char *getPassName() const {
     87       return "Hexagon Common GEP";
     88     }
     89 
     90     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     91       AU.addRequired<DominatorTreeWrapperPass>();
     92       AU.addPreserved<DominatorTreeWrapperPass>();
     93       AU.addRequired<PostDominatorTree>();
     94       AU.addPreserved<PostDominatorTree>();
     95       AU.addRequired<LoopInfoWrapperPass>();
     96       AU.addPreserved<LoopInfoWrapperPass>();
     97       FunctionPass::getAnalysisUsage(AU);
     98     }
     99 
    100   private:
    101     typedef std::map<Value*,GepNode*> ValueToNodeMap;
    102     typedef std::vector<Value*> ValueVect;
    103     typedef std::map<GepNode*,ValueVect> NodeToValuesMap;
    104 
    105     void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order);
    106     bool isHandledGepForm(GetElementPtrInst *GepI);
    107     void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM);
    108     void collect();
    109     void common();
    110 
    111     BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM,
    112                                      NodeToValueMap &Loc);
    113     BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM,
    114                                         NodeToValueMap &Loc);
    115     bool isInvariantIn(Value *Val, Loop *L);
    116     bool isInvariantIn(GepNode *Node, Loop *L);
    117     bool isInMainPath(BasicBlock *B, Loop *L);
    118     BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM,
    119                                     NodeToValueMap &Loc);
    120     void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc);
    121     void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM,
    122                                 NodeToValueMap &Loc);
    123     void computeNodePlacement(NodeToValueMap &Loc);
    124 
    125     Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
    126                         BasicBlock *LocB);
    127     void getAllUsersForNode(GepNode *Node, ValueVect &Values,
    128                             NodeChildrenMap &NCM);
    129     void materialize(NodeToValueMap &Loc);
    130 
    131     void removeDeadCode();
    132 
    133     NodeVect Nodes;
    134     NodeToUsesMap Uses;
    135     NodeOrdering NodeOrder;   // Node ordering, for deterministic behavior.
    136     SpecificBumpPtrAllocator<GepNode> *Mem;
    137     LLVMContext *Ctx;
    138     LoopInfo *LI;
    139     DominatorTree *DT;
    140     PostDominatorTree *PDT;
    141     Function *Fn;
    142   };
    143 }
    144 
    145 
    146 char HexagonCommonGEP::ID = 0;
    147 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
    148       false, false)
    149 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    150 INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
    151 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    152 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
    153       false, false)
    154 
    155 namespace {
    156   struct GepNode {
    157     enum {
    158       None      = 0,
    159       Root      = 0x01,
    160       Internal  = 0x02,
    161       Used      = 0x04
    162     };
    163 
    164     uint32_t Flags;
    165     union {
    166       GepNode *Parent;
    167       Value *BaseVal;
    168     };
    169     Value *Idx;
    170     Type *PTy;  // Type of the pointer operand.
    171 
    172     GepNode() : Flags(0), Parent(0), Idx(0), PTy(0) {}
    173     GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) {
    174       if (Flags & Root)
    175         BaseVal = N->BaseVal;
    176       else
    177         Parent = N->Parent;
    178     }
    179     friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN);
    180   };
    181 
    182 
    183   Type *next_type(Type *Ty, Value *Idx) {
    184     // Advance the type.
    185     if (!Ty->isStructTy()) {
    186       Type *NexTy = cast<SequentialType>(Ty)->getElementType();
    187       return NexTy;
    188     }
    189     // Otherwise it is a struct type.
    190     ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
    191     assert(CI && "Struct type with non-constant index");
    192     int64_t i = CI->getValue().getSExtValue();
    193     Type *NextTy = cast<StructType>(Ty)->getElementType(i);
    194     return NextTy;
    195   }
    196 
    197 
    198   raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) {
    199     OS << "{ {";
    200     bool Comma = false;
    201     if (GN.Flags & GepNode::Root) {
    202       OS << "root";
    203       Comma = true;
    204     }
    205     if (GN.Flags & GepNode::Internal) {
    206       if (Comma)
    207         OS << ',';
    208       OS << "internal";
    209       Comma = true;
    210     }
    211     if (GN.Flags & GepNode::Used) {
    212       if (Comma)
    213         OS << ',';
    214       OS << "used";
    215       Comma = true;
    216     }
    217     OS << "} ";
    218     if (GN.Flags & GepNode::Root)
    219       OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')';
    220     else
    221       OS << "Parent:" << GN.Parent;
    222 
    223     OS << " Idx:";
    224     if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx))
    225       OS << CI->getValue().getSExtValue();
    226     else if (GN.Idx->hasName())
    227       OS << GN.Idx->getName();
    228     else
    229       OS << "<anon> =" << *GN.Idx;
    230 
    231     OS << " PTy:";
    232     if (GN.PTy->isStructTy()) {
    233       StructType *STy = cast<StructType>(GN.PTy);
    234       if (!STy->isLiteral())
    235         OS << GN.PTy->getStructName();
    236       else
    237         OS << "<anon-struct>:" << *STy;
    238     }
    239     else
    240       OS << *GN.PTy;
    241     OS << " }";
    242     return OS;
    243   }
    244 
    245 
    246   template <typename NodeContainer>
    247   void dump_node_container(raw_ostream &OS, const NodeContainer &S) {
    248     typedef typename NodeContainer::const_iterator const_iterator;
    249     for (const_iterator I = S.begin(), E = S.end(); I != E; ++I)
    250       OS << *I << ' ' << **I << '\n';
    251   }
    252 
    253   raw_ostream &operator<< (raw_ostream &OS,
    254                            const NodeVect &S) LLVM_ATTRIBUTE_UNUSED;
    255   raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) {
    256     dump_node_container(OS, S);
    257     return OS;
    258   }
    259 
    260 
    261   raw_ostream &operator<< (raw_ostream &OS,
    262                            const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED;
    263   raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){
    264     typedef NodeToUsesMap::const_iterator const_iterator;
    265     for (const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
    266       const UseSet &Us = I->second;
    267       OS << I->first << " -> #" << Us.size() << '{';
    268       for (UseSet::const_iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
    269         User *R = (*J)->getUser();
    270         if (R->hasName())
    271           OS << ' ' << R->getName();
    272         else
    273           OS << " <?>(" << *R << ')';
    274       }
    275       OS << " }\n";
    276     }
    277     return OS;
    278   }
    279 
    280 
    281   struct in_set {
    282     in_set(const NodeSet &S) : NS(S) {}
    283     bool operator() (GepNode *N) const {
    284       return NS.find(N) != NS.end();
    285     }
    286   private:
    287     const NodeSet &NS;
    288   };
    289 }
    290 
    291 
    292 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) {
    293   return A.Allocate();
    294 }
    295 
    296 
    297 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root,
    298       ValueVect &Order) {
    299   // Compute block ordering for a typical DT-based traversal of the flow
    300   // graph: "before visiting a block, all of its dominators must have been
    301   // visited".
