Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2015 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "intrinsics_x86.h"
     18 
     19 #include <limits>
     20 
     21 #include "arch/x86/instruction_set_features_x86.h"
     22 #include "art_method.h"
     23 #include "base/bit_utils.h"
     24 #include "code_generator_x86.h"
     25 #include "entrypoints/quick/quick_entrypoints.h"
     26 #include "intrinsics.h"
     27 #include "intrinsics_utils.h"
     28 #include "mirror/array-inl.h"
     29 #include "mirror/string.h"
     30 #include "thread.h"
     31 #include "utils/x86/assembler_x86.h"
     32 #include "utils/x86/constants_x86.h"
     33 
     34 namespace art {
     35 
     36 namespace x86 {
     37 
     38 static constexpr int kDoubleNaNHigh = 0x7FF80000;
     39 static constexpr int kDoubleNaNLow = 0x00000000;
     40 static constexpr int64_t kDoubleNaN = INT64_C(0x7FF8000000000000);
     41 static constexpr int32_t kFloatNaN = INT32_C(0x7FC00000);
     42 
     43 IntrinsicLocationsBuilderX86::IntrinsicLocationsBuilderX86(CodeGeneratorX86* codegen)
     44   : arena_(codegen->GetGraph()->GetArena()),
     45     codegen_(codegen) {
     46 }
     47 
     48 
     49 X86Assembler* IntrinsicCodeGeneratorX86::GetAssembler() {
     50   return down_cast<X86Assembler*>(codegen_->GetAssembler());
     51 }
     52 
     53 ArenaAllocator* IntrinsicCodeGeneratorX86::GetAllocator() {
     54   return codegen_->GetGraph()->GetArena();
     55 }
     56 
     57 bool IntrinsicLocationsBuilderX86::TryDispatch(HInvoke* invoke) {
     58   Dispatch(invoke);
     59   LocationSummary* res = invoke->GetLocations();
     60   if (res == nullptr) {
     61     return false;
     62   }
     63   if (kEmitCompilerReadBarrier && res->CanCall()) {
     64     // Generating an intrinsic for this HInvoke may produce an
     65     // IntrinsicSlowPathX86 slow path.  Currently this approach
     66     // does not work when using read barriers, as the emitted
     67     // calling sequence will make use of another slow path
     68     // (ReadBarrierForRootSlowPathX86 for HInvokeStaticOrDirect,
     69     // ReadBarrierSlowPathX86 for HInvokeVirtual).  So we bail
     70     // out in this case.
     71     //
     72     // TODO: Find a way to have intrinsics work with read barriers.
     73     invoke->SetLocations(nullptr);
     74     return false;
     75   }
     76   return res->Intrinsified();
     77 }
     78 
     79 static void MoveArguments(HInvoke* invoke, CodeGeneratorX86* codegen) {
     80   InvokeDexCallingConventionVisitorX86 calling_convention_visitor;
     81   IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor);
     82 }
     83 
     84 using IntrinsicSlowPathX86 = IntrinsicSlowPath<InvokeDexCallingConventionVisitorX86>;
     85 
     86 #define __ assembler->
     87 
     88 static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke, bool is64bit) {
     89   LocationSummary* locations = new (arena) LocationSummary(invoke,
     90                                                            LocationSummary::kNoCall,
     91                                                            kIntrinsified);
     92   locations->SetInAt(0, Location::RequiresFpuRegister());
     93   locations->SetOut(Location::RequiresRegister());
     94   if (is64bit) {
     95     locations->AddTemp(Location::RequiresFpuRegister());
     96   }
     97 }
     98 
     99 static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke, bool is64bit) {
    100   LocationSummary* locations = new (arena) LocationSummary(invoke,
    101                                                            LocationSummary::kNoCall,
    102                                                            kIntrinsified);
    103   locations->SetInAt(0, Location::RequiresRegister());
    104   locations->SetOut(Location::RequiresFpuRegister());
    105   if (is64bit) {
    106     locations->AddTemp(Location::RequiresFpuRegister());
    107     locations->AddTemp(Location::RequiresFpuRegister());
    108   }
    109 }
    110 
    111 static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86Assembler* assembler) {
    112   Location input = locations->InAt(0);
    113   Location output = locations->Out();
    114   if (is64bit) {
    115     // Need to use the temporary.
    116     XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
    117     __ movsd(temp, input.AsFpuRegister<XmmRegister>());
    118     __ movd(output.AsRegisterPairLow<Register>(), temp);
    119     __ psrlq(temp, Immediate(32));
    120     __ movd(output.AsRegisterPairHigh<Register>(), temp);
    121   } else {
    122     __ movd(output.AsRegister<Register>(), input.AsFpuRegister<XmmRegister>());
    123   }
    124 }
    125 
    126 static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86Assembler* assembler) {
    127   Location input = locations->InAt(0);
    128   Location output = locations->Out();
    129   if (is64bit) {
    130     // Need to use the temporary.
    131     XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
    132     XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
    133     __ movd(temp1, input.AsRegisterPairLow<Register>());
    134     __ movd(temp2, input.AsRegisterPairHigh<Register>());
    135     __ punpckldq(temp1, temp2);
    136     __ movsd(output.AsFpuRegister<XmmRegister>(), temp1);
    137   } else {
    138     __ movd(output.AsFpuRegister<XmmRegister>(), input.AsRegister<Register>());
    139   }
    140 }
    141 
    142 void IntrinsicLocationsBuilderX86::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
    143   CreateFPToIntLocations(arena_, invoke, /* is64bit */ true);
    144 }
    145 void IntrinsicLocationsBuilderX86::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
    146   CreateIntToFPLocations(arena_, invoke, /* is64bit */ true);
    147 }
    148 
    149 void IntrinsicCodeGeneratorX86::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
    150   MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
    151 }
    152 void IntrinsicCodeGeneratorX86::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
    153   MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
    154 }
    155 
    156 void IntrinsicLocationsBuilderX86::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
    157   CreateFPToIntLocations(arena_, invoke, /* is64bit */ false);
    158 }
    159 void IntrinsicLocationsBuilderX86::VisitFloatIntBitsToFloat(HInvoke* invoke) {
    160   CreateIntToFPLocations(arena_, invoke, /* is64bit */ false);
    161 }
    162 
    163 void IntrinsicCodeGeneratorX86::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
    164   MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
    165 }
    166 void IntrinsicCodeGeneratorX86::VisitFloatIntBitsToFloat(HInvoke* invoke) {
    167   MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
    168 }
    169 
    170 static void CreateIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
    171   LocationSummary* locations = new (arena) LocationSummary(invoke,
    172                                                            LocationSummary::kNoCall,
    173                                                            kIntrinsified);
    174   locations->SetInAt(0, Location::RequiresRegister());
    175   locations->SetOut(Location::SameAsFirstInput());
    176 }
    177 
    178 static void CreateLongToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
    179   LocationSummary* locations = new (arena) LocationSummary(invoke,
    180                                                            LocationSummary::kNoCall,
    181                                                            kIntrinsified);
    182   locations->SetInAt(0, Location::RequiresRegister());
    183   locations->SetOut(Location::RequiresRegister());
    184 }
    185 
    186 static void CreateLongToLongLocations(ArenaAllocator* arena, HInvoke* invoke) {
    187   LocationSummary* locations = new (arena) LocationSummary(invoke,
    188                                                            LocationSummary::kNoCall,
    189                                                            kIntrinsified);
    190   locations->SetInAt(0, Location::RequiresRegister());
    191   locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
    192 }
    193 
    194 static void GenReverseBytes(LocationSummary* locations,
    195                             Primitive::Type size,
    196                             X86Assembler* assembler) {
    197   Register out = locations->Out().AsRegister<Register>();
    198 
    199   switch (size) {
    200     case Primitive::kPrimShort:
    201       // TODO: Can be done with an xchg of 8b registers. This is straight from Quick.
    202       __ bswapl(out);
    203       __ sarl(out, Immediate(16));
    204       break;
    205     case Primitive::kPrimInt:
    206       __ bswapl(out);
    207       break;
    208     default:
    209       LOG(FATAL) << "Unexpected size for reverse-bytes: " << size;
    210       UNREACHABLE();
    211   }
    212 }
    213 
    214 void IntrinsicLocationsBuilderX86::VisitIntegerReverseBytes(HInvoke* invoke) {
    215   CreateIntToIntLocations(arena_, invoke);
    216 }
    217 
    218 void IntrinsicCodeGeneratorX86::VisitIntegerReverseBytes(HInvoke* invoke) {
    219   GenReverseBytes(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
    220 }
    221 
    222 void IntrinsicLocationsBuilderX86::VisitLongReverseBytes(HInvoke* invoke) {
    223   CreateLongToLongLocations(arena_, invoke);
    224 }
    225 
    226 void IntrinsicCodeGeneratorX86::VisitLongReverseBytes(HInvoke* invoke) {
    227   LocationSummary* locations = invoke->GetLocations();
    228   Location input = locations->InAt(0);
    229   Register input_lo = input.AsRegisterPairLow<Register>();
    230   Register input_hi = input.AsRegisterPairHigh<Register>();
    231   Location output = locations->Out();
    232   Register output_lo = output.AsRegisterPairLow<Register>();
    233   Register output_hi = output.AsRegisterPairHigh<Register>();
    234 
    235   X86Assembler* assembler = GetAssembler();
    236   // Assign the inputs to the outputs, mixing low/high.
    237   __ movl(output_lo, input_hi);
    238   __ movl(output_hi, input_lo);
    239   __ bswapl(output_lo);
    240   __ bswapl(output_hi);
    241 }
    242 
    243 void IntrinsicLocationsBuilderX86::VisitShortReverseBytes(HInvoke* invoke) {
    244   CreateIntToIntLocations(arena_, invoke);
    245 }
    246 
    247 void IntrinsicCodeGeneratorX86::VisitShortReverseBytes(HInvoke* invoke) {
    248   GenReverseBytes(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler());
    249 }
    250 
    251 
    252 // TODO: Consider Quick's way of doing Double abs through integer operations, as the immediate we
    253 //       need is 64b.
    254 
    255 static void CreateFloatToFloat(ArenaAllocator* arena, HInvoke* invoke) {
    256   // TODO: Enable memory operations when the assembler supports them.
    257   LocationSummary* locations = new (arena) LocationSummary(invoke,
    258                                                            LocationSummary::kNoCall,
    259                                                            kIntrinsified);
    260   locations->SetInAt(0, Location::RequiresFpuRegister());
    261   locations->SetOut(Location::SameAsFirstInput());
    262   HInvokeStaticOrDirect* static_or_direct = invoke->AsInvokeStaticOrDirect();
    263   DCHECK(static_or_direct != nullptr);
    264   if (static_or_direct->HasSpecialInput() &&
    265       invoke->InputAt(static_or_direct->GetSpecialInputIndex())->IsX86ComputeBaseMethodAddress()) {
    266     // We need addressibility for the constant area.
    267     locations->SetInAt(1, Location::RequiresRegister());
    268     // We need a temporary to hold the constant.
    269     locations->AddTemp(Location::RequiresFpuRegister());
    270   }
    271 }
    272 
    273 static void MathAbsFP(LocationSummary* locations,
    274                       bool is64bit,
    275                       X86Assembler* assembler,
    276                       CodeGeneratorX86* codegen) {
    277   Location output = locations->Out();
    278 
    279   DCHECK(output.IsFpuRegister());
    280   if (locations->GetInputCount() == 2 && locations->InAt(1).IsValid()) {
    281     DCHECK(locations->InAt(1).IsRegister());
    282     // We also have a constant area pointer.
    283     Register constant_area = locations->InAt(1).AsRegister<Register>();
    284     XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
    285     if (is64bit) {
    286       __ movsd(temp, codegen->LiteralInt64Address(INT64_C(0x7FFFFFFFFFFFFFFF), constant_area));
    287       __ andpd(output.AsFpuRegister<XmmRegister>(), temp);
    288     } else {
    289       __ movss(temp, codegen->LiteralInt32Address(INT32_C(0x7FFFFFFF), constant_area));
    290       __ andps(output.AsFpuRegister<XmmRegister>(), temp);
    291     }
    292   } else {
    293     // Create the right constant on an aligned stack.
