Home | History | Annotate | Download | only in compiler
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
      6 #define V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/compiler/common-operator.h"
     10 #include "src/compiler/graph.h"
     11 #include "src/compiler/linkage.h"
     12 #include "src/compiler/machine-operator.h"
     13 #include "src/compiler/node.h"
     14 #include "src/compiler/operator.h"
     15 #include "src/factory.h"
     16 
     17 namespace v8 {
     18 namespace internal {
     19 namespace compiler {
     20 
     21 class BasicBlock;
     22 class RawMachineLabel;
     23 class Schedule;
     24 
     25 
     26 // The RawMachineAssembler produces a low-level IR graph. All nodes are wired
     27 // into a graph and also placed into a schedule immediately, hence subsequent
     28 // code generation can happen without the need for scheduling.
     29 //
     30 // In order to create a schedule on-the-fly, the assembler keeps track of basic
     31 // blocks by having one current basic block being populated and by referencing
     32 // other basic blocks through the use of labels.
     33 //
     34 // Also note that the generated graph is only valid together with the generated
     35 // schedule, using one without the other is invalid as the graph is inherently
     36 // non-schedulable due to missing control and effect dependencies.
     37 class RawMachineAssembler {
     38  public:
     39   RawMachineAssembler(
     40       Isolate* isolate, Graph* graph, CallDescriptor* call_descriptor,
     41       MachineRepresentation word = MachineType::PointerRepresentation(),
     42       MachineOperatorBuilder::Flags flags =
     43           MachineOperatorBuilder::Flag::kNoFlags);
     44   ~RawMachineAssembler() {}
     45 
     46   Isolate* isolate() const { return isolate_; }
     47   Graph* graph() const { return graph_; }
     48   Zone* zone() const { return graph()->zone(); }
     49   MachineOperatorBuilder* machine() { return &machine_; }
     50   CommonOperatorBuilder* common() { return &common_; }
     51   CallDescriptor* call_descriptor() const { return call_descriptor_; }
     52 
     53   // Finalizes the schedule and exports it to be used for code generation. Note
     54   // that this RawMachineAssembler becomes invalid after export.
     55   Schedule* Export();
     56 
     57   // ===========================================================================
     58   // The following utility methods create new nodes with specific operators and
     59   // place them into the current basic block. They don't perform control flow,
     60   // hence will not switch the current basic block.
     61 
     62   Node* NullConstant() {
     63     return HeapConstant(isolate()->factory()->null_value());
     64   }
     65 
     66   Node* UndefinedConstant() {
     67     return HeapConstant(isolate()->factory()->undefined_value());
     68   }
     69 
     70   // Constants.
     71   Node* PointerConstant(void* value) {
     72     return IntPtrConstant(reinterpret_cast<intptr_t>(value));
     73   }
     74   Node* IntPtrConstant(intptr_t value) {
     75     // TODO(dcarney): mark generated code as unserializable if value != 0.
     76     return kPointerSize == 8 ? Int64Constant(value)
     77                              : Int32Constant(static_cast<int>(value));
     78   }
     79   Node* RelocatableIntPtrConstant(intptr_t value, RelocInfo::Mode rmode);
     80   Node* Int32Constant(int32_t value) {
     81     return AddNode(common()->Int32Constant(value));
     82   }
     83   Node* StackSlot(MachineRepresentation rep) {
     84     return AddNode(machine()->StackSlot(rep));
     85   }
     86   Node* Int64Constant(int64_t value) {
     87     return AddNode(common()->Int64Constant(value));
     88   }
     89   Node* NumberConstant(double value) {
     90     return AddNode(common()->NumberConstant(value));
     91   }
     92   Node* Float32Constant(float value) {
     93     return AddNode(common()->Float32Constant(value));
     94   }
     95   Node* Float64Constant(double value) {
     96     return AddNode(common()->Float64Constant(value));
     97   }
     98   Node* HeapConstant(Handle<HeapObject> object) {
     99     return AddNode(common()->HeapConstant(object));
    100   }
    101   Node* BooleanConstant(bool value) {
    102     Handle<Object> object = isolate()->factory()->ToBoolean(value);
    103     return HeapConstant(Handle<HeapObject>::cast(object));
    104   }
    105   Node* ExternalConstant(ExternalReference address) {
    106     return AddNode(common()->ExternalConstant(address));
    107   }
    108   Node* RelocatableInt32Constant(int32_t value, RelocInfo::Mode rmode) {
    109     return AddNode(common()->RelocatableInt32Constant(value, rmode));
    110   }
    111   Node* RelocatableInt64Constant(int64_t value, RelocInfo::Mode rmode) {
    112     return AddNode(common()->RelocatableInt64Constant(value, rmode));
    113   }
    114 
    115   Node* Projection(int index, Node* a) {
    116     return AddNode(common()->Projection(index), a);
    117   }
    118 
    119   // Memory Operations.