    302 
    303   Order.push_back(Root);
    304   DomTreeNode *DTN = DT->getNode(Root);
    305   typedef GraphTraits<DomTreeNode*> GTN;
    306   typedef GTN::ChildIteratorType Iter;
    307   for (Iter I = GTN::child_begin(DTN), E = GTN::child_end(DTN); I != E; ++I)
    308     getBlockTraversalOrder((*I)->getBlock(), Order);
    309 }
    310 
    311 
    312 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) {
    313   // No vector GEPs.
    314   if (!GepI->getType()->isPointerTy())
    315     return false;
    316   // No GEPs without any indices.  (Is this possible?)
    317   if (GepI->idx_begin() == GepI->idx_end())
    318     return false;
    319   return true;
    320 }
    321 
    322 
    323 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI,
    324       ValueToNodeMap &NM) {
    325   DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n');
    326   GepNode *N = new (*Mem) GepNode;
    327   Value *PtrOp = GepI->getPointerOperand();
    328   ValueToNodeMap::iterator F = NM.find(PtrOp);
    329   if (F == NM.end()) {
    330     N->BaseVal = PtrOp;
    331     N->Flags |= GepNode::Root;
    332   } else {
    333     // If PtrOp was a GEP instruction, it must have already been processed.
    334     // The ValueToNodeMap entry for it is the last gep node in the generated
    335     // chain. Link to it here.
    336     N->Parent = F->second;
    337   }
    338   N->PTy = PtrOp->getType();
    339   N->Idx = *GepI->idx_begin();
    340 
    341   // Collect the list of users of this GEP instruction. Will add it to the
    342   // last node created for it.
    343   UseSet Us;
    344   for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end();
    345        UI != UE; ++UI) {
    346     // Check if this gep is used by anything other than other geps that
    347     // we will process.
    348     if (isa<GetElementPtrInst>(*UI)) {
    349       GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI);
    350       if (isHandledGepForm(UserG))
    351         continue;
    352     }
    353     Us.insert(&UI.getUse());
    354   }
    355   Nodes.push_back(N);
    356   NodeOrder.insert(N);
    357 
    358   // Skip the first index operand, since we only handle 0. This dereferences
    359   // the pointer operand.
    360   GepNode *PN = N;
    361   Type *PtrTy = cast<PointerType>(PtrOp->getType())->getElementType();
    362   for (User::op_iterator OI = GepI->idx_begin()+1, OE = GepI->idx_end();
    363        OI != OE; ++OI) {
    364     Value *Op = *OI;
    365     GepNode *Nx = new (*Mem) GepNode;
    366     Nx->Parent = PN;  // Link Nx to the previous node.
    367     Nx->Flags |= GepNode::Internal;
    368     Nx->PTy = PtrTy;
    369     Nx->Idx = Op;
    370     Nodes.push_back(Nx);
    371     NodeOrder.insert(Nx);
    372     PN = Nx;
    373 
    374     PtrTy = next_type(PtrTy, Op);
    375   }
    376 
    377   // After last node has been created, update the use information.
    378   if (!Us.empty()) {
    379     PN->Flags |= GepNode::Used;
    380     Uses[PN].insert(Us.begin(), Us.end());
    381   }
    382 
    383   // Link the last node with the originating GEP instruction. This is to
    384   // help with linking chained GEP instructions.
    385   NM.insert(std::make_pair(GepI, PN));
    386 }
    387 
    388 
    389 void HexagonCommonGEP::collect() {
    390   // Establish depth-first traversal order of the dominator tree.
    391   ValueVect BO;
    392   getBlockTraversalOrder(&Fn->front(), BO);
    393 
    394   // The creation of gep nodes requires DT-traversal. When processing a GEP
    395   // instruction that uses another GEP instruction as the base pointer, the
    396   // gep node for the base pointer should already exist.