    294     if (is64bit) {
    295       __ subl(ESP, Immediate(8));
    296       __ pushl(Immediate(0x7FFFFFFF));
    297       __ pushl(Immediate(0xFFFFFFFF));
    298       __ andpd(output.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
    299     } else {
    300       __ subl(ESP, Immediate(12));
    301       __ pushl(Immediate(0x7FFFFFFF));
    302       __ andps(output.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
    303     }
    304     __ addl(ESP, Immediate(16));
    305   }
    306 }
    307 
    308 void IntrinsicLocationsBuilderX86::VisitMathAbsDouble(HInvoke* invoke) {
    309   CreateFloatToFloat(arena_, invoke);
    310 }
    311 
    312 void IntrinsicCodeGeneratorX86::VisitMathAbsDouble(HInvoke* invoke) {
    313   MathAbsFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler(), codegen_);
    314 }
    315 
    316 void IntrinsicLocationsBuilderX86::VisitMathAbsFloat(HInvoke* invoke) {
    317   CreateFloatToFloat(arena_, invoke);
    318 }
    319 
    320 void IntrinsicCodeGeneratorX86::VisitMathAbsFloat(HInvoke* invoke) {
    321   MathAbsFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler(), codegen_);
    322 }
    323 
    324 static void CreateAbsIntLocation(ArenaAllocator* arena, HInvoke* invoke) {
    325   LocationSummary* locations = new (arena) LocationSummary(invoke,
    326                                                            LocationSummary::kNoCall,
    327                                                            kIntrinsified);
    328   locations->SetInAt(0, Location::RegisterLocation(EAX));
    329   locations->SetOut(Location::SameAsFirstInput());
    330   locations->AddTemp(Location::RegisterLocation(EDX));
    331 }
    332 
    333 static void GenAbsInteger(LocationSummary* locations, X86Assembler* assembler) {
    334   Location output = locations->Out();
    335   Register out = output.AsRegister<Register>();
    336   DCHECK_EQ(out, EAX);
    337   Register temp = locations->GetTemp(0).AsRegister<Register>();
    338   DCHECK_EQ(temp, EDX);
    339 
    340   // Sign extend EAX into EDX.
    341   __ cdq();
    342 
    343   // XOR EAX with sign.
    344   __ xorl(EAX, EDX);
    345 
    346   // Subtract out sign to correct.
    347   __ subl(EAX, EDX);
    348 
    349   // The result is in EAX.
    350 }
    351 
    352 static void CreateAbsLongLocation(ArenaAllocator* arena, HInvoke* invoke) {
    353   LocationSummary* locations = new (arena) LocationSummary(invoke,
    354                                                            LocationSummary::kNoCall,
    355                                                            kIntrinsified);
    356   locations->SetInAt(0, Location::RequiresRegister());
    357   locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
    358   locations->AddTemp(Location::RequiresRegister());
    359 }
    360 
    361 static void GenAbsLong(LocationSummary* locations, X86Assembler* assembler) {
    362   Location input = locations->InAt(0);
    363   Register input_lo = input.AsRegisterPairLow<Register>();
    364   Register input_hi = input.AsRegisterPairHigh<Register>();
    365   Location output = locations->Out();
    366   Register output_lo = output.AsRegisterPairLow<Register>();
    367   Register output_hi = output.AsRegisterPairHigh<Register>();
    368   Register temp = locations->GetTemp(0).AsRegister<Register>();
    369 
    370   // Compute the sign into the temporary.
    371   __ movl(temp, input_hi);
    372   __ sarl(temp, Immediate(31));
    373 
    374   // Store the sign into the output.
    375   __ movl(output_lo, temp);
    376   __ movl(output_hi, temp);
    377 
    378   // XOR the input to the output.
    379   __ xorl(output_lo, input_lo);
    380   __ xorl(output_hi, input_hi);
    381 
    382   // Subtract the sign.
    383   __ subl(output_lo, temp);
    384   __ sbbl(output_hi, temp);
    385 }
    386 
    387 void IntrinsicLocationsBuilderX86::VisitMathAbsInt(HInvoke* invoke) {
    388   CreateAbsIntLocation(arena_, invoke);
    389 }
    390 
    391 void IntrinsicCodeGeneratorX86::VisitMathAbsInt(HInvoke* invoke) {
    392   GenAbsInteger(invoke->GetLocations(), GetAssembler());
    393 }
    394 
    395 void IntrinsicLocationsBuilderX86::VisitMathAbsLong(HInvoke* invoke) {
    396   CreateAbsLongLocation(arena_, invoke);
    397 }
    398 
    399 void IntrinsicCodeGeneratorX86::VisitMathAbsLong(HInvoke* invoke) {
    400   GenAbsLong(invoke->GetLocations(), GetAssembler());
    401 }
    402 
    403 static void GenMinMaxFP(LocationSummary* locations,
    404                         bool is_min,
    405                         bool is_double,
    406                         X86Assembler* assembler,
    407                         CodeGeneratorX86* codegen) {
    408   Location op1_loc = locations->InAt(0);
    409   Location op2_loc = locations->InAt(1);
    410   Location out_loc = locations->Out();
    411   XmmRegister out = out_loc.AsFpuRegister<XmmRegister>();
    412 
    413   // Shortcut for same input locations.
    414   if (op1_loc.Equals(op2_loc)) {
    415     DCHECK(out_loc.Equals(op1_loc));
    416     return;
    417   }
    418 
    419   //  (out := op1)
    420   //  out <=? op2
    421   //  if Nan jmp Nan_label
    422   //  if out is min jmp done
    423   //  if op2 is min jmp op2_label
    424   //  handle -0/+0
    425   //  jmp done
    426   // Nan_label:
    427   //  out := NaN
    428   // op2_label:
    429   //  out := op2
    430   // done:
    431   //
    432   // This removes one jmp, but needs to copy one input (op1) to out.
    433   //
    434   // TODO: This is straight from Quick (except literal pool). Make NaN an out-of-line slowpath?
    435 
    436   XmmRegister op2 = op2_loc.AsFpuRegister<XmmRegister>();
    437 
    438   NearLabel nan, done, op2_label;
    439   if (is_double) {
    440     __ ucomisd(out, op2);
    441   } else {
    442     __ ucomiss(out, op2);
    443   }
    444 
    445   __ j(Condition::kParityEven, &nan);
    446 
    447   __ j(is_min ? Condition::kAbove : Condition::kBelow, &op2_label);
    448   __ j(is_min ? Condition::kBelow : Condition::kAbove, &done);
    449 
    450   // Handle 0.0/-0.0.
    451   if (is_min) {
    452     if (is_double) {
    453       __ orpd(out, op2);
    454     } else {
    455       __ orps(out, op2);
    456     }
    457   } else {
    458     if (is_double) {
    459       __ andpd(out, op2);
    460     } else {
    461       __ andps(out, op2);
    462     }
    463   }
    464   __ jmp(&done);
    465 
    466   // NaN handling.
    467   __ Bind(&nan);
    468   // Do we have a constant area pointer?
    469   if (locations->GetInputCount() == 3 && locations->InAt(2).IsValid()) {
    470     DCHECK(locations->InAt(2).IsRegister());
    471     Register constant_area = locations->InAt(2).AsRegister<Register>();
    472     if (is_double) {
    473       __ movsd(out, codegen->LiteralInt64Address(kDoubleNaN, constant_area));
    474     } else {
    475       __ movss(out, codegen->LiteralInt32Address(kFloatNaN, constant_area));
    476     }
    477   } else {
    478     if (is_double) {
    479       __ pushl(Immediate(kDoubleNaNHigh));
    480       __ pushl(Immediate(kDoubleNaNLow));
    481       __ movsd(out, Address(ESP, 0));
    482       __ addl(ESP, Immediate(8));
    483     } else {
    484       __ pushl(Immediate(kFloatNaN));
    485       __ movss(out, Address(ESP, 0));
    486       __ addl(ESP, Immediate(4));
    487     }
    488   }
    489   __ jmp(&done);
    490 
    491   // out := op2;
    492   __ Bind(&op2_label);
    493   if (is_double) {
    494     __ movsd(out, op2);
    495   } else {
    496     __ movss(out, op2);
    497   }
    498 
    499   // Done.
    500   __ Bind(&done);
    501 }
    502 
    503 static void CreateFPFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
    504   LocationSummary* locations = new (arena) LocationSummary(invoke,
    505                                                            LocationSummary::kNoCall,
    506                                                            kIntrinsified);
    507   locations->SetInAt(0, Location::RequiresFpuRegister());
    508   locations->SetInAt(1, Location::RequiresFpuRegister());
    509   // The following is sub-optimal, but all we can do for now. It would be fine to also accept
    510   // the second input to be the output (we can simply swap inputs).
    511   locations->SetOut(Location::SameAsFirstInput());
    512   HInvokeStaticOrDirect* static_or_direct = invoke->AsInvokeStaticOrDirect();
    513   DCHECK(static_or_direct != nullptr);
    514   if (static_or_direct->HasSpecialInput() &&
    515       invoke->InputAt(static_or_direct->GetSpecialInputIndex())->IsX86ComputeBaseMethodAddress()) {
    516     locations->SetInAt(2, Location::RequiresRegister());
    517   }
    518 }
    519 
    520 void IntrinsicLocationsBuilderX86::VisitMathMinDoubleDouble(HInvoke* invoke) {
    521   CreateFPFPToFPLocations(arena_, invoke);
    522 }
    523 
    524 void IntrinsicCodeGeneratorX86::VisitMathMinDoubleDouble(HInvoke* invoke) {
    525   GenMinMaxFP(invoke->GetLocations(),
    526               /* is_min */ true,
    527               /* is_double */ true,
    528               GetAssembler(),
    529               codegen_);
    530 }
    531 
    532 void IntrinsicLocationsBuilderX86::VisitMathMinFloatFloat(HInvoke* invoke) {
    533   CreateFPFPToFPLocations(arena_, invoke);
    534 }
    535 
    536 void IntrinsicCodeGeneratorX86::VisitMathMinFloatFloat(HInvoke* invoke) {
    537   GenMinMaxFP(invoke->GetLocations(),
    538               /* is_min */ true,
    539               /* is_double */ false,
    540               GetAssembler(),
    541               codegen_);
    542 }
    543 
    544 void IntrinsicLocationsBuilderX86::VisitMathMaxDoubleDouble(HInvoke* invoke) {
    545   CreateFPFPToFPLocations(arena_, invoke);
    546 }
    547 
    548 void IntrinsicCodeGeneratorX86::VisitMathMaxDoubleDouble(HInvoke* invoke) {
    549   GenMinMaxFP(invoke->GetLocations(),
    550               /* is_min */ false,
    551               /* is_double */ true,
    552               GetAssembler(),
    553               codegen_);
    554 }
    555 
    556 void IntrinsicLocationsBuilderX86::VisitMathMaxFloatFloat(HInvoke* invoke) {
    557   CreateFPFPToFPLocations(arena_, invoke);
    558 }
    559 
    560 void IntrinsicCodeGeneratorX86::VisitMathMaxFloatFloat(HInvoke* invoke) {
    561   GenMinMaxFP(invoke->GetLocations(),
    562               /* is_min */ false,
    563               /* is_double */ false,
    564               GetAssembler(),
    565               codegen_);
    566 }
    567 
    568 static void GenMinMax(LocationSummary* locations, bool is_min, bool is_long,
    569                       X86Assembler* assembler) {
    570   Location op1_loc = locations->InAt(0);
    571   Location op2_loc = locations->InAt(1);
    572 
    573   // Shortcut for same input locations.
    574   if (op1_loc.Equals(op2_loc)) {
    575     // Can return immediately, as op1_loc == out_loc.
    576     // Note: if we ever support separate registers, e.g., output into memory, we need to check for
    577     //       a copy here.
    578     DCHECK(locations->Out().Equals(op1_loc));
    579     return;
    580   }
    581 
    582   if (is_long) {
    583     // Need to perform a subtract to get the sign right.
    584     // op1 is already in the same location as the output.
    585     Location output = locations->Out();
    586     Register output_lo = output.AsRegisterPairLow<Register>();
    587     Register output_hi = output.AsRegisterPairHigh<Register>();
    588 
    589     Register op2_lo = op2_loc.AsRegisterPairLow<Register>();
    590     Register op2_hi = op2_loc.AsRegisterPairHigh<Register>();
    591 
    592     // Spare register to compute the subtraction to set condition code.
    593     Register temp = locations->GetTemp(0).AsRegister<Register>();
    594 
    595     // Subtract off op2_low.
    596     __ movl(temp, output_lo);
    597     __ subl(temp, op2_lo);
    598 
    599     // Now use the same tempo and the borrow to finish the subtraction of op2_hi.
    600     __ movl(temp, output_hi);
    601     __ sbbl(temp, op2_hi);
    602 
    603     // Now the condition code is correct.