    120   Node* Load(MachineType rep, Node* base) {
    121     return Load(rep, base, IntPtrConstant(0));
    122   }
    123   Node* Load(MachineType rep, Node* base, Node* index) {
    124     return AddNode(machine()->Load(rep), base, index);
    125   }
    126   Node* Store(MachineRepresentation rep, Node* base, Node* value,
    127               WriteBarrierKind write_barrier) {
    128     return Store(rep, base, IntPtrConstant(0), value, write_barrier);
    129   }
    130   Node* Store(MachineRepresentation rep, Node* base, Node* index, Node* value,
    131               WriteBarrierKind write_barrier) {
    132     return AddNode(machine()->Store(StoreRepresentation(rep, write_barrier)),
    133                    base, index, value);
    134   }
    135 
    136   // Atomic memory operations.
    137   Node* AtomicLoad(MachineType rep, Node* base, Node* index) {
    138     return AddNode(machine()->AtomicLoad(rep), base, index);
    139   }
    140   Node* AtomicStore(MachineRepresentation rep, Node* base, Node* index,
    141                     Node* value) {
    142     return AddNode(machine()->AtomicStore(rep), base, index, value);
    143   }
    144 
    145   // Arithmetic Operations.
    146   Node* WordAnd(Node* a, Node* b) {
    147     return AddNode(machine()->WordAnd(), a, b);
    148   }
    149   Node* WordOr(Node* a, Node* b) { return AddNode(machine()->WordOr(), a, b); }
    150   Node* WordXor(Node* a, Node* b) {
    151     return AddNode(machine()->WordXor(), a, b);
    152   }
    153   Node* WordShl(Node* a, Node* b) {
    154     return AddNode(machine()->WordShl(), a, b);
    155   }
    156   Node* WordShr(Node* a, Node* b) {
    157     return AddNode(machine()->WordShr(), a, b);
    158   }
    159   Node* WordSar(Node* a, Node* b) {
    160     return AddNode(machine()->WordSar(), a, b);
    161   }
    162   Node* WordRor(Node* a, Node* b) {
    163     return AddNode(machine()->WordRor(), a, b);
    164   }
    165   Node* WordEqual(Node* a, Node* b) {
    166     return AddNode(machine()->WordEqual(), a, b);
    167   }
    168   Node* WordNotEqual(Node* a, Node* b) {
    169     return Word32BinaryNot(WordEqual(a, b));
    170   }
    171   Node* WordNot(Node* a) {
    172     if (machine()->Is32()) {
    173       return Word32Not(a);
    174     } else {
    175       return Word64Not(a);
    176     }
    177   }
    178 
    179   Node* Word32And(Node* a, Node* b) {
    180     return AddNode(machine()->Word32And(), a, b);
    181   }
    182   Node* Word32Or(Node* a, Node* b) {
    183     return AddNode(machine()->Word32Or(), a, b);
    184   }
    185   Node* Word32Xor(Node* a, Node* b) {
    186     return AddNode(machine()->Word32Xor(), a, b);
    187   }
    188   Node* Word32Shl(Node* a, Node* b) {
    189     return AddNode(machine()->Word32Shl(), a, b);
    190   }
    191   Node* Word32Shr(Node* a, Node* b) {
    192     return AddNode(machine()->Word32Shr(), a, b);
    193   }
    194   Node* Word32Sar(Node* a, Node* b) {
    195     return AddNode(machine()->Word32Sar(), a, b);
    196   }
    197   Node* Word32Ror(Node* a, Node* b) {
    198     return AddNode(machine()->Word32Ror(), a, b);
    199   }
    200   Node* Word32Clz(Node* a) { return AddNode(machine()->Word32Clz(), a); }
    201   Node* Word32Equal(Node* a, Node* b) {
    202     return AddNode(machine()->Word32Equal(), a, b);
    203   }
    204   Node* Word32NotEqual(Node* a, Node* b) {
    205     return Word32BinaryNot(Word32Equal(a, b));
    206   }
    207   Node* Word32Not(Node* a) { return Word32Xor(a, Int32Constant(-1)); }
    208   Node* Word32BinaryNot(Node* a) { return Word32Equal(a, Int32Constant(0)); }
    209 
    210   Node* Word64And(Node* a, Node* b) {
    211     return AddNode(machine()->Word64And(), a, b);
    212   }
    213   Node* Word64Or(Node* a, Node* b) {
    214     return AddNode(machine()->Word64Or(), a, b);
    215   }
    216   Node* Word64Xor(Node* a, Node* b) {
    217     return AddNode(machine()->Word64Xor(), a, b);
    218   }
    219   Node* Word64Shl(Node* a, Node* b) {
    220     return AddNode(machine()->Word64Shl(), a, b);
    221   }