    397   ValueToNodeMap NM;
    398   for (ValueVect::iterator I = BO.begin(), E = BO.end(); I != E; ++I) {
    399     BasicBlock *B = cast<BasicBlock>(*I);
    400     for (BasicBlock::iterator J = B->begin(), F = B->end(); J != F; ++J) {
    401       if (!isa<GetElementPtrInst>(J))
    402         continue;
    403       GetElementPtrInst *GepI = cast<GetElementPtrInst>(J);
    404       if (isHandledGepForm(GepI))
    405         processGepInst(GepI, NM);
    406     }
    407   }
    408 
    409   DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes);
    410 }
    411 
    412 
    413 namespace {
    414   void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM,
    415         NodeVect &Roots) {
    416     typedef NodeVect::const_iterator const_iterator;
    417     for (const_iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
    418       GepNode *N = *I;
    419       if (N->Flags & GepNode::Root) {
    420         Roots.push_back(N);
    421         continue;
    422       }
    423       GepNode *PN = N->Parent;
    424       NCM[PN].push_back(N);
    425     }
    426   }
    427 
    428   void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, NodeSet &Nodes) {
    429     NodeVect Work;
    430     Work.push_back(Root);
    431     Nodes.insert(Root);
    432 
    433     while (!Work.empty()) {
    434       NodeVect::iterator First = Work.begin();
    435       GepNode *N = *First;
    436       Work.erase(First);
    437       NodeChildrenMap::iterator CF = NCM.find(N);
    438       if (CF != NCM.end()) {
    439         Work.insert(Work.end(), CF->second.begin(), CF->second.end());
    440         Nodes.insert(CF->second.begin(), CF->second.end());
    441       }
    442     }
    443   }
    444 }
    445 
    446 
    447 namespace {
    448   typedef std::set<NodeSet> NodeSymRel;
    449   typedef std::pair<GepNode*,GepNode*> NodePair;
    450   typedef std::set<NodePair> NodePairSet;
    451 
    452   const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) {
    453     for (NodeSymRel::iterator I = Rel.begin(), E = Rel.end(); I != E; ++I)
    454       if (I->count(N))
    455         return &*I;
    456     return 0;
    457   }
    458 
    459   // Create an ordered pair of GepNode pointers. The pair will be used in
    460   // determining equality. The only purpose of the ordering is to eliminate
    461   // duplication due to the commutativity of equality/non-equality.
    462   NodePair node_pair(GepNode *N1, GepNode *N2) {
    463     uintptr_t P1 = uintptr_t(N1), P2 = uintptr_t(N2);
    464     if (P1 <= P2)
    465       return std::make_pair(N1, N2);
    466     return std::make_pair(N2, N1);
    467   }
    468 
    469   unsigned node_hash(GepNode *N) {
    470     // Include everything except flags and parent.
    471     FoldingSetNodeID ID;
    472     ID.AddPointer(N->Idx);
    473     ID.AddPointer(N->PTy);
    474     return ID.ComputeHash();
    475   }
    476 
    477   bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, NodePairSet &Ne) {
    478     // Don't cache the result for nodes with different hashes. The hash
    479     // comparison is fast enough.
    480     if (node_hash(N1) != node_hash(N2))
    481       return false;
    482 
    483     NodePair NP = node_pair(N1, N2);
    484     NodePairSet::iterator FEq = Eq.find(NP);
    485     if (FEq != Eq.end())
    486       return true;
    487     NodePairSet::iterator FNe = Ne.find(NP);
    488     if (FNe != Ne.end())
    489       return false;
    490     // Not previously compared.
    491     bool Root1 = N1->Flags & GepNode::Root;
    492     bool Root2 = N2->Flags & GepNode::Root;
    493     NodePair P = node_pair(N1, N2);
    494     // If the Root flag has different values, the nodes are different.
    495     // If both nodes are root nodes, but their base pointers differ,
    496     // they are different.
    497     if (Root1 != Root2 || (Root1 && N1->BaseVal != N2->BaseVal)) {
    498       Ne.insert(P);
    499       return false;
    500     }
    501     // Here the root flags are identical, and for root nodes the
    502     // base pointers are equal, so the root nodes are equal.
    503     // For non-root nodes, compare their parent nodes.
    504     if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) {
    505       Eq.insert(P);
    506       return true;
    507     }
    508     return false;
    509   }
    510 }
    511 
    512 
    513 void HexagonCommonGEP::common() {
    514   // The essence of this commoning is finding gep nodes that are equal.
    515   // To do this we need to compare all pairs of nodes. To save time,
    516   // first, partition the set of all nodes into sets of potentially equal
    517   // nodes, and then compare pairs from within each partition.
    518   typedef std::map<unsigned,NodeSet> NodeSetMap;
    519   NodeSetMap MaybeEq;
    520 
    521   for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
    522     GepNode *N = *I;
    523     unsigned H = node_hash(N);
    524     MaybeEq[H].insert(N);
    525   }
    526 
    527   // Compute the equivalence relation for the gep nodes.  Use two caches,
    528   // one for equality and the other for non-equality.
    529   NodeSymRel EqRel;  // Equality relation (as set of equivalence classes).
    530   NodePairSet Eq, Ne;  // Caches.
    531   for (NodeSetMap::iterator I = MaybeEq.begin(), E = MaybeEq.end();
    532        I != E; ++I) {
    533     NodeSet &S = I->second;
    534     for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) {
    535       GepNode *N = *NI;
    536       // If node already has a class, then the class must have been created
    537       // in a prior iteration of this loop. Since equality is transitive,
    538       // nothing more will be added to that class, so skip it.
    539       if (node_class(N, EqRel))
    540         continue;
    541 
    542       // Create a new class candidate now.
    543       NodeSet C;
    544       for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ)
    545         if (node_eq(N, *NJ, Eq, Ne))
    546           C.insert(*NJ);
    547       // If Tmp is empty, N would be the only element in it. Don't bother
    548       // creating a class for it then.
    549       if (!C.empty()) {
    550         C.insert(N);  // Finalize the set before adding it to the relation.
    551         std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C);
    552         (void)Ins;
    553         assert(Ins.second && "Cannot add a class");
    554       }
    555     }
    556   }
    557 
    558   DEBUG({
    559     dbgs() << "Gep node equality:\n";
    560     for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I)
    561       dbgs() << "{ " << I->first << ", " << I->second << " }\n";
    562 
    563     dbgs() << "Gep equivalence classes:\n";
    564     for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
    565       dbgs() << '{';
    566       const NodeSet &S = *I;
    567       for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) {
    568         if (J != S.begin())
    569           dbgs() << ',';
    570         dbgs() << ' ' << *J;
    571       }
    572       dbgs() << " }\n";
    573     }
    574   });
    575 
    576 
    577   // Create a projection from a NodeSet to the minimal element in it.