    604     Condition cond = is_min ? Condition::kGreaterEqual : Condition::kLess;
    605     __ cmovl(cond, output_lo, op2_lo);
    606     __ cmovl(cond, output_hi, op2_hi);
    607   } else {
    608     Register out = locations->Out().AsRegister<Register>();
    609     Register op2 = op2_loc.AsRegister<Register>();
    610 
    611     //  (out := op1)
    612     //  out <=? op2
    613     //  if out is min jmp done
    614     //  out := op2
    615     // done:
    616 
    617     __ cmpl(out, op2);
    618     Condition cond = is_min ? Condition::kGreater : Condition::kLess;
    619     __ cmovl(cond, out, op2);
    620   }
    621 }
    622 
    623 static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
    624   LocationSummary* locations = new (arena) LocationSummary(invoke,
    625                                                            LocationSummary::kNoCall,
    626                                                            kIntrinsified);
    627   locations->SetInAt(0, Location::RequiresRegister());
    628   locations->SetInAt(1, Location::RequiresRegister());
    629   locations->SetOut(Location::SameAsFirstInput());
    630 }
    631 
    632 static void CreateLongLongToLongLocations(ArenaAllocator* arena, HInvoke* invoke) {
    633   LocationSummary* locations = new (arena) LocationSummary(invoke,
    634                                                            LocationSummary::kNoCall,
    635                                                            kIntrinsified);
    636   locations->SetInAt(0, Location::RequiresRegister());
    637   locations->SetInAt(1, Location::RequiresRegister());
    638   locations->SetOut(Location::SameAsFirstInput());
    639   // Register to use to perform a long subtract to set cc.
    640   locations->AddTemp(Location::RequiresRegister());
    641 }
    642 
    643 void IntrinsicLocationsBuilderX86::VisitMathMinIntInt(HInvoke* invoke) {
    644   CreateIntIntToIntLocations(arena_, invoke);
    645 }
    646 
    647 void IntrinsicCodeGeneratorX86::VisitMathMinIntInt(HInvoke* invoke) {
    648   GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ false, GetAssembler());
    649 }
    650 
    651 void IntrinsicLocationsBuilderX86::VisitMathMinLongLong(HInvoke* invoke) {
    652   CreateLongLongToLongLocations(arena_, invoke);
    653 }
    654 
    655 void IntrinsicCodeGeneratorX86::VisitMathMinLongLong(HInvoke* invoke) {
    656   GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ true, GetAssembler());
    657 }
    658 
    659 void IntrinsicLocationsBuilderX86::VisitMathMaxIntInt(HInvoke* invoke) {
    660   CreateIntIntToIntLocations(arena_, invoke);
    661 }
    662 
    663 void IntrinsicCodeGeneratorX86::VisitMathMaxIntInt(HInvoke* invoke) {
    664   GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ false, GetAssembler());
    665 }
    666 
    667 void IntrinsicLocationsBuilderX86::VisitMathMaxLongLong(HInvoke* invoke) {
    668   CreateLongLongToLongLocations(arena_, invoke);
    669 }
    670 
    671 void IntrinsicCodeGeneratorX86::VisitMathMaxLongLong(HInvoke* invoke) {
    672   GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ true, GetAssembler());
    673 }
    674 
    675 static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
    676   LocationSummary* locations = new (arena) LocationSummary(invoke,
    677                                                            LocationSummary::kNoCall,
    678                                                            kIntrinsified);
    679   locations->SetInAt(0, Location::RequiresFpuRegister());
    680   locations->SetOut(Location::RequiresFpuRegister());
    681 }
    682 
    683 void IntrinsicLocationsBuilderX86::VisitMathSqrt(HInvoke* invoke) {
    684   CreateFPToFPLocations(arena_, invoke);
    685 }
    686 
    687 void IntrinsicCodeGeneratorX86::VisitMathSqrt(HInvoke* invoke) {
    688   LocationSummary* locations = invoke->GetLocations();
    689   XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
    690   XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
    691 
    692   GetAssembler()->sqrtsd(out, in);
    693 }
    694 
    695 static void InvokeOutOfLineIntrinsic(CodeGeneratorX86* codegen, HInvoke* invoke) {
    696   MoveArguments(invoke, codegen);
    697 
    698   DCHECK(invoke->IsInvokeStaticOrDirect());
    699   codegen->GenerateStaticOrDirectCall(invoke->AsInvokeStaticOrDirect(),
    700                                       Location::RegisterLocation(EAX));
    701   codegen->RecordPcInfo(invoke, invoke->GetDexPc());
    702 
    703   // Copy the result back to the expected output.
    704   Location out = invoke->GetLocations()->Out();
    705   if (out.IsValid()) {
    706     DCHECK(out.IsRegister());
    707     codegen->MoveFromReturnRegister(out, invoke->GetType());
    708   }
    709 }
    710 
    711 static void CreateSSE41FPToFPLocations(ArenaAllocator* arena,
    712                                       HInvoke* invoke,
    713                                       CodeGeneratorX86* codegen) {
    714   // Do we have instruction support?
    715   if (codegen->GetInstructionSetFeatures().HasSSE4_1()) {
    716     CreateFPToFPLocations(arena, invoke);
    717     return;
    718   }
    719 
    720   // We have to fall back to a call to the intrinsic.
    721   LocationSummary* locations = new (arena) LocationSummary(invoke,
    722                                                            LocationSummary::kCall);
    723   InvokeRuntimeCallingConvention calling_convention;
    724   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0)));
    725   locations->SetOut(Location::FpuRegisterLocation(XMM0));
    726   // Needs to be EAX for the invoke.
    727   locations->AddTemp(Location::RegisterLocation(EAX));
    728 }
    729 
    730 static void GenSSE41FPToFPIntrinsic(CodeGeneratorX86* codegen,
    731                                    HInvoke* invoke,
    732                                    X86Assembler* assembler,
    733                                    int round_mode) {
    734   LocationSummary* locations = invoke->GetLocations();
    735   if (locations->WillCall()) {
    736     InvokeOutOfLineIntrinsic(codegen, invoke);
    737   } else {
    738     XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
    739     XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
    740     __ roundsd(out, in, Immediate(round_mode));
    741   }
    742 }
    743 
    744 void IntrinsicLocationsBuilderX86::VisitMathCeil(HInvoke* invoke) {
    745   CreateSSE41FPToFPLocations(arena_, invoke, codegen_);
    746 }
    747 
    748 void IntrinsicCodeGeneratorX86::VisitMathCeil(HInvoke* invoke) {
    749   GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 2);
    750 }
    751 
    752 void IntrinsicLocationsBuilderX86::VisitMathFloor(HInvoke* invoke) {
    753   CreateSSE41FPToFPLocations(arena_, invoke, codegen_);
    754 }
    755 
    756 void IntrinsicCodeGeneratorX86::VisitMathFloor(HInvoke* invoke) {
    757   GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 1);
    758 }
    759 
    760 void IntrinsicLocationsBuilderX86::VisitMathRint(HInvoke* invoke) {
    761   CreateSSE41FPToFPLocations(arena_, invoke, codegen_);
    762 }
    763 
    764 void IntrinsicCodeGeneratorX86::VisitMathRint(HInvoke* invoke) {
    765   GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 0);
    766 }
    767 
    768 // Note that 32 bit x86 doesn't have the capability to inline MathRoundDouble,
    769 // as it needs 64 bit instructions.
    770 void IntrinsicLocationsBuilderX86::VisitMathRoundFloat(HInvoke* invoke) {
    771   // See intrinsics.h.
    772   if (!kRoundIsPlusPointFive) {
    773     return;
    774   }
    775 
    776   // Do we have instruction support?
    777   if (codegen_->GetInstructionSetFeatures().HasSSE4_1()) {
    778     LocationSummary* locations = new (arena_) LocationSummary(invoke,
    779                                                               LocationSummary::kNoCall,
    780                                                               kIntrinsified);
    781     locations->SetInAt(0, Location::RequiresFpuRegister());
    782     locations->SetOut(Location::RequiresRegister());
    783     locations->AddTemp(Location::RequiresFpuRegister());
    784     locations->AddTemp(Location::RequiresFpuRegister());
    785     return;
    786   }
    787 
    788   // We have to fall back to a call to the intrinsic.
    789   LocationSummary* locations = new (arena_) LocationSummary(invoke,
    790                                                            LocationSummary::kCall);
    791   InvokeRuntimeCallingConvention calling_convention;
    792   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0)));
    793   locations->SetOut(Location::RegisterLocation(EAX));
    794   // Needs to be EAX for the invoke.
    795   locations->AddTemp(Location::RegisterLocation(EAX));
    796 }
    797 
    798 void IntrinsicCodeGeneratorX86::VisitMathRoundFloat(HInvoke* invoke) {
    799   LocationSummary* locations = invoke->GetLocations();
    800   if (locations->WillCall()) {
    801     InvokeOutOfLineIntrinsic(codegen_, invoke);
    802     return;
    803   }
    804 
    805   // Implement RoundFloat as t1 = floor(input + 0.5f);  convert to int.
    806   XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
    807   Register out = locations->Out().AsRegister<Register>();
    808   XmmRegister maxInt = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
    809   XmmRegister inPlusPointFive = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
    810   NearLabel done, nan;
    811   X86Assembler* assembler = GetAssembler();
    812 
    813   // Generate 0.5 into inPlusPointFive.
    814   __ movl(out, Immediate(bit_cast<int32_t, float>(0.5f)));
    815   __ movd(inPlusPointFive, out);
    816 
    817   // Add in the input.
    818   __ addss(inPlusPointFive, in);
    819 
    820   // And truncate to an integer.
    821   __ roundss(inPlusPointFive, inPlusPointFive, Immediate(1));
    822 
    823   __ movl(out, Immediate(kPrimIntMax));
    824   // maxInt = int-to-float(out)
    825   __ cvtsi2ss(maxInt, out);
    826 
    827   // if inPlusPointFive >= maxInt goto done
    828   __ comiss(inPlusPointFive, maxInt);
    829   __ j(kAboveEqual, &done);
    830 
    831   // if input == NaN goto nan
    832   __ j(kUnordered, &nan);
    833 
    834   // output = float-to-int-truncate(input)
    835   __ cvttss2si(out, inPlusPointFive);
    836   __ jmp(&done);
    837   __ Bind(&nan);
    838 
    839   //  output = 0
    840   __ xorl(out, out);
    841   __ Bind(&done);
    842 }
    843 
    844 static void CreateFPToFPCallLocations(ArenaAllocator* arena,
    845                                       HInvoke* invoke) {
    846   LocationSummary* locations = new (arena) LocationSummary(invoke,
    847                                                            LocationSummary::kCall,
    848                                                            kIntrinsified);
    849   InvokeRuntimeCallingConvention calling_convention;
    850   locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
    851   locations->SetOut(Location::FpuRegisterLocation(XMM0));
    852 }
    853 
    854 static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorX86* codegen, QuickEntrypointEnum entry) {
    855   LocationSummary* locations = invoke->GetLocations();
    856   DCHECK(locations->WillCall());
    857   DCHECK(invoke->IsInvokeStaticOrDirect());
    858   X86Assembler* assembler = codegen->GetAssembler();
    859 
    860   // We need some place to pass the parameters.
    861   __ subl(ESP, Immediate(16));
    862   __ cfi().AdjustCFAOffset(16);
    863 
    864   // Pass the parameters at the bottom of the stack.
    865   __ movsd(Address(ESP, 0), XMM0);
    866 
    867   // If we have a second parameter, pass it next.
    868   if (invoke->GetNumberOfArguments() == 2) {
    869     __ movsd(Address(ESP, 8), XMM1);
    870   }
    871 
    872   // Now do the actual call.
    873   __ fs()->call(Address::Absolute(GetThreadOffset<kX86WordSize>(entry)));
    874 
    875   // Extract the return value from the FP stack.
    876   __ fstpl(Address(ESP, 0));
    877   __ movsd(XMM0, Address(ESP, 0));
    878 
    879   // And clean up the stack.