    222   Node* Word64Shr(Node* a, Node* b) {
    223     return AddNode(machine()->Word64Shr(), a, b);
    224   }
    225   Node* Word64Sar(Node* a, Node* b) {
    226     return AddNode(machine()->Word64Sar(), a, b);
    227   }
    228   Node* Word64Ror(Node* a, Node* b) {
    229     return AddNode(machine()->Word64Ror(), a, b);
    230   }
    231   Node* Word64Clz(Node* a) { return AddNode(machine()->Word64Clz(), a); }
    232   Node* Word64Equal(Node* a, Node* b) {
    233     return AddNode(machine()->Word64Equal(), a, b);
    234   }
    235   Node* Word64NotEqual(Node* a, Node* b) {
    236     return Word32BinaryNot(Word64Equal(a, b));
    237   }
    238   Node* Word64Not(Node* a) { return Word64Xor(a, Int64Constant(-1)); }
    239 
    240   Node* Int32Add(Node* a, Node* b) {
    241     return AddNode(machine()->Int32Add(), a, b);
    242   }
    243   Node* Int32AddWithOverflow(Node* a, Node* b) {
    244     return AddNode(machine()->Int32AddWithOverflow(), a, b);
    245   }
    246   Node* Int32Sub(Node* a, Node* b) {
    247     return AddNode(machine()->Int32Sub(), a, b);
    248   }
    249   Node* Int32SubWithOverflow(Node* a, Node* b) {
    250     return AddNode(machine()->Int32SubWithOverflow(), a, b);
    251   }
    252   Node* Int32Mul(Node* a, Node* b) {
    253     return AddNode(machine()->Int32Mul(), a, b);
    254   }
    255   Node* Int32MulHigh(Node* a, Node* b) {
    256     return AddNode(machine()->Int32MulHigh(), a, b);
    257   }
    258   Node* Int32Div(Node* a, Node* b) {
    259     return AddNode(machine()->Int32Div(), a, b);
    260   }
    261   Node* Int32Mod(Node* a, Node* b) {
    262     return AddNode(machine()->Int32Mod(), a, b);
    263   }
    264   Node* Int32LessThan(Node* a, Node* b) {
    265     return AddNode(machine()->Int32LessThan(), a, b);
    266   }
    267   Node* Int32LessThanOrEqual(Node* a, Node* b) {
    268     return AddNode(machine()->Int32LessThanOrEqual(), a, b);
    269   }
    270   Node* Uint32Div(Node* a, Node* b) {
    271     return AddNode(machine()->Uint32Div(), a, b);
    272   }
    273   Node* Uint32LessThan(Node* a, Node* b) {
    274     return AddNode(machine()->Uint32LessThan(), a, b);
    275   }
    276   Node* Uint32LessThanOrEqual(Node* a, Node* b) {
    277     return AddNode(machine()->Uint32LessThanOrEqual(), a, b);
    278   }
    279   Node* Uint32Mod(Node* a, Node* b) {
    280     return AddNode(machine()->Uint32Mod(), a, b);
    281   }
    282   Node* Uint32MulHigh(Node* a, Node* b) {
    283     return AddNode(machine()->Uint32MulHigh(), a, b);
    284   }
    285   Node* Int32GreaterThan(Node* a, Node* b) { return Int32LessThan(b, a); }
    286   Node* Int32GreaterThanOrEqual(Node* a, Node* b) {
    287     return Int32LessThanOrEqual(b, a);
    288   }
    289   Node* Uint32GreaterThan(Node* a, Node* b) { return Uint32LessThan(b, a); }
    290   Node* Uint32GreaterThanOrEqual(Node* a, Node* b) {
    291     return Uint32LessThanOrEqual(b, a);
    292   }
    293   Node* Int32Neg(Node* a) { return Int32Sub(Int32Constant(0), a); }
    294 
    295   Node* Int64Add(Node* a, Node* b) {
    296     return AddNode(machine()->Int64Add(), a, b);
    297   }
    298   Node* Int64AddWithOverflow(Node* a, Node* b) {
    299     return AddNode(machine()->Int64AddWithOverflow(), a, b);
    300   }
    301   Node* Int64Sub(Node* a, Node* b) {
    302     return AddNode(machine()->Int64Sub(), a, b);
    303   }
    304   Node* Int64SubWithOverflow(Node* a, Node* b) {
    305     return AddNode(machine()->Int64SubWithOverflow(), a, b);
    306   }
    307   Node* Int64Mul(Node* a, Node* b) {
    308     return AddNode(machine()->Int64Mul(), a, b);
    309   }
    310   Node* Int64Div(Node* a, Node* b) {
    311     return AddNode(machine()->Int64Div(), a, b);
    312   }
    313   Node* Int64Mod(Node* a, Node* b) {
    314     return AddNode(machine()->Int64Mod(), a, b);
    315   }
    316   Node* Int64Neg(Node* a) { return Int64Sub(Int64Constant(0), a); }
    317   Node* Int64LessThan(Node* a, Node* b) {
    318     return AddNode(machine()->Int64LessThan(), a, b);
    319   }
    320   Node* Int64LessThanOrEqual(Node* a, Node* b) {