    578   typedef std::map<const NodeSet*,GepNode*> ProjMap;
    579   ProjMap PM;
    580   for (NodeSymRel::iterator I = EqRel.begin(), E = EqRel.end(); I != E; ++I) {
    581     const NodeSet &S = *I;
    582     GepNode *Min = *std::min_element(S.begin(), S.end(), NodeOrder);
    583     std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min));
    584     (void)Ins;
    585     assert(Ins.second && "Cannot add minimal element");
    586 
    587     // Update the min element's flags, and user list.
    588     uint32_t Flags = 0;
    589     UseSet &MinUs = Uses[Min];
    590     for (NodeSet::iterator J = S.begin(), F = S.end(); J != F; ++J) {
    591       GepNode *N = *J;
    592       uint32_t NF = N->Flags;
    593       // If N is used, append all original values of N to the list of
    594       // original values of Min.
    595       if (NF & GepNode::Used)
    596         MinUs.insert(Uses[N].begin(), Uses[N].end());
    597       Flags |= NF;
    598     }
    599     if (MinUs.empty())
    600       Uses.erase(Min);
    601 
    602     // The collected flags should include all the flags from the min element.
    603     assert((Min->Flags & Flags) == Min->Flags);
    604     Min->Flags = Flags;
    605   }
    606 
    607   // Commoning: for each non-root gep node, replace "Parent" with the
    608   // selected (minimum) node from the corresponding equivalence class.
    609   // If a given parent does not have an equivalence class, leave it
    610   // unchanged (it means that it's the only element in its class).
    611   for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
    612     GepNode *N = *I;
    613     if (N->Flags & GepNode::Root)
    614       continue;
    615     const NodeSet *PC = node_class(N->Parent, EqRel);
    616     if (!PC)
    617       continue;
    618     ProjMap::iterator F = PM.find(PC);
    619     if (F == PM.end())
    620       continue;
    621     // Found a replacement, use it.
    622     GepNode *Rep = F->second;
    623     N->Parent = Rep;
    624   }
    625 
    626   DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes);
    627 
    628   // Finally, erase the nodes that are no longer used.
    629   NodeSet Erase;
    630   for (NodeVect::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I) {
    631     GepNode *N = *I;
    632     const NodeSet *PC = node_class(N, EqRel);
    633     if (!PC)
    634       continue;
    635     ProjMap::iterator F = PM.find(PC);
    636     if (F == PM.end())
    637       continue;
    638     if (N == F->second)
    639       continue;
    640     // Node for removal.
    641     Erase.insert(*I);
    642   }
    643   NodeVect::iterator NewE = std::remove_if(Nodes.begin(), Nodes.end(),
    644                                            in_set(Erase));
    645   Nodes.resize(std::distance(Nodes.begin(), NewE));
    646 
    647   DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes);
    648 }
    649 
    650 
    651 namespace {
    652   template <typename T>
    653   BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) {
    654     DEBUG({
    655       dbgs() << "NCD of {";
    656       for (typename T::iterator I = Blocks.begin(), E = Blocks.end();
    657            I != E; ++I) {
    658         if (!*I)
    659           continue;
    660         BasicBlock *B = cast<BasicBlock>(*I);
    661         dbgs() << ' ' << B->getName();
    662       }
    663       dbgs() << " }\n";
    664     });
    665 
    666     // Allow null basic blocks in Blocks.  In such cases, return 0.
    667     typename T::iterator I = Blocks.begin(), E = Blocks.end();
    668     if (I == E || !*I)
    669       return 0;
    670     BasicBlock *Dom = cast<BasicBlock>(*I);
    671     while (++I != E) {
    672       BasicBlock *B = cast_or_null<BasicBlock>(*I);
    673       Dom = B ? DT->findNearestCommonDominator(Dom, B) : 0;
    674       if (!Dom)
    675         return 0;
    676     }
    677     DEBUG(dbgs() << "computed:" << Dom->getName() << '\n');
    678     return Dom;
    679   }
    680 
    681   template <typename T>
    682   BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) {
    683     // If two blocks, A and B, dominate a block C, then A dominates B,
    684     // or B dominates A.
    685     typename T::iterator I = Blocks.begin(), E = Blocks.end();
    686     // Find the first non-null block.
    687     while (I != E && !*I)
    688       ++I;
    689     if (I == E)
    690       return DT->getRoot();
    691     BasicBlock *DomB = cast<BasicBlock>(*I);
    692     while (++I != E) {
    693       if (!*I)
    694         continue;
    695       BasicBlock *B = cast<BasicBlock>(*I);
    696       if (DT->dominates(B, DomB))
    697         continue;
    698       if (!DT->dominates(DomB, B))
    699         return 0;
    700       DomB = B;
    701     }
    702     return DomB;
    703   }
    704 
    705   // Find the first use in B of any value from Values. If no such use,
    706   // return B->end().
    707   template <typename T>
    708   BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) {
    709     BasicBlock::iterator FirstUse = B->end(), BEnd = B->end();
    710     typedef typename T::iterator iterator;
    711     for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) {
    712       Value *V = *I;
    713       // If V is used in a PHI node, the use belongs to the incoming block,
    714       // not the block with the PHI node. In the incoming block, the use
    715       // would be considered as being at the end of it, so it cannot
    716       // influence the position of the first use (which is assumed to be
    717       // at the end to start with).