    880   __ addl(ESP, Immediate(16));
    881   __ cfi().AdjustCFAOffset(-16);
    882 
    883   codegen->RecordPcInfo(invoke, invoke->GetDexPc());
    884 }
    885 
    886 void IntrinsicLocationsBuilderX86::VisitMathCos(HInvoke* invoke) {
    887   CreateFPToFPCallLocations(arena_, invoke);
    888 }
    889 
    890 void IntrinsicCodeGeneratorX86::VisitMathCos(HInvoke* invoke) {
    891   GenFPToFPCall(invoke, codegen_, kQuickCos);
    892 }
    893 
    894 void IntrinsicLocationsBuilderX86::VisitMathSin(HInvoke* invoke) {
    895   CreateFPToFPCallLocations(arena_, invoke);
    896 }
    897 
    898 void IntrinsicCodeGeneratorX86::VisitMathSin(HInvoke* invoke) {
    899   GenFPToFPCall(invoke, codegen_, kQuickSin);
    900 }
    901 
    902 void IntrinsicLocationsBuilderX86::VisitMathAcos(HInvoke* invoke) {
    903   CreateFPToFPCallLocations(arena_, invoke);
    904 }
    905 
    906 void IntrinsicCodeGeneratorX86::VisitMathAcos(HInvoke* invoke) {
    907   GenFPToFPCall(invoke, codegen_, kQuickAcos);
    908 }
    909 
    910 void IntrinsicLocationsBuilderX86::VisitMathAsin(HInvoke* invoke) {
    911   CreateFPToFPCallLocations(arena_, invoke);
    912 }
    913 
    914 void IntrinsicCodeGeneratorX86::VisitMathAsin(HInvoke* invoke) {
    915   GenFPToFPCall(invoke, codegen_, kQuickAsin);
    916 }
    917 
    918 void IntrinsicLocationsBuilderX86::VisitMathAtan(HInvoke* invoke) {
    919   CreateFPToFPCallLocations(arena_, invoke);
    920 }
    921 
    922 void IntrinsicCodeGeneratorX86::VisitMathAtan(HInvoke* invoke) {
    923   GenFPToFPCall(invoke, codegen_, kQuickAtan);
    924 }
    925 
    926 void IntrinsicLocationsBuilderX86::VisitMathCbrt(HInvoke* invoke) {
    927   CreateFPToFPCallLocations(arena_, invoke);
    928 }
    929 
    930 void IntrinsicCodeGeneratorX86::VisitMathCbrt(HInvoke* invoke) {
    931   GenFPToFPCall(invoke, codegen_, kQuickCbrt);
    932 }
    933 
    934 void IntrinsicLocationsBuilderX86::VisitMathCosh(HInvoke* invoke) {
    935   CreateFPToFPCallLocations(arena_, invoke);
    936 }
    937 
    938 void IntrinsicCodeGeneratorX86::VisitMathCosh(HInvoke* invoke) {
    939   GenFPToFPCall(invoke, codegen_, kQuickCosh);
    940 }
    941 
    942 void IntrinsicLocationsBuilderX86::VisitMathExp(HInvoke* invoke) {
    943   CreateFPToFPCallLocations(arena_, invoke);
    944 }
    945 
    946 void IntrinsicCodeGeneratorX86::VisitMathExp(HInvoke* invoke) {
    947   GenFPToFPCall(invoke, codegen_, kQuickExp);
    948 }
    949 
    950 void IntrinsicLocationsBuilderX86::VisitMathExpm1(HInvoke* invoke) {
    951   CreateFPToFPCallLocations(arena_, invoke);
    952 }
    953 
    954 void IntrinsicCodeGeneratorX86::VisitMathExpm1(HInvoke* invoke) {
    955   GenFPToFPCall(invoke, codegen_, kQuickExpm1);
    956 }
    957 
    958 void IntrinsicLocationsBuilderX86::VisitMathLog(HInvoke* invoke) {
    959   CreateFPToFPCallLocations(arena_, invoke);
    960 }
    961 
    962 void IntrinsicCodeGeneratorX86::VisitMathLog(HInvoke* invoke) {
    963   GenFPToFPCall(invoke, codegen_, kQuickLog);
    964 }
    965 
    966 void IntrinsicLocationsBuilderX86::VisitMathLog10(HInvoke* invoke) {
    967   CreateFPToFPCallLocations(arena_, invoke);
    968 }
    969 
    970 void IntrinsicCodeGeneratorX86::VisitMathLog10(HInvoke* invoke) {
    971   GenFPToFPCall(invoke, codegen_, kQuickLog10);
    972 }
    973 
    974 void IntrinsicLocationsBuilderX86::VisitMathSinh(HInvoke* invoke) {
    975   CreateFPToFPCallLocations(arena_, invoke);
    976 }
    977 
    978 void IntrinsicCodeGeneratorX86::VisitMathSinh(HInvoke* invoke) {
    979   GenFPToFPCall(invoke, codegen_, kQuickSinh);
    980 }
    981 
    982 void IntrinsicLocationsBuilderX86::VisitMathTan(HInvoke* invoke) {
    983   CreateFPToFPCallLocations(arena_, invoke);
    984 }
    985 
    986 void IntrinsicCodeGeneratorX86::VisitMathTan(HInvoke* invoke) {
    987   GenFPToFPCall(invoke, codegen_, kQuickTan);
    988 }
    989 
    990 void IntrinsicLocationsBuilderX86::VisitMathTanh(HInvoke* invoke) {
    991   CreateFPToFPCallLocations(arena_, invoke);
    992 }
    993 
    994 void IntrinsicCodeGeneratorX86::VisitMathTanh(HInvoke* invoke) {
    995   GenFPToFPCall(invoke, codegen_, kQuickTanh);
    996 }
    997 
    998 static void CreateFPFPToFPCallLocations(ArenaAllocator* arena,
    999                                         HInvoke* invoke) {
   1000   LocationSummary* locations = new (arena) LocationSummary(invoke,
   1001                                                            LocationSummary::kCall,
   1002                                                            kIntrinsified);
   1003   InvokeRuntimeCallingConvention calling_convention;
   1004   locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
   1005   locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
   1006   locations->SetOut(Location::FpuRegisterLocation(XMM0));
   1007 }
   1008 
   1009 void IntrinsicLocationsBuilderX86::VisitMathAtan2(HInvoke* invoke) {
   1010   CreateFPFPToFPCallLocations(arena_, invoke);
   1011 }
   1012 
   1013 void IntrinsicCodeGeneratorX86::VisitMathAtan2(HInvoke* invoke) {
   1014   GenFPToFPCall(invoke, codegen_, kQuickAtan2);
   1015 }
   1016 
   1017 void IntrinsicLocationsBuilderX86::VisitMathHypot(HInvoke* invoke) {
   1018   CreateFPFPToFPCallLocations(arena_, invoke);
   1019 }
   1020 
   1021 void IntrinsicCodeGeneratorX86::VisitMathHypot(HInvoke* invoke) {
   1022   GenFPToFPCall(invoke, codegen_, kQuickHypot);
   1023 }
   1024 
   1025 void IntrinsicLocationsBuilderX86::VisitMathNextAfter(HInvoke* invoke) {
   1026   CreateFPFPToFPCallLocations(arena_, invoke);
   1027 }
   1028 
   1029 void IntrinsicCodeGeneratorX86::VisitMathNextAfter(HInvoke* invoke) {
   1030   GenFPToFPCall(invoke, codegen_, kQuickNextAfter);
   1031 }
   1032 
   1033 void IntrinsicLocationsBuilderX86::VisitStringCharAt(HInvoke* invoke) {
   1034   // The inputs plus one temp.
   1035   LocationSummary* locations = new (arena_) LocationSummary(invoke,
   1036                                                             LocationSummary::kCallOnSlowPath,
   1037                                                             kIntrinsified);
   1038   locations->SetInAt(0, Location::RequiresRegister());
   1039   locations->SetInAt(1, Location::RequiresRegister());
   1040   locations->SetOut(Location::SameAsFirstInput());
   1041 }
   1042 
   1043 void IntrinsicCodeGeneratorX86::VisitStringCharAt(HInvoke* invoke) {
   1044   LocationSummary* locations = invoke->GetLocations();
   1045 
   1046   // Location of reference to data array.
   1047   const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
   1048   // Location of count.
   1049   const int32_t count_offset = mirror::String::CountOffset().Int32Value();
   1050 
   1051   Register obj = locations->InAt(0).AsRegister<Register>();
   1052   Register idx = locations->InAt(1).AsRegister<Register>();
   1053   Register out = locations->Out().AsRegister<Register>();
   1054 
   1055   // TODO: Maybe we can support range check elimination. Overall, though, I think it's not worth
   1056   //       the cost.
   1057   // TODO: For simplicity, the index parameter is requested in a register, so different from Quick
   1058   //       we will not optimize the code for constants (which would save a register).
   1059 
   1060   SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86(invoke);
   1061   codegen_->AddSlowPath(slow_path);
   1062 
   1063   X86Assembler* assembler = GetAssembler();
   1064 
   1065   __ cmpl(idx, Address(obj, count_offset));
   1066   codegen_->MaybeRecordImplicitNullCheck(invoke);
   1067   __ j(kAboveEqual, slow_path->GetEntryLabel());
   1068 
   1069   // out = out[2*idx].
   1070   __ movzxw(out, Address(out, idx, ScaleFactor::TIMES_2, value_offset));
   1071 
   1072   __ Bind(slow_path->GetExitLabel());
   1073 }
   1074 
   1075 void IntrinsicLocationsBuilderX86::VisitSystemArrayCopyChar(HInvoke* invoke) {
   1076   // We need at least two of the positions or length to be an integer constant,
   1077   // or else we won't have enough free registers.
   1078   HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
   1079   HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
   1080   HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
   1081 
   1082   int num_constants =
   1083       ((src_pos != nullptr) ? 1 : 0)
   1084       + ((dest_pos != nullptr) ? 1 : 0)
   1085       + ((length != nullptr) ? 1 : 0);
   1086 
   1087   if (num_constants < 2) {
   1088     // Not enough free registers.
   1089     return;
   1090   }
   1091 
   1092   // As long as we are checking, we might as well check to see if the src and dest
   1093   // positions are >= 0.
   1094   if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
   1095       (dest_pos != nullptr && dest_pos->GetValue() < 0)) {
   1096     // We will have to fail anyways.
   1097     return;
   1098   }
   1099 
   1100   // And since we are already checking, check the length too.
   1101   if (length != nullptr) {
   1102     int32_t len = length->GetValue();
   1103     if (len < 0) {
   1104       // Just call as normal.
   1105       return;
   1106     }
   1107   }
   1108 
   1109   // Okay, it is safe to generate inline code.
   1110   LocationSummary* locations =
   1111     new (arena_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
   1112   // arraycopy(Object src, int srcPos, Object dest, int destPos, int length).
   1113   locations->SetInAt(0, Location::RequiresRegister());
   1114   locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
   1115   locations->SetInAt(2, Location::RequiresRegister());
   1116   locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
   1117   locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
   1118 
   1119   // And we need some temporaries.  We will use REP MOVSW, so we need fixed registers.
   1120   locations->AddTemp(Location::RegisterLocation(ESI));
   1121   locations->AddTemp(Location::RegisterLocation(EDI));
   1122   locations->AddTemp(Location::RegisterLocation(ECX));
   1123 }
   1124 
   1125 static void CheckPosition(X86Assembler* assembler,
   1126                           Location pos,
   1127                           Register input,
   1128                           Register length,
   1129                           SlowPathCode* slow_path,
   1130                           Register input_len,
   1131                           Register temp) {
   1132   // Where is the length in the String?
   1133   const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
   1134 
   1135   if (pos.IsConstant()) {
   1136     int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue();
   1137     if (pos_const == 0) {
   1138       // Check that length(input) >= length.
   1139       __ cmpl(Address(input, length_offset), length);
   1140       __ j(kLess, slow_path->GetEntryLabel());
   1141     } else {
   1142       // Check that length(input) >= pos.
   1143       __ movl(input_len, Address(input, length_offset));
   1144       __ cmpl(input_len, Immediate(pos_const));
   1145       __ j(kLess, slow_path->GetEntryLabel());
   1146 
   1147       // Check that (length(input) - pos) >= length.
   1148       __ leal(temp, Address(input_len, -pos_const));
   1149       __ cmpl(temp, length);
   1150       __ j(kLess, slow_path->GetEntryLabel());
   1151     }
   1152   } else {
   1153     // Check that pos >= 0.
   1154     Register pos_reg = pos.AsRegister<Register>();
   1155     __ testl(pos_reg, pos_reg);
   1156     __ j(kLess, slow_path->GetEntryLabel());
   1157 
   1158     // Check that pos <= length(input).
   1159     __ cmpl(Address(input, length_offset), pos_reg);
   1160     __ j(kLess, slow_path->GetEntryLabel());
   1161 
   1162     // Check that (length(input) - pos) >= length.