    321     return AddNode(machine()->Int64LessThanOrEqual(), a, b);
    322   }
    323   Node* Uint64LessThan(Node* a, Node* b) {
    324     return AddNode(machine()->Uint64LessThan(), a, b);
    325   }
    326   Node* Uint64LessThanOrEqual(Node* a, Node* b) {
    327     return AddNode(machine()->Uint64LessThanOrEqual(), a, b);
    328   }
    329   Node* Int64GreaterThan(Node* a, Node* b) { return Int64LessThan(b, a); }
    330   Node* Int64GreaterThanOrEqual(Node* a, Node* b) {
    331     return Int64LessThanOrEqual(b, a);
    332   }
    333   Node* Uint64GreaterThan(Node* a, Node* b) { return Uint64LessThan(b, a); }
    334   Node* Uint64GreaterThanOrEqual(Node* a, Node* b) {
    335     return Uint64LessThanOrEqual(b, a);
    336   }
    337   Node* Uint64Div(Node* a, Node* b) {
    338     return AddNode(machine()->Uint64Div(), a, b);
    339   }
    340   Node* Uint64Mod(Node* a, Node* b) {
    341     return AddNode(machine()->Uint64Mod(), a, b);
    342   }
    343   Node* Int32PairAdd(Node* a_low, Node* a_high, Node* b_low, Node* b_high) {
    344     return AddNode(machine()->Int32PairAdd(), a_low, a_high, b_low, b_high);
    345   }
    346   Node* Int32PairSub(Node* a_low, Node* a_high, Node* b_low, Node* b_high) {
    347     return AddNode(machine()->Int32PairSub(), a_low, a_high, b_low, b_high);
    348   }
    349   Node* Int32PairMul(Node* a_low, Node* a_high, Node* b_low, Node* b_high) {
    350     return AddNode(machine()->Int32PairMul(), a_low, a_high, b_low, b_high);
    351   }
    352   Node* Word32PairShl(Node* low_word, Node* high_word, Node* shift) {
    353     return AddNode(machine()->Word32PairShl(), low_word, high_word, shift);
    354   }
    355   Node* Word32PairShr(Node* low_word, Node* high_word, Node* shift) {
    356     return AddNode(machine()->Word32PairShr(), low_word, high_word, shift);
    357   }
    358   Node* Word32PairSar(Node* low_word, Node* high_word, Node* shift) {
    359     return AddNode(machine()->Word32PairSar(), low_word, high_word, shift);
    360   }
    361 
    362 #define INTPTR_BINOP(prefix, name)                     \
    363   Node* IntPtr##name(Node* a, Node* b) {               \
    364     return kPointerSize == 8 ? prefix##64##name(a, b)  \
    365                              : prefix##32##name(a, b); \
    366   }
    367 
    368   INTPTR_BINOP(Int, Add);
    369   INTPTR_BINOP(Int, AddWithOverflow);
    370   INTPTR_BINOP(Int, Sub);
    371   INTPTR_BINOP(Int, SubWithOverflow);
    372   INTPTR_BINOP(Int, Mul);
    373   INTPTR_BINOP(Int, Div);
    374   INTPTR_BINOP(Int, LessThan);
    375   INTPTR_BINOP(Int, LessThanOrEqual);
    376   INTPTR_BINOP(Word, Equal);
    377   INTPTR_BINOP(Word, NotEqual);
    378   INTPTR_BINOP(Int, GreaterThanOrEqual);
    379   INTPTR_BINOP(Int, GreaterThan);
    380 
    381 #undef INTPTR_BINOP
    382 
    383 #define UINTPTR_BINOP(prefix, name)                    \
    384   Node* UintPtr##name(Node* a, Node* b) {              \
    385     return kPointerSize == 8 ? prefix##64##name(a, b)  \
    386                              : prefix##32##name(a, b); \
    387   }
    388 
    389   UINTPTR_BINOP(Uint, LessThan);
    390   UINTPTR_BINOP(Uint, LessThanOrEqual);
    391   UINTPTR_BINOP(Uint, GreaterThanOrEqual);
    392   UINTPTR_BINOP(Uint, GreaterThan);
    393 
    394 #undef UINTPTR_BINOP
    395 
    396   Node* Float32Add(Node* a, Node* b) {
    397     return AddNode(machine()->Float32Add(), a, b);
    398   }
    399   Node* Float32Sub(Node* a, Node* b) {
    400     return AddNode(machine()->Float32Sub(), a, b);
    401   }
    402   Node* Float32SubPreserveNan(Node* a, Node* b) {
    403     return AddNode(machine()->Float32SubPreserveNan(), a, b);
    404   }
    405   Node* Float32Mul(Node* a, Node* b) {
    406     return AddNode(machine()->Float32Mul(), a, b);
    407   }
    408   Node* Float32Div(Node* a, Node* b) {
    409     return AddNode(machine()->Float32Div(), a, b);
    410   }
    411   Node* Float32Max(Node* a, Node* b) {
    412     return AddNode(machine()->Float32Max().op(), a, b);
    413   }
    414   Node* Float32Min(Node* a, Node* b) {