    718       if (isa<PHINode>(V))
    719         continue;
    720       if (!isa<Instruction>(V))
    721         continue;
    722       Instruction *In = cast<Instruction>(V);
    723       if (In->getParent() != B)
    724         continue;
    725       BasicBlock::iterator It = In->getIterator();
    726       if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd))
    727         FirstUse = It;
    728     }
    729     return FirstUse;
    730   }
    731 
    732   bool is_empty(const BasicBlock *B) {
    733     return B->empty() || (&*B->begin() == B->getTerminator());
    734   }
    735 }
    736 
    737 
    738 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node,
    739       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
    740   DEBUG(dbgs() << "Loc for node:" << Node << '\n');
    741   // Recalculate the placement for Node, assuming that the locations of
    742   // its children in Loc are valid.
    743   // Return 0 if there is no valid placement for Node (for example, it
    744   // uses an index value that is not available at the location required
    745   // to dominate all children, etc.).
    746 
    747   // Find the nearest common dominator for:
    748   // - all users, if the node is used, and
    749   // - all children.
    750   ValueVect Bs;
    751   if (Node->Flags & GepNode::Used) {
    752     // Append all blocks with uses of the original values to the
    753     // block vector Bs.
    754     NodeToUsesMap::iterator UF = Uses.find(Node);
    755     assert(UF != Uses.end() && "Used node with no use information");
    756     UseSet &Us = UF->second;
    757     for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
    758       Use *U = *I;
    759       User *R = U->getUser();
    760       if (!isa<Instruction>(R))
    761         continue;
    762       BasicBlock *PB = isa<PHINode>(R)
    763           ? cast<PHINode>(R)->getIncomingBlock(*U)
    764           : cast<Instruction>(R)->getParent();
    765       Bs.push_back(PB);
    766     }
    767   }
    768   // Append the location of each child.
    769   NodeChildrenMap::iterator CF = NCM.find(Node);
    770   if (CF != NCM.end()) {
    771     NodeVect &Cs = CF->second;
    772     for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
    773       GepNode *CN = *I;
    774       NodeToValueMap::iterator LF = Loc.find(CN);
    775       // If the child is only used in GEP instructions (i.e. is not used in
    776       // non-GEP instructions), the nearest dominator computed for it may
    777       // have been null. In such case it won't have a location available.
    778       if (LF == Loc.end())
    779         continue;
    780       Bs.push_back(LF->second);
    781     }
    782   }
    783 
    784   BasicBlock *DomB = nearest_common_dominator(DT, Bs);
    785   if (!DomB)
    786     return 0;
    787   // Check if the index used by Node dominates the computed dominator.
    788   Instruction *IdxI = dyn_cast<Instruction>(Node->Idx);
    789   if (IdxI && !DT->dominates(IdxI->getParent(), DomB))
    790     return 0;
    791 
    792   // Avoid putting nodes into empty blocks.
    793   while (is_empty(DomB)) {
    794     DomTreeNode *N = (*DT)[DomB]->getIDom();
    795     if (!N)
    796       break;
    797     DomB = N->getBlock();
    798   }
    799 
    800   // Otherwise, DomB is fine. Update the location map.
    801   Loc[Node] = DomB;
    802   return DomB;
    803 }
    804 
    805 
    806 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node,
    807       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
    808   DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n');
    809   // Recalculate the placement of Node, after recursively recalculating the
    810   // placements of all its children.
    811   NodeChildrenMap::iterator CF = NCM.find(Node);
    812   if (CF != NCM.end()) {
    813     NodeVect &Cs = CF->second;
    814     for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
    815       recalculatePlacementRec(*I, NCM, Loc);
    816   }
    817   BasicBlock *LB = recalculatePlacement(Node, NCM, Loc);
    818   DEBUG(dbgs() << "LocRec end for node:" << Node << '\n');
    819   return LB;
    820 }
    821 
    822 
    823 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) {
    824   if (isa<Constant>(Val) || isa<Argument>(Val))
    825     return true;
    826   Instruction *In = dyn_cast<Instruction>(Val);
    827   if (!In)
    828     return false;
    829   BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent();
    830   return DT->properlyDominates(DefB, HdrB);
    831 }
    832 
    833 
    834 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) {
    835   if (Node->Flags & GepNode::Root)
    836     if (!isInvariantIn(Node->BaseVal, L))
    837       return false;
    838   return isInvariantIn(Node->Idx, L);
    839 }
    840 
    841 
    842 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) {
    843   BasicBlock *HB = L->getHeader();
    844   BasicBlock *LB = L->getLoopLatch();
    845   // B must post-dominate the loop header or dominate the loop latch.
    846   if (PDT->dominates(B, HB))
    847     return true;
    848   if (LB && DT->dominates(B, LB))
    849     return true;
    850   return false;
    851 }
    852 
    853 
    854 namespace {
    855   BasicBlock *preheader(DominatorTree *DT, Loop *L) {
    856     if (BasicBlock *PH = L->getLoopPreheader())
    857       return PH;
    858     if (!OptSpeculate)
    859       return 0;
    860     DomTreeNode *DN = DT->getNode(L->getHeader());
    861     if (!DN)
    862       return 0;
    863     return DN->getIDom()->getBlock();
    864   }
    865 }
    866 
    867 
    868 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node,
    869       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
    870   // Find the "topmost" location for Node: it must be dominated by both,
    871   // its parent (or the BaseVal, if it's a root node), and by the index
    872   // value.
    873   ValueVect Bs;
    874   if (Node->Flags & GepNode::Root) {
    875     if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal))
    876       Bs.push_back(PIn->getParent());
    877   } else {
    878     Bs.push_back(Loc[Node->Parent]);
    879   }
    880   if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx))
    881     Bs.push_back(IIn->getParent());
    882   BasicBlock *TopB = nearest_common_dominatee(DT, Bs);
    883 
    884   // Traverse the loop nest upwards until we find a loop in which Node
    885   // is no longer invariant, or until we get to the upper limit of Node's
    886   // placement. The traversal will also stop when a suitable "preheader"
    887   // cannot be found for a given loop. The "preheader" may actually be
    888   // a regular block outside of the loop (i.e. not guarded), in which case
    889   // the Node will be speculated.