   1163     __ movl(temp, Address(input, length_offset));
   1164     __ subl(temp, pos_reg);
   1165     __ cmpl(temp, length);
   1166     __ j(kLess, slow_path->GetEntryLabel());
   1167   }
   1168 }
   1169 
   1170 void IntrinsicCodeGeneratorX86::VisitSystemArrayCopyChar(HInvoke* invoke) {
   1171   X86Assembler* assembler = GetAssembler();
   1172   LocationSummary* locations = invoke->GetLocations();
   1173 
   1174   Register src = locations->InAt(0).AsRegister<Register>();
   1175   Location srcPos = locations->InAt(1);
   1176   Register dest = locations->InAt(2).AsRegister<Register>();
   1177   Location destPos = locations->InAt(3);
   1178   Location length = locations->InAt(4);
   1179 
   1180   // Temporaries that we need for MOVSW.
   1181   Register src_base = locations->GetTemp(0).AsRegister<Register>();
   1182   DCHECK_EQ(src_base, ESI);
   1183   Register dest_base = locations->GetTemp(1).AsRegister<Register>();
   1184   DCHECK_EQ(dest_base, EDI);
   1185   Register count = locations->GetTemp(2).AsRegister<Register>();
   1186   DCHECK_EQ(count, ECX);
   1187 
   1188   SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86(invoke);
   1189   codegen_->AddSlowPath(slow_path);
   1190 
   1191   // Bail out if the source and destination are the same (to handle overlap).
   1192   __ cmpl(src, dest);
   1193   __ j(kEqual, slow_path->GetEntryLabel());
   1194 
   1195   // Bail out if the source is null.
   1196   __ testl(src, src);
   1197   __ j(kEqual, slow_path->GetEntryLabel());
   1198 
   1199   // Bail out if the destination is null.
   1200   __ testl(dest, dest);
   1201   __ j(kEqual, slow_path->GetEntryLabel());
   1202 
   1203   // If the length is negative, bail out.
   1204   // We have already checked in the LocationsBuilder for the constant case.
   1205   if (!length.IsConstant()) {
   1206     __ cmpl(length.AsRegister<Register>(), length.AsRegister<Register>());
   1207     __ j(kLess, slow_path->GetEntryLabel());
   1208   }
   1209 
   1210   // We need the count in ECX.
   1211   if (length.IsConstant()) {
   1212     __ movl(count, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
   1213   } else {
   1214     __ movl(count, length.AsRegister<Register>());
   1215   }
   1216 
   1217   // Validity checks: source.
   1218   CheckPosition(assembler, srcPos, src, count, slow_path, src_base, dest_base);
   1219 
   1220   // Validity checks: dest.
   1221   CheckPosition(assembler, destPos, dest, count, slow_path, src_base, dest_base);
   1222 
   1223   // Okay, everything checks out.  Finally time to do the copy.
   1224   // Check assumption that sizeof(Char) is 2 (used in scaling below).
   1225   const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
   1226   DCHECK_EQ(char_size, 2u);
   1227 
   1228   const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
   1229 
   1230   if (srcPos.IsConstant()) {
   1231     int32_t srcPos_const = srcPos.GetConstant()->AsIntConstant()->GetValue();
   1232     __ leal(src_base, Address(src, char_size * srcPos_const + data_offset));
   1233   } else {
   1234     __ leal(src_base, Address(src, srcPos.AsRegister<Register>(),
   1235                               ScaleFactor::TIMES_2, data_offset));
   1236   }
   1237   if (destPos.IsConstant()) {
   1238     int32_t destPos_const = destPos.GetConstant()->AsIntConstant()->GetValue();
   1239 
   1240     __ leal(dest_base, Address(dest, char_size * destPos_const + data_offset));
   1241   } else {
   1242     __ leal(dest_base, Address(dest, destPos.AsRegister<Register>(),
   1243                                ScaleFactor::TIMES_2, data_offset));
   1244   }
   1245 
   1246   // Do the move.
   1247   __ rep_movsw();
   1248 
   1249   __ Bind(slow_path->GetExitLabel());
   1250 }
   1251 
   1252 void IntrinsicLocationsBuilderX86::VisitStringCompareTo(HInvoke* invoke) {
   1253   // The inputs plus one temp.
   1254   LocationSummary* locations = new (arena_) LocationSummary(invoke,
   1255                                                             LocationSummary::kCall,
   1256                                                             kIntrinsified);
   1257   InvokeRuntimeCallingConvention calling_convention;
   1258   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   1259   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
   1260   locations->SetOut(Location::RegisterLocation(EAX));
   1261 }
   1262 
   1263 void IntrinsicCodeGeneratorX86::VisitStringCompareTo(HInvoke* invoke) {
   1264   X86Assembler* assembler = GetAssembler();
   1265   LocationSummary* locations = invoke->GetLocations();
   1266 
   1267   // Note that the null check must have been done earlier.
   1268   DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
   1269 
   1270   Register argument = locations->InAt(1).AsRegister<Register>();
   1271   __ testl(argument, argument);
   1272   SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86(invoke);
   1273   codegen_->AddSlowPath(slow_path);
   1274   __ j(kEqual, slow_path->GetEntryLabel());
   1275 
   1276   __ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pStringCompareTo)));
   1277   __ Bind(slow_path->GetExitLabel());
   1278 }
   1279 
   1280 void IntrinsicLocationsBuilderX86::VisitStringEquals(HInvoke* invoke) {
   1281   LocationSummary* locations = new (arena_) LocationSummary(invoke,
   1282                                                             LocationSummary::kNoCall,
   1283                                                             kIntrinsified);
   1284   locations->SetInAt(0, Location::RequiresRegister());
   1285   locations->SetInAt(1, Location::RequiresRegister());
   1286 
   1287   // Request temporary registers, ECX and EDI needed for repe_cmpsl instruction.
   1288   locations->AddTemp(Location::RegisterLocation(ECX));
   1289   locations->AddTemp(Location::RegisterLocation(EDI));
   1290 
   1291   // Set output, ESI needed for repe_cmpsl instruction anyways.
   1292   locations->SetOut(Location::RegisterLocation(ESI), Location::kOutputOverlap);
   1293 }
   1294 
   1295 void IntrinsicCodeGeneratorX86::VisitStringEquals(HInvoke* invoke) {
   1296   X86Assembler* assembler = GetAssembler();
   1297   LocationSummary* locations = invoke->GetLocations();
   1298 
   1299   Register str = locations->InAt(0).AsRegister<Register>();
   1300   Register arg = locations->InAt(1).AsRegister<Register>();
   1301   Register ecx = locations->GetTemp(0).AsRegister<Register>();
   1302   Register edi = locations->GetTemp(1).AsRegister<Register>();
   1303   Register esi = locations->Out().AsRegister<Register>();
   1304 
   1305   NearLabel end, return_true, return_false;
   1306 
   1307   // Get offsets of count, value, and class fields within a string object.
   1308   const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
   1309   const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
   1310   const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
   1311 
   1312   // Note that the null check must have been done earlier.
   1313   DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
   1314 
   1315   StringEqualsOptimizations optimizations(invoke);
   1316   if (!optimizations.GetArgumentNotNull()) {
   1317     // Check if input is null, return false if it is.
   1318     __ testl(arg, arg);
   1319     __ j(kEqual, &return_false);
   1320   }
   1321 
   1322   // Instanceof check for the argument by comparing class fields.
   1323   // All string objects must have the same type since String cannot be subclassed.
   1324   // Receiver must be a string object, so its class field is equal to all strings' class fields.
   1325   // If the argument is a string object, its class field must be equal to receiver's class field.
   1326   if (!optimizations.GetArgumentIsString()) {
   1327     __ movl(ecx, Address(str, class_offset));
   1328     __ cmpl(ecx, Address(arg, class_offset));
   1329     __ j(kNotEqual, &return_false);
   1330   }
   1331 
   1332   // Reference equality check, return true if same reference.
   1333   __ cmpl(str, arg);
   1334   __ j(kEqual, &return_true);
   1335 
   1336   // Load length of receiver string.
   1337   __ movl(ecx, Address(str, count_offset));
   1338   // Check if lengths are equal, return false if they're not.
   1339   __ cmpl(ecx, Address(arg, count_offset));
   1340   __ j(kNotEqual, &return_false);
   1341   // Return true if both strings are empty.
   1342   __ jecxz(&return_true);
   1343 
   1344   // Load starting addresses of string values into ESI/EDI as required for repe_cmpsl instruction.
   1345   __ leal(esi, Address(str, value_offset));
   1346   __ leal(edi, Address(arg, value_offset));
   1347 
   1348   // Divide string length by 2 to compare characters 2 at a time and adjust for odd lengths.
   1349   __ addl(ecx, Immediate(1));
   1350   __ shrl(ecx, Immediate(1));
   1351 
   1352   // Assertions that must hold in order to compare strings 2 characters at a time.
   1353   DCHECK_ALIGNED(value_offset, 4);
   1354   static_assert(IsAligned<4>(kObjectAlignment), "String of odd length is not zero padded");
   1355 
   1356   // Loop to compare strings two characters at a time starting at the beginning of the string.
   1357   __ repe_cmpsl();
   1358   // If strings are not equal, zero flag will be cleared.
   1359   __ j(kNotEqual, &return_false);
   1360 
   1361   // Return true and exit the function.
   1362   // If loop does not result in returning false, we return true.
   1363   __ Bind(&return_true);
   1364   __ movl(esi, Immediate(1));
   1365   __ jmp(&end);
   1366 
   1367   // Return false and exit the function.
   1368   __ Bind(&return_false);
   1369   __ xorl(esi, esi);
   1370   __ Bind(&end);
   1371 }
   1372 
   1373 static void CreateStringIndexOfLocations(HInvoke* invoke,
   1374                                          ArenaAllocator* allocator,
   1375                                          bool start_at_zero) {
   1376   LocationSummary* locations = new (allocator) LocationSummary(invoke,
   1377                                                                LocationSummary::kCallOnSlowPath,
   1378                                                                kIntrinsified);
   1379   // The data needs to be in EDI for scasw. So request that the string is there, anyways.
   1380   locations->SetInAt(0, Location::RegisterLocation(EDI));
   1381   // If we look for a constant char, we'll still have to copy it into EAX. So just request the
   1382   // allocator to do that, anyways. We can still do the constant check by checking the parameter
   1383   // of the instruction explicitly.
   1384   // Note: This works as we don't clobber EAX anywhere.
   1385   locations->SetInAt(1, Location::RegisterLocation(EAX));
   1386   if (!start_at_zero) {
   1387     locations->SetInAt(2, Location::RequiresRegister());          // The starting index.
   1388   }
   1389   // As we clobber EDI during execution anyways, also use it as the output.
   1390   locations->SetOut(Location::SameAsFirstInput());
   1391 
   1392   // repne scasw uses ECX as the counter.
   1393   locations->AddTemp(Location::RegisterLocation(ECX));
   1394   // Need another temporary to be able to compute the result.
   1395   locations->AddTemp(Location::RequiresRegister());
   1396 }
   1397 
   1398 static void GenerateStringIndexOf(HInvoke* invoke,
   1399                                   X86Assembler* assembler,
   1400                                   CodeGeneratorX86* codegen,
   1401                                   ArenaAllocator* allocator,
   1402                                   bool start_at_zero) {
   1403   LocationSummary* locations = invoke->GetLocations();
   1404 
   1405   // Note that the null check must have been done earlier.
   1406   DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
   1407 
   1408   Register string_obj = locations->InAt(0).AsRegister<Register>();
   1409   Register search_value = locations->InAt(1).AsRegister<Register>();
   1410   Register counter = locations->GetTemp(0).AsRegister<Register>();
   1411   Register string_length = locations->GetTemp(1).AsRegister<Register>();
   1412   Register out = locations->Out().AsRegister<Register>();
   1413 
   1414   // Check our assumptions for registers.
   1415   DCHECK_EQ(string_obj, EDI);
   1416   DCHECK_EQ(search_value, EAX);
   1417   DCHECK_EQ(counter, ECX);
   1418   DCHECK_EQ(out, EDI);
   1419 
   1420   // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
   1421   // or directly dispatch if we have a constant.
   1422   SlowPathCode* slow_path = nullptr;
   1423   if (invoke->InputAt(1)->IsIntConstant()) {
   1424     if (static_cast<uint32_t>(invoke->InputAt(1)->AsIntConstant()->GetValue()) >
   1425     std::numeric_limits<uint16_t>::max()) {
   1426       // Always needs the slow-path. We could directly dispatch to it, but this case should be
   1427       // rare, so for simplicity just put the full slow-path down and branch unconditionally.