    415     return AddNode(machine()->Float32Min().op(), a, b);
    416   }
    417   Node* Float32Abs(Node* a) { return AddNode(machine()->Float32Abs(), a); }
    418   Node* Float32Neg(Node* a) { return Float32Sub(Float32Constant(-0.0f), a); }
    419   Node* Float32Sqrt(Node* a) { return AddNode(machine()->Float32Sqrt(), a); }
    420   Node* Float32Equal(Node* a, Node* b) {
    421     return AddNode(machine()->Float32Equal(), a, b);
    422   }
    423   Node* Float32NotEqual(Node* a, Node* b) {
    424     return Word32BinaryNot(Float32Equal(a, b));
    425   }
    426   Node* Float32LessThan(Node* a, Node* b) {
    427     return AddNode(machine()->Float32LessThan(), a, b);
    428   }
    429   Node* Float32LessThanOrEqual(Node* a, Node* b) {
    430     return AddNode(machine()->Float32LessThanOrEqual(), a, b);
    431   }
    432   Node* Float32GreaterThan(Node* a, Node* b) { return Float32LessThan(b, a); }
    433   Node* Float32GreaterThanOrEqual(Node* a, Node* b) {
    434     return Float32LessThanOrEqual(b, a);
    435   }
    436 
    437   Node* Float64Add(Node* a, Node* b) {
    438     return AddNode(machine()->Float64Add(), a, b);
    439   }
    440   Node* Float64Sub(Node* a, Node* b) {
    441     return AddNode(machine()->Float64Sub(), a, b);
    442   }
    443   Node* Float64SubPreserveNan(Node* a, Node* b) {
    444     return AddNode(machine()->Float64SubPreserveNan(), a, b);
    445   }
    446   Node* Float64Mul(Node* a, Node* b) {
    447     return AddNode(machine()->Float64Mul(), a, b);
    448   }
    449   Node* Float64Div(Node* a, Node* b) {
    450     return AddNode(machine()->Float64Div(), a, b);
    451   }
    452   Node* Float64Mod(Node* a, Node* b) {
    453     return AddNode(machine()->Float64Mod(), a, b);
    454   }
    455   Node* Float64Max(Node* a, Node* b) {
    456     return AddNode(machine()->Float64Max().op(), a, b);
    457   }
    458   Node* Float64Min(Node* a, Node* b) {
    459     return AddNode(machine()->Float64Min().op(), a, b);
    460   }
    461   Node* Float64Abs(Node* a) { return AddNode(machine()->Float64Abs(), a); }
    462   Node* Float64Neg(Node* a) { return Float64Sub(Float64Constant(-0.0), a); }
    463   Node* Float64Atan(Node* a) { return AddNode(machine()->Float64Atan(), a); }
    464   Node* Float64Atan2(Node* a, Node* b) {
    465     return AddNode(machine()->Float64Atan2(), a, b);
    466   }
    467   Node* Float64Atanh(Node* a) { return AddNode(machine()->Float64Atanh(), a); }
    468   Node* Float64Cbrt(Node* a) { return AddNode(machine()->Float64Cbrt(), a); }
    469   Node* Float64Cos(Node* a) { return AddNode(machine()->Float64Cos(), a); }
    470   Node* Float64Exp(Node* a) { return AddNode(machine()->Float64Exp(), a); }
    471   Node* Float64Expm1(Node* a) { return AddNode(machine()->Float64Expm1(), a); }
    472   Node* Float64Log(Node* a) { return AddNode(machine()->Float64Log(), a); }
    473   Node* Float64Log1p(Node* a) { return AddNode(machine()->Float64Log1p(), a); }
    474   Node* Float64Log10(Node* a) { return AddNode(machine()->Float64Log10(), a); }
    475   Node* Float64Log2(Node* a) { return AddNode(machine()->Float64Log2(), a); }
    476   Node* Float64Sin(Node* a) { return AddNode(machine()->Float64Sin(), a); }
    477   Node* Float64Sqrt(Node* a) { return AddNode(machine()->Float64Sqrt(), a); }
    478   Node* Float64Tan(Node* a) { return AddNode(machine()->Float64Tan(), a); }
    479   Node* Float64Equal(Node* a, Node* b) {
    480     return AddNode(machine()->Float64Equal(), a, b);
    481   }
    482   Node* Float64NotEqual(Node* a, Node* b) {
    483     return Word32BinaryNot(Float64Equal(a, b));
    484   }
    485   Node* Float64LessThan(Node* a, Node* b) {
    486     return AddNode(machine()->Float64LessThan(), a, b);
    487   }
    488   Node* Float64LessThanOrEqual(Node* a, Node* b) {
    489     return AddNode(machine()->Float64LessThanOrEqual(), a, b);
    490   }
    491   Node* Float64GreaterThan(Node* a, Node* b) { return Float64LessThan(b, a); }
    492   Node* Float64GreaterThanOrEqual(Node* a, Node* b) {
    493     return Float64LessThanOrEqual(b, a);
    494   }
    495 
    496   // Conversions.