    890   // For nodes that are not in the main path of the containing loop (i.e.
    891   // are not executed in each iteration), do not move them out of the loop.
    892   BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]);
    893   if (LocB) {
    894     Loop *Lp = LI->getLoopFor(LocB);
    895     while (Lp) {
    896       if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp))
    897         break;
    898       BasicBlock *NewLoc = preheader(DT, Lp);
    899       if (!NewLoc || !DT->dominates(TopB, NewLoc))
    900         break;
    901       Lp = Lp->getParentLoop();
    902       LocB = NewLoc;
    903     }
    904   }
    905   Loc[Node] = LocB;
    906 
    907   // Recursively compute the locations of all children nodes.
    908   NodeChildrenMap::iterator CF = NCM.find(Node);
    909   if (CF != NCM.end()) {
    910     NodeVect &Cs = CF->second;
    911     for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I)
    912       adjustForInvariance(*I, NCM, Loc);
    913   }
    914   return LocB;
    915 }
    916 
    917 
    918 namespace {
    919   struct LocationAsBlock {
    920     LocationAsBlock(const NodeToValueMap &L) : Map(L) {}
    921     const NodeToValueMap &Map;
    922   };
    923 
    924   raw_ostream &operator<< (raw_ostream &OS,
    925                            const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ;
    926   raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) {
    927     for (NodeToValueMap::const_iterator I = Loc.Map.begin(), E = Loc.Map.end();
    928          I != E; ++I) {
    929       OS << I->first << " -> ";
    930       BasicBlock *B = cast<BasicBlock>(I->second);
    931       OS << B->getName() << '(' << B << ')';
    932       OS << '\n';
    933     }
    934     return OS;
    935   }
    936 
    937   inline bool is_constant(GepNode *N) {
    938     return isa<ConstantInt>(N->Idx);
    939   }
    940 }
    941 
    942 
    943 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U,
    944       NodeToValueMap &Loc) {
    945   User *R = U->getUser();
    946   DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: "
    947                << *R << '\n');
    948   BasicBlock *PB = cast<Instruction>(R)->getParent();
    949 
    950   GepNode *N = Node;
    951   GepNode *C = 0, *NewNode = 0;
    952   while (is_constant(N) && !(N->Flags & GepNode::Root)) {
    953     // XXX if (single-use) dont-replicate;
    954     GepNode *NewN = new (*Mem) GepNode(N);
    955     Nodes.push_back(NewN);
    956     Loc[NewN] = PB;
    957 
    958     if (N == Node)
    959       NewNode = NewN;
    960     NewN->Flags &= ~GepNode::Used;
    961     if (C)
    962       C->Parent = NewN;
    963     C = NewN;
    964     N = N->Parent;
    965   }
    966   if (!NewNode)
    967     return;
    968 
    969   // Move over all uses that share the same user as U from Node to NewNode.
    970   NodeToUsesMap::iterator UF = Uses.find(Node);
    971   assert(UF != Uses.end());
    972   UseSet &Us = UF->second;
    973   UseSet NewUs;
    974   for (UseSet::iterator I = Us.begin(); I != Us.end(); ) {
    975     User *S = (*I)->getUser();
    976     UseSet::iterator Nx = std::next(I);
    977     if (S == R) {
    978       NewUs.insert(*I);
    979       Us.erase(I);
    980     }
    981     I = Nx;
    982   }
    983   if (Us.empty()) {
    984     Node->Flags &= ~GepNode::Used;
    985     Uses.erase(UF);
    986   }
    987 
    988   // Should at least have U in NewUs.
    989   NewNode->Flags |= GepNode::Used;
    990   DEBUG(dbgs() << "new node: " << NewNode << "  " << *NewNode << '\n');
    991   assert(!NewUs.empty());
    992   Uses[NewNode] = NewUs;
    993 }
    994 
    995 
    996 void HexagonCommonGEP::separateConstantChains(GepNode *Node,
    997       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
    998   // First approximation: extract all chains.
    999   NodeSet Ns;
   1000   nodes_for_root(Node, NCM, Ns);
   1001 
   1002   DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n');
   1003   // Collect all used nodes together with the uses from loads and stores,
   1004   // where the GEP node could be folded into the load/store instruction.
   1005   NodeToUsesMap FNs; // Foldable nodes.
   1006   for (NodeSet::iterator I = Ns.begin(), E = Ns.end(); I != E; ++I) {
   1007     GepNode *N = *I;
   1008     if (!(N->Flags & GepNode::Used))
   1009       continue;
   1010     NodeToUsesMap::iterator UF = Uses.find(N);
   1011     assert(UF != Uses.end());
   1012     UseSet &Us = UF->second;
   1013     // Loads/stores that use the node N.
   1014     UseSet LSs;
   1015     for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J) {
   1016       Use *U = *J;
   1017       User *R = U->getUser();
   1018       // We're interested in uses that provide the address. It can happen
   1019       // that the value may also be provided via GEP, but we won't handle
   1020       // those cases here for now.
   1021       if (LoadInst *Ld = dyn_cast<LoadInst>(R)) {
   1022         unsigned PtrX = LoadInst::getPointerOperandIndex();
   1023         if (&Ld->getOperandUse(PtrX) == U)
   1024           LSs.insert(U);
   1025       } else if (StoreInst *St = dyn_cast<StoreInst>(R)) {
   1026         unsigned PtrX = StoreInst::getPointerOperandIndex();
   1027         if (&St->getOperandUse(PtrX) == U)
   1028           LSs.insert(U);
   1029       }
   1030     }
   1031     // Even if the total use count is 1, separating the chain may still be
   1032     // beneficial, since the constant chain may be longer than the GEP alone
   1033     // would be (e.g. if the parent node has a constant index and also has
   1034     // other children).