   1428       slow_path = new (allocator) IntrinsicSlowPathX86(invoke);
   1429       codegen->AddSlowPath(slow_path);
   1430       __ jmp(slow_path->GetEntryLabel());
   1431       __ Bind(slow_path->GetExitLabel());
   1432       return;
   1433     }
   1434   } else {
   1435     __ cmpl(search_value, Immediate(std::numeric_limits<uint16_t>::max()));
   1436     slow_path = new (allocator) IntrinsicSlowPathX86(invoke);
   1437     codegen->AddSlowPath(slow_path);
   1438     __ j(kAbove, slow_path->GetEntryLabel());
   1439   }
   1440 
   1441   // From here down, we know that we are looking for a char that fits in 16 bits.
   1442   // Location of reference to data array within the String object.
   1443   int32_t value_offset = mirror::String::ValueOffset().Int32Value();
   1444   // Location of count within the String object.
   1445   int32_t count_offset = mirror::String::CountOffset().Int32Value();
   1446 
   1447   // Load string length, i.e., the count field of the string.
   1448   __ movl(string_length, Address(string_obj, count_offset));
   1449 
   1450   // Do a zero-length check.
   1451   // TODO: Support jecxz.
   1452   NearLabel not_found_label;
   1453   __ testl(string_length, string_length);
   1454   __ j(kEqual, &not_found_label);
   1455 
   1456   if (start_at_zero) {
   1457     // Number of chars to scan is the same as the string length.
   1458     __ movl(counter, string_length);
   1459 
   1460     // Move to the start of the string.
   1461     __ addl(string_obj, Immediate(value_offset));
   1462   } else {
   1463     Register start_index = locations->InAt(2).AsRegister<Register>();
   1464 
   1465     // Do a start_index check.
   1466     __ cmpl(start_index, string_length);
   1467     __ j(kGreaterEqual, &not_found_label);
   1468 
   1469     // Ensure we have a start index >= 0;
   1470     __ xorl(counter, counter);
   1471     __ cmpl(start_index, Immediate(0));
   1472     __ cmovl(kGreater, counter, start_index);
   1473 
   1474     // Move to the start of the string: string_obj + value_offset + 2 * start_index.
   1475     __ leal(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset));
   1476 
   1477     // Now update ecx (the repne scasw work counter). We have string.length - start_index left to
   1478     // compare.
   1479     __ negl(counter);
   1480     __ leal(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0));
   1481   }
   1482 
   1483   // Everything is set up for repne scasw:
   1484   //   * Comparison address in EDI.
   1485   //   * Counter in ECX.
   1486   __ repne_scasw();
   1487 
   1488   // Did we find a match?
   1489   __ j(kNotEqual, &not_found_label);
   1490 
   1491   // Yes, we matched.  Compute the index of the result.
   1492   __ subl(string_length, counter);
   1493   __ leal(out, Address(string_length, -1));
   1494 
   1495   NearLabel done;
   1496   __ jmp(&done);
   1497 
   1498   // Failed to match; return -1.
   1499   __ Bind(&not_found_label);
   1500   __ movl(out, Immediate(-1));
   1501 
   1502   // And join up at the end.
   1503   __ Bind(&done);
   1504   if (slow_path != nullptr) {
   1505     __ Bind(slow_path->GetExitLabel());
   1506   }
   1507 }
   1508 
   1509 void IntrinsicLocationsBuilderX86::VisitStringIndexOf(HInvoke* invoke) {
   1510   CreateStringIndexOfLocations(invoke, arena_, /* start_at_zero */ true);
   1511 }
   1512 
   1513 void IntrinsicCodeGeneratorX86::VisitStringIndexOf(HInvoke* invoke) {
   1514   GenerateStringIndexOf(invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ true);
   1515 }
   1516 
   1517 void IntrinsicLocationsBuilderX86::VisitStringIndexOfAfter(HInvoke* invoke) {
   1518   CreateStringIndexOfLocations(invoke, arena_, /* start_at_zero */ false);
   1519 }
   1520 
   1521 void IntrinsicCodeGeneratorX86::VisitStringIndexOfAfter(HInvoke* invoke) {
   1522   GenerateStringIndexOf(
   1523       invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ false);
   1524 }
   1525 
   1526 void IntrinsicLocationsBuilderX86::VisitStringNewStringFromBytes(HInvoke* invoke) {
   1527   LocationSummary* locations = new (arena_) LocationSummary(invoke,
   1528                                                             LocationSummary::kCall,
   1529                                                             kIntrinsified);
   1530   InvokeRuntimeCallingConvention calling_convention;
   1531   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   1532   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
   1533   locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
   1534   locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
   1535   locations->SetOut(Location::RegisterLocation(EAX));
   1536 }
   1537 
   1538 void IntrinsicCodeGeneratorX86::VisitStringNewStringFromBytes(HInvoke* invoke) {
   1539   X86Assembler* assembler = GetAssembler();
   1540   LocationSummary* locations = invoke->GetLocations();
   1541 
   1542   Register byte_array = locations->InAt(0).AsRegister<Register>();
   1543   __ testl(byte_array, byte_array);
   1544   SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86(invoke);
   1545   codegen_->AddSlowPath(slow_path);
   1546   __ j(kEqual, slow_path->GetEntryLabel());
   1547 
   1548   __ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pAllocStringFromBytes)));
   1549   CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>();
   1550   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
   1551   __ Bind(slow_path->GetExitLabel());
   1552 }
   1553 
   1554 void IntrinsicLocationsBuilderX86::VisitStringNewStringFromChars(HInvoke* invoke) {
   1555   LocationSummary* locations = new (arena_) LocationSummary(invoke,
   1556                                                             LocationSummary::kCall,
   1557                                                             kIntrinsified);
   1558   InvokeRuntimeCallingConvention calling_convention;
   1559   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   1560   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
   1561   locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
   1562   locations->SetOut(Location::RegisterLocation(EAX));
   1563 }
   1564 
   1565 void IntrinsicCodeGeneratorX86::VisitStringNewStringFromChars(HInvoke* invoke) {
   1566   X86Assembler* assembler = GetAssembler();
   1567 
   1568   // No need to emit code checking whether `locations->InAt(2)` is a null
   1569   // pointer, as callers of the native method
   1570   //
   1571   //   java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
   1572   //
   1573   // all include a null check on `data` before calling that method.
   1574   __ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pAllocStringFromChars)));
   1575   CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>();
   1576   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
   1577 }
   1578 
   1579 void IntrinsicLocationsBuilderX86::VisitStringNewStringFromString(HInvoke* invoke) {
   1580   LocationSummary* locations = new (arena_) LocationSummary(invoke,
   1581                                                             LocationSummary::kCall,
   1582                                                             kIntrinsified);
   1583   InvokeRuntimeCallingConvention calling_convention;
   1584   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
   1585   locations->SetOut(Location::RegisterLocation(EAX));
   1586 }
   1587 
   1588 void IntrinsicCodeGeneratorX86::VisitStringNewStringFromString(HInvoke* invoke) {
   1589   X86Assembler* assembler = GetAssembler();
   1590   LocationSummary* locations = invoke->GetLocations();
   1591 
   1592   Register string_to_copy = locations->InAt(0).AsRegister<Register>();
   1593   __ testl(string_to_copy, string_to_copy);
   1594   SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86(invoke);
   1595   codegen_->AddSlowPath(slow_path);
   1596   __ j(kEqual, slow_path->GetEntryLabel());
   1597 
   1598   __ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86WordSize, pAllocStringFromString)));
   1599   CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>();
   1600   codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
   1601   __ Bind(slow_path->GetExitLabel());
   1602 }
   1603 
   1604 void IntrinsicLocationsBuilderX86::VisitStringGetCharsNoCheck(HInvoke* invoke) {
   1605   // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
   1606   LocationSummary* locations = new (arena_) LocationSummary(invoke,
   1607                                                             LocationSummary::kNoCall,
   1608                                                             kIntrinsified);
   1609   locations->SetInAt(0, Location::RequiresRegister());
   1610   locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
   1611   // Place srcEnd in ECX to save a move below.
   1612   locations->SetInAt(2, Location::RegisterLocation(ECX));
   1613   locations->SetInAt(3, Location::RequiresRegister());
   1614   locations->SetInAt(4, Location::RequiresRegister());
   1615 
   1616   // And we need some temporaries.  We will use REP MOVSW, so we need fixed registers.
   1617   // We don't have enough registers to also grab ECX, so handle below.
   1618   locations->AddTemp(Location::RegisterLocation(ESI));
   1619   locations->AddTemp(Location::RegisterLocation(EDI));
   1620 }
   1621 
   1622 void IntrinsicCodeGeneratorX86::VisitStringGetCharsNoCheck(HInvoke* invoke) {
   1623   X86Assembler* assembler = GetAssembler();
   1624   LocationSummary* locations = invoke->GetLocations();
   1625 
   1626   size_t char_component_size = Primitive::ComponentSize(Primitive::kPrimChar);
   1627   // Location of data in char array buffer.
   1628   const uint32_t data_offset = mirror::Array::DataOffset(char_component_size).Uint32Value();
   1629   // Location of char array data in string.
   1630   const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
   1631 
   1632   // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
   1633   Register obj = locations->InAt(0).AsRegister<Register>();
   1634   Location srcBegin = locations->InAt(1);
   1635   int srcBegin_value =
   1636     srcBegin.IsConstant() ? srcBegin.GetConstant()->AsIntConstant()->GetValue() : 0;
   1637   Register srcEnd = locations->InAt(2).AsRegister<Register>();
   1638   Register dst = locations->InAt(3).AsRegister<Register>();
   1639   Register dstBegin = locations->InAt(4).AsRegister<Register>();
   1640 
   1641   // Check assumption that sizeof(Char) is 2 (used in scaling below).
   1642   const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
   1643   DCHECK_EQ(char_size, 2u);
   1644 
   1645   // Compute the address of the destination buffer.
   1646   __ leal(EDI, Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset));
   1647 
   1648   // Compute the address of the source string.
   1649   if (srcBegin.IsConstant()) {
   1650     // Compute the address of the source string by adding the number of chars from
   1651     // the source beginning to the value offset of a string.
   1652     __ leal(ESI, Address(obj, srcBegin_value * char_size + value_offset));
   1653   } else {
   1654     __ leal(ESI, Address(obj, srcBegin.AsRegister<Register>(),
   1655                          ScaleFactor::TIMES_2, value_offset));
   1656   }
   1657 
   1658   // Compute the number of chars (words) to move.
   1659   // Now is the time to save ECX, since we don't know if it will be used later.
   1660   __ pushl(ECX);
   1661   int stack_adjust = kX86WordSize;
   1662   __ cfi().AdjustCFAOffset(stack_adjust);
   1663   DCHECK_EQ(srcEnd, ECX);
   1664   if (srcBegin.IsConstant()) {
   1665     if (srcBegin_value != 0) {
   1666       __ subl(ECX, Immediate(srcBegin_value));
   1667     }
   1668   } else {
   1669     DCHECK(srcBegin.IsRegister());
   1670     __ subl(ECX, srcBegin.AsRegister<Register>());
   1671   }
   1672 
   1673   // Do the move.
   1674   __ rep_movsw();
   1675 
   1676   // And restore ECX.
   1677   __ popl(ECX);
   1678   __ cfi().AdjustCFAOffset(-stack_adjust);
   1679 }
   1680 
   1681 static void GenPeek(LocationSummary* locations, Primitive::Type size, X86Assembler* assembler) {
   1682   Register address = locations->InAt(0).AsRegisterPairLow<Register>();
   1683   Location out_loc = locations->Out();
   1684   // x86 allows unaligned access. We do not have to check the input or use specific instructions
   1685   // to avoid a SIGBUS.