    497   Node* BitcastWordToTagged(Node* a) {
    498     return AddNode(machine()->BitcastWordToTagged(), a);
    499   }
    500   Node* TruncateFloat64ToWord32(Node* a) {
    501     return AddNode(machine()->TruncateFloat64ToWord32(), a);
    502   }
    503   Node* ChangeFloat32ToFloat64(Node* a) {
    504     return AddNode(machine()->ChangeFloat32ToFloat64(), a);
    505   }
    506   Node* ChangeInt32ToFloat64(Node* a) {
    507     return AddNode(machine()->ChangeInt32ToFloat64(), a);
    508   }
    509   Node* ChangeUint32ToFloat64(Node* a) {
    510     return AddNode(machine()->ChangeUint32ToFloat64(), a);
    511   }
    512   Node* ChangeFloat64ToInt32(Node* a) {
    513     return AddNode(machine()->ChangeFloat64ToInt32(), a);
    514   }
    515   Node* ChangeFloat64ToUint32(Node* a) {
    516     return AddNode(machine()->ChangeFloat64ToUint32(), a);
    517   }
    518   Node* TruncateFloat64ToUint32(Node* a) {
    519     return AddNode(machine()->TruncateFloat64ToUint32(), a);
    520   }
    521   Node* TruncateFloat32ToInt32(Node* a) {
    522     return AddNode(machine()->TruncateFloat32ToInt32(), a);
    523   }
    524   Node* TruncateFloat32ToUint32(Node* a) {
    525     return AddNode(machine()->TruncateFloat32ToUint32(), a);
    526   }
    527   Node* TryTruncateFloat32ToInt64(Node* a) {
    528     return AddNode(machine()->TryTruncateFloat32ToInt64(), a);
    529   }
    530   Node* TryTruncateFloat64ToInt64(Node* a) {
    531     return AddNode(machine()->TryTruncateFloat64ToInt64(), a);
    532   }
    533   Node* TryTruncateFloat32ToUint64(Node* a) {
    534     return AddNode(machine()->TryTruncateFloat32ToUint64(), a);
    535   }
    536   Node* TryTruncateFloat64ToUint64(Node* a) {
    537     return AddNode(machine()->TryTruncateFloat64ToUint64(), a);
    538   }
    539   Node* ChangeInt32ToInt64(Node* a) {
    540     return AddNode(machine()->ChangeInt32ToInt64(), a);
    541   }
    542   Node* ChangeUint32ToUint64(Node* a) {
    543     return AddNode(machine()->ChangeUint32ToUint64(), a);
    544   }
    545   Node* TruncateFloat64ToFloat32(Node* a) {
    546     return AddNode(machine()->TruncateFloat64ToFloat32(), a);
    547   }
    548   Node* TruncateInt64ToInt32(Node* a) {
    549     return AddNode(machine()->TruncateInt64ToInt32(), a);
    550   }
    551   Node* RoundFloat64ToInt32(Node* a) {
    552     return AddNode(machine()->RoundFloat64ToInt32(), a);
    553   }
    554   Node* RoundInt32ToFloat32(Node* a) {
    555     return AddNode(machine()->RoundInt32ToFloat32(), a);
    556   }
    557   Node* RoundInt64ToFloat32(Node* a) {
    558     return AddNode(machine()->RoundInt64ToFloat32(), a);
    559   }
    560   Node* RoundInt64ToFloat64(Node* a) {
    561     return AddNode(machine()->RoundInt64ToFloat64(), a);
    562   }
    563   Node* RoundUint32ToFloat32(Node* a) {
    564     return AddNode(machine()->RoundUint32ToFloat32(), a);
    565   }
    566   Node* RoundUint64ToFloat32(Node* a) {
    567     return AddNode(machine()->RoundUint64ToFloat32(), a);
    568   }
    569   Node* RoundUint64ToFloat64(Node* a) {
    570     return AddNode(machine()->RoundUint64ToFloat64(), a);
    571   }
    572   Node* BitcastFloat32ToInt32(Node* a) {
    573     return AddNode(machine()->BitcastFloat32ToInt32(), a);
    574   }
    575   Node* BitcastFloat64ToInt64(Node* a) {
    576     return AddNode(machine()->BitcastFloat64ToInt64(), a);
    577   }
    578   Node* BitcastInt32ToFloat32(Node* a) {
    579     return AddNode(machine()->BitcastInt32ToFloat32(), a);
    580   }
    581   Node* BitcastInt64ToFloat64(Node* a) {
    582     return AddNode(machine()->BitcastInt64ToFloat64(), a);
    583   }
    584   Node* Float32RoundDown(Node* a) {
    585     return AddNode(machine()->Float32RoundDown().op(), a);
    586   }
    587   Node* Float64RoundDown(Node* a) {
    588     return AddNode(machine()->Float64RoundDown().op(), a);
    589   }
    590   Node* Float32RoundUp(Node* a) {
    591     return AddNode(machine()->Float32RoundUp().op(), a);
    592   }
    593   Node* Float64RoundUp(Node* a) {
    594     return AddNode(machine()->Float64RoundUp().op(), a);
    595   }
    596   Node* Float32RoundTruncate(Node* a) {
    597     return AddNode(machine()->Float32RoundTruncate().op(), a);
    598   }
    599   Node* Float64RoundTruncate(Node* a) {
    600     return AddNode(machine()->Float64RoundTruncate().op(), a);
    601   }
    602   Node* Float64RoundTiesAway(Node* a) {
    603     return AddNode(machine()->Float64RoundTiesAway().op(), a);
    604   }
    605   Node* Float32RoundTiesEven(Node* a) {
    606     return AddNode(machine()->Float32RoundTiesEven().op(), a);
    607   }
    608   Node* Float64RoundTiesEven(Node* a) {
    609     return AddNode(machine()->Float64RoundTiesEven().op(), a);
    610   }
    611 
    612   // Float64 bit operations.