   1035     if (!LSs.empty())
   1036       FNs.insert(std::make_pair(N, LSs));
   1037   }
   1038 
   1039   DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs);
   1040 
   1041   for (NodeToUsesMap::iterator I = FNs.begin(), E = FNs.end(); I != E; ++I) {
   1042     GepNode *N = I->first;
   1043     UseSet &Us = I->second;
   1044     for (UseSet::iterator J = Us.begin(), F = Us.end(); J != F; ++J)
   1045       separateChainForNode(N, *J, Loc);
   1046   }
   1047 }
   1048 
   1049 
   1050 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) {
   1051   // Compute the inverse of the Node.Parent links. Also, collect the set
   1052   // of root nodes.
   1053   NodeChildrenMap NCM;
   1054   NodeVect Roots;
   1055   invert_find_roots(Nodes, NCM, Roots);
   1056 
   1057   // Compute the initial placement determined by the users' locations, and
   1058   // the locations of the child nodes.
   1059   for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
   1060     recalculatePlacementRec(*I, NCM, Loc);
   1061 
   1062   DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc));
   1063 
   1064   if (OptEnableInv) {
   1065     for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
   1066       adjustForInvariance(*I, NCM, Loc);
   1067 
   1068     DEBUG(dbgs() << "Node placement after adjustment for invariance:\n"
   1069                  << LocationAsBlock(Loc));
   1070   }
   1071   if (OptEnableConst) {
   1072     for (NodeVect::iterator I = Roots.begin(), E = Roots.end(); I != E; ++I)
   1073       separateConstantChains(*I, NCM, Loc);
   1074   }
   1075   DEBUG(dbgs() << "Node use information:\n" << Uses);
   1076 
   1077   // At the moment, there is no further refinement of the initial placement.
   1078   // Such a refinement could include splitting the nodes if they are placed
   1079   // too far from some of its users.
   1080 
   1081   DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc));
   1082 }
   1083 
   1084 
   1085 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
   1086       BasicBlock *LocB) {
   1087   DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName()
   1088                << " for nodes:\n" << NA);
   1089   unsigned Num = NA.size();
   1090   GepNode *RN = NA[0];
   1091   assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root");
   1092 
   1093   Value *NewInst = 0;
   1094   Value *Input = RN->BaseVal;
   1095   Value **IdxList = new Value*[Num+1];
   1096   unsigned nax = 0;
   1097   do {
   1098     unsigned IdxC = 0;
   1099     // If the type of the input of the first node is not a pointer,
   1100     // we need to add an artificial i32 0 to the indices (because the
   1101     // actual input in the IR will be a pointer).
   1102     if (!NA[nax]->PTy->isPointerTy()) {
   1103       Type *Int32Ty = Type::getInt32Ty(*Ctx);
   1104       IdxList[IdxC++] = ConstantInt::get(Int32Ty, 0);
   1105     }
   1106 
   1107     // Keep adding indices from NA until we have to stop and generate
   1108     // an "intermediate" GEP.
   1109     while (++nax <= Num) {
   1110       GepNode *N = NA[nax-1];
   1111       IdxList[IdxC++] = N->Idx;
   1112       if (nax < Num) {
   1113         // We have to stop, if the expected type of the output of this node
   1114         // is not the same as the input type of the next node.
   1115         Type *NextTy = next_type(N->PTy, N->Idx);
   1116         if (NextTy != NA[nax]->PTy)
   1117           break;
   1118       }
   1119     }
   1120     ArrayRef<Value*> A(IdxList, IdxC);
   1121     Type *InpTy = Input->getType();
   1122     Type *ElTy = cast<PointerType>(InpTy->getScalarType())->getElementType();
   1123     NewInst = GetElementPtrInst::Create(ElTy, Input, A, "cgep", &*At);
   1124     DEBUG(dbgs() << "new GEP: " << *NewInst << '\n');
   1125     Input = NewInst;
   1126   } while (nax <= Num);
   1127 
   1128   delete[] IdxList;
   1129   return NewInst;
   1130 }
   1131 
   1132 
   1133 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values,
   1134       NodeChildrenMap &NCM) {
   1135   NodeVect Work;
   1136   Work.push_back(Node);
   1137 
   1138   while (!Work.empty()) {
   1139     NodeVect::iterator First = Work.begin();
   1140     GepNode *N = *First;
   1141     Work.erase(First);
   1142     if (N->Flags & GepNode::Used) {
   1143       NodeToUsesMap::iterator UF = Uses.find(N);
   1144       assert(UF != Uses.end() && "No use information for used node");
   1145       UseSet &Us = UF->second;
   1146       for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I)
   1147         Values.push_back((*I)->getUser());
   1148     }
   1149     NodeChildrenMap::iterator CF = NCM.find(N);
   1150     if (CF != NCM.end()) {
   1151       NodeVect &Cs = CF->second;
   1152       Work.insert(Work.end(), Cs.begin(), Cs.end());
   1153     }
   1154   }
   1155 }
   1156 
   1157 
   1158 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) {
   1159   DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n');
   1160   NodeChildrenMap NCM;
   1161   NodeVect Roots;
   1162   // Compute the inversion again, since computing placement could alter
   1163   // "parent" relation between nodes.