   1686   switch (size) {
   1687     case Primitive::kPrimByte:
   1688       __ movsxb(out_loc.AsRegister<Register>(), Address(address, 0));
   1689       break;
   1690     case Primitive::kPrimShort:
   1691       __ movsxw(out_loc.AsRegister<Register>(), Address(address, 0));
   1692       break;
   1693     case Primitive::kPrimInt:
   1694       __ movl(out_loc.AsRegister<Register>(), Address(address, 0));
   1695       break;
   1696     case Primitive::kPrimLong:
   1697       __ movl(out_loc.AsRegisterPairLow<Register>(), Address(address, 0));
   1698       __ movl(out_loc.AsRegisterPairHigh<Register>(), Address(address, 4));
   1699       break;
   1700     default:
   1701       LOG(FATAL) << "Type not recognized for peek: " << size;
   1702       UNREACHABLE();
   1703   }
   1704 }
   1705 
   1706 void IntrinsicLocationsBuilderX86::VisitMemoryPeekByte(HInvoke* invoke) {
   1707   CreateLongToIntLocations(arena_, invoke);
   1708 }
   1709 
   1710 void IntrinsicCodeGeneratorX86::VisitMemoryPeekByte(HInvoke* invoke) {
   1711   GenPeek(invoke->GetLocations(), Primitive::kPrimByte, GetAssembler());
   1712 }
   1713 
   1714 void IntrinsicLocationsBuilderX86::VisitMemoryPeekIntNative(HInvoke* invoke) {
   1715   CreateLongToIntLocations(arena_, invoke);
   1716 }
   1717 
   1718 void IntrinsicCodeGeneratorX86::VisitMemoryPeekIntNative(HInvoke* invoke) {
   1719   GenPeek(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
   1720 }
   1721 
   1722 void IntrinsicLocationsBuilderX86::VisitMemoryPeekLongNative(HInvoke* invoke) {
   1723   CreateLongToLongLocations(arena_, invoke);
   1724 }
   1725 
   1726 void IntrinsicCodeGeneratorX86::VisitMemoryPeekLongNative(HInvoke* invoke) {
   1727   GenPeek(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
   1728 }
   1729 
   1730 void IntrinsicLocationsBuilderX86::VisitMemoryPeekShortNative(HInvoke* invoke) {
   1731   CreateLongToIntLocations(arena_, invoke);
   1732 }
   1733 
   1734 void IntrinsicCodeGeneratorX86::VisitMemoryPeekShortNative(HInvoke* invoke) {
   1735   GenPeek(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler());
   1736 }
   1737 
   1738 static void CreateLongIntToVoidLocations(ArenaAllocator* arena, Primitive::Type size,
   1739                                          HInvoke* invoke) {
   1740   LocationSummary* locations = new (arena) LocationSummary(invoke,
   1741                                                            LocationSummary::kNoCall,
   1742                                                            kIntrinsified);
   1743   locations->SetInAt(0, Location::RequiresRegister());
   1744   HInstruction* value = invoke->InputAt(1);
   1745   if (size == Primitive::kPrimByte) {
   1746     locations->SetInAt(1, Location::ByteRegisterOrConstant(EDX, value));
   1747   } else {
   1748     locations->SetInAt(1, Location::RegisterOrConstant(value));
   1749   }
   1750 }
   1751 
   1752 static void GenPoke(LocationSummary* locations, Primitive::Type size, X86Assembler* assembler) {
   1753   Register address = locations->InAt(0).AsRegisterPairLow<Register>();
   1754   Location value_loc = locations->InAt(1);
   1755   // x86 allows unaligned access. We do not have to check the input or use specific instructions
   1756   // to avoid a SIGBUS.
   1757   switch (size) {
   1758     case Primitive::kPrimByte:
   1759       if (value_loc.IsConstant()) {
   1760         __ movb(Address(address, 0),
   1761                 Immediate(value_loc.GetConstant()->AsIntConstant()->GetValue()));
   1762       } else {
   1763         __ movb(Address(address, 0), value_loc.AsRegister<ByteRegister>());
   1764       }
   1765       break;
   1766     case Primitive::kPrimShort:
   1767       if (value_loc.IsConstant()) {
   1768         __ movw(Address(address, 0),
   1769                 Immediate(value_loc.GetConstant()->AsIntConstant()->GetValue()));
   1770       } else {
   1771         __ movw(Address(address, 0), value_loc.AsRegister<Register>());
   1772       }
   1773       break;
   1774     case Primitive::kPrimInt:
   1775       if (value_loc.IsConstant()) {
   1776         __ movl(Address(address, 0),
   1777                 Immediate(value_loc.GetConstant()->AsIntConstant()->GetValue()));
   1778       } else {
   1779         __ movl(Address(address, 0), value_loc.AsRegister<Register>());
   1780       }
   1781       break;
   1782     case Primitive::kPrimLong:
   1783       if (value_loc.IsConstant()) {
   1784         int64_t value = value_loc.GetConstant()->AsLongConstant()->GetValue();
   1785         __ movl(Address(address, 0), Immediate(Low32Bits(value)));
   1786         __ movl(Address(address, 4), Immediate(High32Bits(value)));
   1787       } else {
   1788         __ movl(Address(address, 0), value_loc.AsRegisterPairLow<Register>());
   1789         __ movl(Address(address, 4), value_loc.AsRegisterPairHigh<Register>());
   1790       }
   1791       break;
   1792     default:
   1793       LOG(FATAL) << "Type not recognized for poke: " << size;
   1794       UNREACHABLE();
   1795   }
   1796 }
   1797 
   1798 void IntrinsicLocationsBuilderX86::VisitMemoryPokeByte(HInvoke* invoke) {
   1799   CreateLongIntToVoidLocations(arena_, Primitive::kPrimByte, invoke);
   1800 }
   1801 
   1802 void IntrinsicCodeGeneratorX86::VisitMemoryPokeByte(HInvoke* invoke) {
   1803   GenPoke(invoke->GetLocations(), Primitive::kPrimByte, GetAssembler());
   1804 }
   1805 
   1806 void IntrinsicLocationsBuilderX86::VisitMemoryPokeIntNative(HInvoke* invoke) {
   1807   CreateLongIntToVoidLocations(arena_, Primitive::kPrimInt, invoke);
   1808 }
   1809 
   1810 void IntrinsicCodeGeneratorX86::VisitMemoryPokeIntNative(HInvoke* invoke) {
   1811   GenPoke(invoke->GetLocations(), Primitive::kPrimInt, GetAssembler());
   1812 }
   1813 
   1814 void IntrinsicLocationsBuilderX86::VisitMemoryPokeLongNative(HInvoke* invoke) {
   1815   CreateLongIntToVoidLocations(arena_, Primitive::kPrimLong, invoke);
   1816 }
   1817 
   1818 void IntrinsicCodeGeneratorX86::VisitMemoryPokeLongNative(HInvoke* invoke) {
   1819   GenPoke(invoke->GetLocations(), Primitive::kPrimLong, GetAssembler());
   1820 }
   1821 
   1822 void IntrinsicLocationsBuilderX86::VisitMemoryPokeShortNative(HInvoke* invoke) {
   1823   CreateLongIntToVoidLocations(arena_, Primitive::kPrimShort, invoke);
   1824 }
   1825 
   1826 void IntrinsicCodeGeneratorX86::VisitMemoryPokeShortNative(HInvoke* invoke) {
   1827   GenPoke(invoke->GetLocations(), Primitive::kPrimShort, GetAssembler());
   1828 }
   1829 
   1830 void IntrinsicLocationsBuilderX86::VisitThreadCurrentThread(HInvoke* invoke) {
   1831   LocationSummary* locations = new (arena_) LocationSummary(invoke,
   1832                                                             LocationSummary::kNoCall,
   1833                                                             kIntrinsified);
   1834   locations->SetOut(Location::RequiresRegister());
   1835 }
   1836 
   1837 void IntrinsicCodeGeneratorX86::VisitThreadCurrentThread(HInvoke* invoke) {
   1838   Register out = invoke->GetLocations()->Out().AsRegister<Register>();
   1839   GetAssembler()->fs()->movl(out, Address::Absolute(Thread::PeerOffset<kX86WordSize>()));
   1840 }
   1841 
   1842 static void GenUnsafeGet(HInvoke* invoke,
   1843                          Primitive::Type type,
   1844                          bool is_volatile,
   1845                          CodeGeneratorX86* codegen) {
   1846   X86Assembler* assembler = down_cast<X86Assembler*>(codegen->GetAssembler());
   1847   LocationSummary* locations = invoke->GetLocations();
   1848   Location base_loc = locations->InAt(1);
   1849   Register base = base_loc.AsRegister<Register>();
   1850   Location offset_loc = locations->InAt(2);
   1851   Register offset = offset_loc.AsRegisterPairLow<Register>();
   1852   Location output_loc = locations->Out();
   1853 
   1854   switch (type) {
   1855     case Primitive::kPrimInt: {
   1856       Register output = output_loc.AsRegister<Register>();
   1857       __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
   1858       break;
   1859     }
   1860 
   1861     case Primitive::kPrimNot: {
   1862       Register output = output_loc.AsRegister<Register>();
   1863       if (kEmitCompilerReadBarrier) {
   1864         if (kUseBakerReadBarrier) {
   1865           Location temp = locations->GetTemp(0);
   1866           codegen->GenerateArrayLoadWithBakerReadBarrier(
   1867               invoke, output_loc, base, 0U, offset_loc, temp, /* needs_null_check */ false);
   1868         } else {
   1869           __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
   1870           codegen->GenerateReadBarrierSlow(
   1871               invoke, output_loc, output_loc, base_loc, 0U, offset_loc);
   1872         }
   1873       } else {
   1874         __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
   1875         __ MaybeUnpoisonHeapReference(output);
   1876       }
   1877       break;
   1878     }
   1879 
   1880     case Primitive::kPrimLong: {
   1881         Register output_lo = output_loc.AsRegisterPairLow<Register>();
   1882         Register output_hi = output_loc.AsRegisterPairHigh<Register>();
   1883         if (is_volatile) {
   1884           // Need to use a XMM to read atomically.
   1885           XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
   1886           __ movsd(temp, Address(base, offset, ScaleFactor::TIMES_1, 0));
   1887           __ movd(output_lo, temp);
   1888           __ psrlq(temp, Immediate(32));
   1889           __ movd(output_hi, temp);
   1890         } else {
   1891           __ movl(output_lo, Address(base, offset, ScaleFactor::TIMES_1, 0));
   1892           __ movl(output_hi, Address(base, offset, ScaleFactor::TIMES_1, 4));
   1893         }
   1894       }
   1895       break;
   1896 
   1897     default:
   1898       LOG(FATAL) << "Unsupported op size " << type;
   1899       UNREACHABLE();
   1900   }
   1901 }
   1902 
   1903 static void CreateIntIntIntToIntLocations(ArenaAllocator* arena,
   1904                                           HInvoke* invoke,
   1905                                           Primitive::Type type,
   1906                                           bool is_volatile) {
   1907   bool can_call = kEmitCompilerReadBarrier &&
   1908       (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
   1909        invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
   1910   LocationSummary* locations = new (arena) LocationSummary(invoke,
   1911                                                            can_call ?
   1912                                                                LocationSummary::kCallOnSlowPath :
   1913                                                                LocationSummary::kNoCall,
   1914                                                            kIntrinsified);
   1915   locations->SetInAt(0, Location::NoLocation());        // Unused receiver.
   1916   locations->SetInAt(1, Location::RequiresRegister());
   1917   locations->SetInAt(2, Location::RequiresRegister());
   1918   if (type == Primitive::kPrimLong) {
   1919     if (is_volatile) {
   1920       // Need to use XMM to read volatile.
   1921       locations->AddTemp(Location::RequiresFpuRegister());
   1922       locations->SetOut(Location::RequiresRegister());
   1923     } else {
   1924       locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
   1925     }
   1926   } else {
   1927     locations->SetOut(Location::RequiresRegister());
   1928   }
   1929   if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
   1930     // We need a temporary register for the read barrier marking slow
   1931     // path in InstructionCodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier.
   1932     locations->AddTemp(Location::RequiresRegister());
   1933   }
   1934 }
   1935 
   1936 void IntrinsicLocationsBuilderX86::VisitUnsafeGet(HInvoke* invoke) {
   1937   CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt, /* is_volatile */ false);
   1938 }
   1939 void IntrinsicLocationsBuilderX86::VisitUnsafeGetVolatile(HInvoke* invoke) {
   1940   CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt, /* is_volatile */ true);
   1941 }
   1942 void IntrinsicLocationsBuilderX86::VisitUnsafeGetLong(HInvoke* invoke) {
   1943   CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong, /* is_volatile */ false);
   1944 }
   1945 void IntrinsicLocationsBuilderX86::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
   1946   CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong, /* is_volatile */ true);
   1947 }
   1948 void IntrinsicLocationsBuilderX86::VisitUnsafeGetObject(HInvoke* invoke) {
   1949   CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot, /* is_volatile */ false);
   1950 }
   1951 void IntrinsicLocationsBuilderX86::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
   1952   CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot, /* is_volatile */ true);
   1953 }
   1954 
   1955 
   1956 void IntrinsicCodeGeneratorX86::VisitUnsafeGet(HInvoke* invoke) {
   1957   GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ false, codegen_);
   1958 }
   1959 void IntrinsicCodeGeneratorX86::VisitUnsafeGetVolatile(HInvoke* invoke) {
   1960   GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ true, codegen_);
   1961 }
   1962 void IntrinsicCodeGeneratorX86::VisitUnsafeGetLong(HInvoke* invoke) {
   1963   GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ false, codegen_);
   1964 }
   1965 void IntrinsicCodeGeneratorX86::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
   1966   GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ true, codegen_);
   1967 }
   1968 void IntrinsicCodeGeneratorX86::VisitUnsafeGetObject(HInvoke* invoke) {
   1969   GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ false, codegen_);
   1970 }
   1971 void IntrinsicCodeGeneratorX86::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
   1972   GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ true, codegen_);
   1973 }
   1974 
   1975 
   1976 static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* arena,
   1977                                                        Primitive::Type type,
   1978                                                        HInvoke* invoke,
   1979                                                        bool is_volatile) {
   1980   LocationSummary* locations = new (arena) LocationSummary(invoke,
   1981                                                            LocationSummary::kNoCall,
   1982                                                            kIntrinsified);
   1983   locations->SetInAt(0, Location::NoLocation());        // Unused receiver.