    613   Node* Float64ExtractLowWord32(Node* a) {
    614     return AddNode(machine()->Float64ExtractLowWord32(), a);
    615   }
    616   Node* Float64ExtractHighWord32(Node* a) {
    617     return AddNode(machine()->Float64ExtractHighWord32(), a);
    618   }
    619   Node* Float64InsertLowWord32(Node* a, Node* b) {
    620     return AddNode(machine()->Float64InsertLowWord32(), a, b);
    621   }
    622   Node* Float64InsertHighWord32(Node* a, Node* b) {
    623     return AddNode(machine()->Float64InsertHighWord32(), a, b);
    624   }
    625 
    626   // Stack operations.
    627   Node* LoadStackPointer() { return AddNode(machine()->LoadStackPointer()); }
    628   Node* LoadFramePointer() { return AddNode(machine()->LoadFramePointer()); }
    629   Node* LoadParentFramePointer() {
    630     return AddNode(machine()->LoadParentFramePointer());
    631   }
    632 
    633   // Parameters.
    634   Node* Parameter(size_t index);
    635 
    636   // Pointer utilities.
    637   Node* LoadFromPointer(void* address, MachineType rep, int32_t offset = 0) {
    638     return Load(rep, PointerConstant(address), Int32Constant(offset));
    639   }
    640   Node* StoreToPointer(void* address, MachineRepresentation rep, Node* node) {
    641     return Store(rep, PointerConstant(address), node, kNoWriteBarrier);
    642   }
    643   Node* StringConstant(const char* string) {
    644     return HeapConstant(isolate()->factory()->InternalizeUtf8String(string));
    645   }
    646 
    647   // Call a given call descriptor and the given arguments.
    648   Node* CallN(CallDescriptor* desc, Node* function, Node** args);
    649   // Call a given call descriptor and the given arguments and frame-state.
    650   Node* CallNWithFrameState(CallDescriptor* desc, Node* function, Node** args,
    651                             Node* frame_state);
    652   // Call to a runtime function with zero arguments.
    653   Node* CallRuntime0(Runtime::FunctionId function, Node* context);
    654   // Call to a runtime function with one arguments.
    655   Node* CallRuntime1(Runtime::FunctionId function, Node* arg0, Node* context);
    656   // Call to a runtime function with two arguments.
    657   Node* CallRuntime2(Runtime::FunctionId function, Node* arg1, Node* arg2,
    658                      Node* context);
    659   // Call to a runtime function with three arguments.
    660   Node* CallRuntime3(Runtime::FunctionId function, Node* arg1, Node* arg2,
    661                      Node* arg3, Node* context);
    662   // Call to a runtime function with four arguments.
    663   Node* CallRuntime4(Runtime::FunctionId function, Node* arg1, Node* arg2,
    664                      Node* arg3, Node* arg4, Node* context);
    665   // Call to a C function with zero arguments.
    666   Node* CallCFunction0(MachineType return_type, Node* function);
    667   // Call to a C function with one parameter.
    668   Node* CallCFunction1(MachineType return_type, MachineType arg0_type,
    669                        Node* function, Node* arg0);
    670   // Call to a C function with two arguments.
    671   Node* CallCFunction2(MachineType return_type, MachineType arg0_type,
    672                        MachineType arg1_type, Node* function, Node* arg0,
    673                        Node* arg1);
    674   // Call to a C function with eight arguments.
    675   Node* CallCFunction8(MachineType return_type, MachineType arg0_type,
    676                        MachineType arg1_type, MachineType arg2_type,
    677                        MachineType arg3_type, MachineType arg4_type,
    678                        MachineType arg5_type, MachineType arg6_type,
    679                        MachineType arg7_type, Node* function, Node* arg0,
    680                        Node* arg1, Node* arg2, Node* arg3, Node* arg4,
    681                        Node* arg5, Node* arg6, Node* arg7);
    682 
    683   // Tail call the given call descriptor and the given arguments.
    684   Node* TailCallN(CallDescriptor* call_descriptor, Node* function, Node** args);
    685   // Tail call to a runtime function with zero arguments.