   1164   invert_find_roots(Nodes, NCM, Roots);
   1165 
   1166   while (!Roots.empty()) {
   1167     NodeVect::iterator First = Roots.begin();
   1168     GepNode *Root = *First, *Last = *First;
   1169     Roots.erase(First);
   1170 
   1171     NodeVect NA;  // Nodes to assemble.
   1172     // Append to NA all child nodes up to (and including) the first child
   1173     // that:
   1174     // (1) has more than 1 child, or
   1175     // (2) is used, or
   1176     // (3) has a child located in a different block.
   1177     bool LastUsed = false;
   1178     unsigned LastCN = 0;
   1179     // The location may be null if the computation failed (it can legitimately
   1180     // happen for nodes created from dead GEPs).
   1181     Value *LocV = Loc[Last];
   1182     if (!LocV)
   1183       continue;
   1184     BasicBlock *LastB = cast<BasicBlock>(LocV);
   1185     do {
   1186       NA.push_back(Last);
   1187       LastUsed = (Last->Flags & GepNode::Used);
   1188       if (LastUsed)
   1189         break;
   1190       NodeChildrenMap::iterator CF = NCM.find(Last);
   1191       LastCN = (CF != NCM.end()) ? CF->second.size() : 0;
   1192       if (LastCN != 1)
   1193         break;
   1194       GepNode *Child = CF->second.front();
   1195       BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]);
   1196       if (ChildB != 0 && LastB != ChildB)
   1197         break;
   1198       Last = Child;
   1199     } while (true);
   1200 
   1201     BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator();
   1202     if (LastUsed || LastCN > 0) {
   1203       ValueVect Urs;
   1204       getAllUsersForNode(Root, Urs, NCM);
   1205       BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB);
   1206       if (FirstUse != LastB->end())
   1207         InsertAt = FirstUse;
   1208     }
   1209 
   1210     // Generate a new instruction for NA.
   1211     Value *NewInst = fabricateGEP(NA, InsertAt, LastB);
   1212 
   1213     // Convert all the children of Last node into roots, and append them
   1214     // to the Roots list.
   1215     if (LastCN > 0) {
   1216       NodeVect &Cs = NCM[Last];
   1217       for (NodeVect::iterator I = Cs.begin(), E = Cs.end(); I != E; ++I) {
   1218         GepNode *CN = *I;
   1219         CN->Flags &= ~GepNode::Internal;
   1220         CN->Flags |= GepNode::Root;
   1221         CN->BaseVal = NewInst;
   1222         Roots.push_back(CN);
   1223       }
   1224     }
   1225 
   1226     // Lastly, if the Last node was used, replace all uses with the new GEP.
   1227     // The uses reference the original GEP values.
   1228     if (LastUsed) {
   1229       NodeToUsesMap::iterator UF = Uses.find(Last);
   1230       assert(UF != Uses.end() && "No use information found");
   1231       UseSet &Us = UF->second;
   1232       for (UseSet::iterator I = Us.begin(), E = Us.end(); I != E; ++I) {
   1233         Use *U = *I;
   1234         U->set(NewInst);
   1235       }
   1236     }
   1237   }
   1238 }
   1239 
   1240 
   1241 void HexagonCommonGEP::removeDeadCode() {
   1242   ValueVect BO;
   1243   BO.push_back(&Fn->front());
   1244 
   1245   for (unsigned i = 0; i < BO.size(); ++i) {
   1246     BasicBlock *B = cast<BasicBlock>(BO[i]);
   1247     DomTreeNode *N = DT->getNode(B);
   1248     typedef GraphTraits<DomTreeNode*> GTN;
   1249     typedef GTN::ChildIteratorType Iter;
   1250     for (Iter I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
   1251       BO.push_back((*I)->getBlock());
   1252   }
   1253 
   1254   for (unsigned i = BO.size(); i > 0; --i) {
   1255     BasicBlock *B = cast<BasicBlock>(BO[i-1]);
   1256     BasicBlock::InstListType &IL = B->getInstList();
   1257     typedef BasicBlock::InstListType::reverse_iterator reverse_iterator;
   1258     ValueVect Ins;
   1259     for (reverse_iterator I = IL.rbegin(), E = IL.rend(); I != E; ++I)
   1260       Ins.push_back(&*I);
   1261     for (ValueVect::iterator I = Ins.begin(), E = Ins.end(); I != E; ++I) {
   1262       Instruction *In = cast<Instruction>(*I);
   1263       if (isInstructionTriviallyDead(In))
   1264         In->eraseFromParent();
   1265     }
   1266   }
   1267 }
   1268 
   1269 
   1270 bool HexagonCommonGEP::runOnFunction(Function &F) {
   1271   // For now bail out on C++ exception handling.
   1272   for (Function::iterator A = F.begin(), Z = F.end(); A != Z; ++A)
   1273     for (BasicBlock::iterator I = A->begin(), E = A->end(); I != E; ++I)
   1274       if (isa<InvokeInst>(I) || isa<LandingPadInst>(I))
   1275         return false;
   1276 
   1277   Fn = &F;
   1278   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1279   PDT = &getAnalysis<PostDominatorTree>();
   1280   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
   1281   Ctx = &F.getContext();
   1282 
   1283   Nodes.clear();
   1284   Uses.clear();
   1285   NodeOrder.clear();
   1286 
   1287   SpecificBumpPtrAllocator<GepNode> Allocator;
   1288   Mem = &Allocator;
   1289 
   1290   collect();
   1291   common();
   1292 
   1293   NodeToValueMap Loc;
   1294   computeNodePlacement(Loc);
   1295   materialize(Loc);
   1296   removeDeadCode();
   1297 
   1298 #ifdef XDEBUG
   1299   // Run this only when expensive checks are enabled.
   1300   verifyFunction(F);
   1301 #endif
   1302   return true;
   1303 }
   1304 
   1305 
   1306 namespace llvm {
   1307   FunctionPass *createHexagonCommonGEP() {
   1308     return new HexagonCommonGEP();
   1309   }
   1310 }
   1311