    686   Node* TailCallRuntime0(Runtime::FunctionId function, Node* context);
    687   // Tail call to a runtime function with one argument.
    688   Node* TailCallRuntime1(Runtime::FunctionId function, Node* arg0,
    689                          Node* context);
    690   // Tail call to a runtime function with two arguments.
    691   Node* TailCallRuntime2(Runtime::FunctionId function, Node* arg1, Node* arg2,
    692                          Node* context);
    693   // Tail call to a runtime function with three arguments.
    694   Node* TailCallRuntime3(Runtime::FunctionId function, Node* arg1, Node* arg2,
    695                          Node* arg3, Node* context);
    696   // Tail call to a runtime function with four arguments.
    697   Node* TailCallRuntime4(Runtime::FunctionId function, Node* arg1, Node* arg2,
    698                          Node* arg3, Node* arg4, Node* context);
    699 
    700   // ===========================================================================
    701   // The following utility methods deal with control flow, hence might switch
    702   // the current basic block or create new basic blocks for labels.
    703 
    704   // Control flow.
    705   void Goto(RawMachineLabel* label);
    706   void Branch(Node* condition, RawMachineLabel* true_val,
    707               RawMachineLabel* false_val);
    708   void Switch(Node* index, RawMachineLabel* default_label, int32_t* case_values,
    709               RawMachineLabel** case_labels, size_t case_count);
    710   void Return(Node* value);
    711   void Return(Node* v1, Node* v2);
    712   void Return(Node* v1, Node* v2, Node* v3);
    713   void Bind(RawMachineLabel* label);
    714   void Deoptimize(Node* state);
    715   void DebugBreak();
    716   void Comment(const char* msg);
    717 
    718   // Variables.
    719   Node* Phi(MachineRepresentation rep, Node* n1, Node* n2) {
    720     return AddNode(common()->Phi(rep, 2), n1, n2, graph()->start());
    721   }
    722   Node* Phi(MachineRepresentation rep, Node* n1, Node* n2, Node* n3) {
    723     return AddNode(common()->Phi(rep, 3), n1, n2, n3, graph()->start());
    724   }
    725   Node* Phi(MachineRepresentation rep, Node* n1, Node* n2, Node* n3, Node* n4) {
    726     return AddNode(common()->Phi(rep, 4), n1, n2, n3, n4, graph()->start());
    727   }
    728   Node* Phi(MachineRepresentation rep, int input_count, Node* const* inputs);
    729   void AppendPhiInput(Node* phi, Node* new_input);
    730 
    731   // ===========================================================================
    732   // The following generic node creation methods can be used for operators that
    733   // are not covered by the above utility methods. There should rarely be a need
    734   // to do that outside of testing though.
    735 
    736   Node* AddNode(const Operator* op, int input_count, Node* const* inputs);
    737 
    738   Node* AddNode(const Operator* op) {
    739     return AddNode(op, 0, static_cast<Node* const*>(nullptr));
    740   }
    741 
    742   template <class... TArgs>
    743   Node* AddNode(const Operator* op, Node* n1, TArgs... args) {
    744     Node* buffer[] = {n1, args...};
    745     return AddNode(op, sizeof...(args) + 1, buffer);
    746   }
    747 
    748  private:
    749   Node* MakeNode(const Operator* op, int input_count, Node* const* inputs);
    750   BasicBlock* Use(RawMachineLabel* label);
    751   BasicBlock* EnsureBlock(RawMachineLabel* label);
    752   BasicBlock* CurrentBlock();
    753 
    754   Schedule* schedule() { return schedule_; }
    755   size_t parameter_count() const { return machine_sig()->parameter_count(); }
    756   const MachineSignature* machine_sig() const {
    757     return call_descriptor_->GetMachineSignature();
    758   }
    759 
    760   Isolate* isolate_;
    761   Graph* graph_;
    762   Schedule* schedule_;
    763   MachineOperatorBuilder machine_;
    764   CommonOperatorBuilder common_;
    765   CallDescriptor* call_descriptor_;
    766   NodeVector parameters_;
    767   BasicBlock* current_block_;
    768 
    769   DISALLOW_COPY_AND_ASSIGN(RawMachineAssembler);
    770 };
    771 
    772 
    773 class RawMachineLabel final {
    774  public:
    775   enum Type { kDeferred, kNonDeferred };
    776 
    777   explicit RawMachineLabel(Type type = kNonDeferred)
    778       : deferred_(type == kDeferred) {}
    779   ~RawMachineLabel();
    780 
    781  private:
    782   BasicBlock* block_ = nullptr;
    783   bool used_ = false;
    784   bool bound_ = false;
    785   bool deferred_;
    786   friend class RawMachineAssembler;
    787   DISALLOW_COPY_AND_ASSIGN(RawMachineLabel);
    788 };
    789 
    790 }  // namespace compiler
    791 }  // namespace internal
    792 }  // namespace v8
    793 
    794 #endif  // V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
    795