   1984   locations->SetInAt(1, Location::RequiresRegister());
   1985   locations->SetInAt(2, Location::RequiresRegister());
   1986   locations->SetInAt(3, Location::RequiresRegister());
   1987   if (type == Primitive::kPrimNot) {
   1988     // Need temp registers for card-marking.
   1989     locations->AddTemp(Location::RequiresRegister());  // Possibly used for reference poisoning too.
   1990     // Ensure the value is in a byte register.
   1991     locations->AddTemp(Location::RegisterLocation(ECX));
   1992   } else if (type == Primitive::kPrimLong && is_volatile) {
   1993     locations->AddTemp(Location::RequiresFpuRegister());
   1994     locations->AddTemp(Location::RequiresFpuRegister());
   1995   }
   1996 }
   1997 
   1998 void IntrinsicLocationsBuilderX86::VisitUnsafePut(HInvoke* invoke) {
   1999   CreateIntIntIntIntToVoidPlusTempsLocations(
   2000       arena_, Primitive::kPrimInt, invoke, /* is_volatile */ false);
   2001 }
   2002 void IntrinsicLocationsBuilderX86::VisitUnsafePutOrdered(HInvoke* invoke) {
   2003   CreateIntIntIntIntToVoidPlusTempsLocations(
   2004       arena_, Primitive::kPrimInt, invoke, /* is_volatile */ false);
   2005 }
   2006 void IntrinsicLocationsBuilderX86::VisitUnsafePutVolatile(HInvoke* invoke) {
   2007   CreateIntIntIntIntToVoidPlusTempsLocations(
   2008       arena_, Primitive::kPrimInt, invoke, /* is_volatile */ true);
   2009 }
   2010 void IntrinsicLocationsBuilderX86::VisitUnsafePutObject(HInvoke* invoke) {
   2011   CreateIntIntIntIntToVoidPlusTempsLocations(
   2012       arena_, Primitive::kPrimNot, invoke, /* is_volatile */ false);
   2013 }
   2014 void IntrinsicLocationsBuilderX86::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
   2015   CreateIntIntIntIntToVoidPlusTempsLocations(
   2016       arena_, Primitive::kPrimNot, invoke, /* is_volatile */ false);
   2017 }
   2018 void IntrinsicLocationsBuilderX86::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
   2019   CreateIntIntIntIntToVoidPlusTempsLocations(
   2020       arena_, Primitive::kPrimNot, invoke, /* is_volatile */ true);
   2021 }
   2022 void IntrinsicLocationsBuilderX86::VisitUnsafePutLong(HInvoke* invoke) {
   2023   CreateIntIntIntIntToVoidPlusTempsLocations(
   2024       arena_, Primitive::kPrimLong, invoke, /* is_volatile */ false);
   2025 }
   2026 void IntrinsicLocationsBuilderX86::VisitUnsafePutLongOrdered(HInvoke* invoke) {
   2027   CreateIntIntIntIntToVoidPlusTempsLocations(
   2028       arena_, Primitive::kPrimLong, invoke, /* is_volatile */ false);
   2029 }
   2030 void IntrinsicLocationsBuilderX86::VisitUnsafePutLongVolatile(HInvoke* invoke) {
   2031   CreateIntIntIntIntToVoidPlusTempsLocations(
   2032       arena_, Primitive::kPrimLong, invoke, /* is_volatile */ true);
   2033 }
   2034 
   2035 // We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86
   2036 // memory model.
   2037 static void GenUnsafePut(LocationSummary* locations,
   2038                          Primitive::Type type,
   2039                          bool is_volatile,
   2040                          CodeGeneratorX86* codegen) {
   2041   X86Assembler* assembler = down_cast<X86Assembler*>(codegen->GetAssembler());
   2042   Register base = locations->InAt(1).AsRegister<Register>();
   2043   Register offset = locations->InAt(2).AsRegisterPairLow<Register>();
   2044   Location value_loc = locations->InAt(3);
   2045 
   2046   if (type == Primitive::kPrimLong) {
   2047     Register value_lo = value_loc.AsRegisterPairLow<Register>();
   2048     Register value_hi = value_loc.AsRegisterPairHigh<Register>();
   2049     if (is_volatile) {
   2050       XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
   2051       XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
   2052       __ movd(temp1, value_lo);
   2053       __ movd(temp2, value_hi);
   2054       __ punpckldq(temp1, temp2);
   2055       __ movsd(Address(base, offset, ScaleFactor::TIMES_1, 0), temp1);
   2056     } else {
   2057       __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value_lo);
   2058       __ movl(Address(base, offset, ScaleFactor::TIMES_1, 4), value_hi);
   2059     }
   2060   } else if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
   2061     Register temp = locations->GetTemp(0).AsRegister<Register>();
   2062     __ movl(temp, value_loc.AsRegister<Register>());
   2063     __ PoisonHeapReference(temp);
   2064     __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), temp);
   2065   } else {
   2066     __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value_loc.AsRegister<Register>());
   2067   }
   2068 
   2069   if (is_volatile) {
   2070     codegen->MemoryFence();
   2071   }
   2072 
   2073   if (type == Primitive::kPrimNot) {
   2074     bool value_can_be_null = true;  // TODO: Worth finding out this information?
   2075     codegen->MarkGCCard(locations->GetTemp(0).AsRegister<Register>(),
   2076                         locations->GetTemp(1).AsRegister<Register>(),
   2077                         base,
   2078                         value_loc.AsRegister<Register>(),
   2079                         value_can_be_null);
   2080   }
   2081 }
   2082 
   2083 void IntrinsicCodeGeneratorX86::VisitUnsafePut(HInvoke* invoke) {
   2084   GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ false, codegen_);
   2085 }
   2086 void IntrinsicCodeGeneratorX86::VisitUnsafePutOrdered(HInvoke* invoke) {
   2087   GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ false, codegen_);
   2088 }
   2089 void IntrinsicCodeGeneratorX86::VisitUnsafePutVolatile(HInvoke* invoke) {
   2090   GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ true, codegen_);
   2091 }
   2092 void IntrinsicCodeGeneratorX86::VisitUnsafePutObject(HInvoke* invoke) {
   2093   GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ false, codegen_);
   2094 }
   2095 void IntrinsicCodeGeneratorX86::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
   2096   GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ false, codegen_);
   2097 }
   2098 void IntrinsicCodeGeneratorX86::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
   2099   GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ true, codegen_);
   2100 }
   2101 void IntrinsicCodeGeneratorX86::VisitUnsafePutLong(HInvoke* invoke) {
   2102   GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ false, codegen_);
   2103 }
   2104 void IntrinsicCodeGeneratorX86::VisitUnsafePutLongOrdered(HInvoke* invoke) {
   2105   GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ false, codegen_);
   2106 }
   2107 void IntrinsicCodeGeneratorX86::VisitUnsafePutLongVolatile(HInvoke* invoke) {
   2108   GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ true, codegen_);
   2109 }
   2110 
   2111 static void CreateIntIntIntIntIntToInt(ArenaAllocator* arena, Primitive::Type type,
   2112                                        HInvoke* invoke) {
   2113   LocationSummary* locations = new (arena) LocationSummary(invoke,
   2114                                                            LocationSummary::kNoCall,
   2115                                                            kIntrinsified);
   2116   locations->SetInAt(0, Location::NoLocation());        // Unused receiver.
   2117   locations->SetInAt(1, Location::RequiresRegister());
   2118   // Offset is a long, but in 32 bit mode, we only need the low word.
   2119   // Can we update the invoke here to remove a TypeConvert to Long?
   2120   locations->SetInAt(2, Location::RequiresRegister());
   2121   // Expected value must be in EAX or EDX:EAX.
   2122   // For long, new value must be in ECX:EBX.
   2123   if (type == Primitive::kPrimLong) {
   2124     locations->SetInAt(3, Location::RegisterPairLocation(EAX, EDX));
   2125     locations->SetInAt(4, Location::RegisterPairLocation(EBX, ECX));
   2126   } else {
   2127     locations->SetInAt(3, Location::RegisterLocation(EAX));
   2128     locations->SetInAt(4, Location::RequiresRegister());
   2129   }
   2130 
   2131   // Force a byte register for the output.
   2132   locations->SetOut(Location::RegisterLocation(EAX));
   2133   if (type == Primitive::kPrimNot) {
   2134     // Need temp registers for card-marking.
   2135     locations->AddTemp(Location::RequiresRegister());  // Possibly used for reference poisoning too.
   2136     // Need a byte register for marking.
   2137     locations->AddTemp(Location::RegisterLocation(ECX));
   2138   }
   2139 }
   2140 
   2141 void IntrinsicLocationsBuilderX86::VisitUnsafeCASInt(HInvoke* invoke) {
   2142   CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimInt, invoke);
   2143 }
   2144 
   2145 void IntrinsicLocationsBuilderX86::VisitUnsafeCASLong(HInvoke* invoke) {
   2146   CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimLong, invoke);
   2147 }
   2148 
   2149 void IntrinsicLocationsBuilderX86::VisitUnsafeCASObject(HInvoke* invoke) {
   2150   // The UnsafeCASObject intrinsic is missing a read barrier, and
   2151   // therefore sometimes does not work as expected (b/25883050).
   2152   // Turn it off temporarily as a quick fix, until the read barrier is
   2153   // implemented.
   2154   //
   2155   // TODO(rpl): Implement a read barrier in GenCAS below and re-enable
   2156   // this intrinsic.
   2157   if (kEmitCompilerReadBarrier) {
   2158     return;
   2159   }
   2160 
   2161   CreateIntIntIntIntIntToInt(arena_, Primitive::kPrimNot, invoke);
   2162 }
   2163 
   2164 static void GenCAS(Primitive::Type type, HInvoke* invoke, CodeGeneratorX86* codegen) {
   2165   X86Assembler* assembler = down_cast<X86Assembler*>(codegen->GetAssembler());
   2166   LocationSummary* locations = invoke->GetLocations();
   2167 
   2168   Register base = locations->InAt(1).AsRegister<Register>();
   2169   Register offset = locations->InAt(2).AsRegisterPairLow<Register>();
   2170   Location out = locations->Out();
   2171   DCHECK_EQ(out.AsRegister<Register>(), EAX);
   2172 
   2173   if (type == Primitive::kPrimNot) {
   2174     Register expected = locations->InAt(3).AsRegister<Register>();
   2175     // Ensure `expected` is in EAX (required by the CMPXCHG instruction).
   2176     DCHECK_EQ(expected, EAX);
   2177     Register value = locations->InAt(4).AsRegister<Register>();
   2178 
   2179     // Mark card for object assuming new value is stored.
   2180     bool value_can_be_null = true;  // TODO: Worth finding out this information?
   2181     codegen->MarkGCCard(locations->GetTemp(0).AsRegister<Register>(),
   2182                         locations->GetTemp(1).AsRegister<Register>(),
   2183                         base,
   2184                         value,
   2185                         value_can_be_null);
   2186 
   2187     bool base_equals_value = (base == value);
   2188     if (kPoisonHeapReferences) {
   2189       if (base_equals_value) {
   2190         // If `base` and `value` are the same register location, move
   2191         // `value` to a temporary register.  This way, poisoning
   2192         // `value` won't invalidate `base`.
   2193         value = locations->GetTemp(0).AsRegister<Register>();
   2194         __ movl(value, base);
   2195       }
   2196 
   2197       // Check that the register allocator did not assign the location
   2198       // of `expected` (EAX) to `value` nor to `base`, so that heap
   2199       // poisoning (when enabled) works as intended below.
   2200       // - If `value` were equal to `expected`, both references would
   2201       //   be poisoned twice, meaning they would not be poisoned at
   2202       //   all, as heap poisoning uses address negation.
   2203       // - If `base` were equal to `expected`, poisoning `expected`
   2204       //   would invalidate `base`.
   2205       DCHECK_NE(value, expected);
   2206       DCHECK_NE(base, expected);
   2207 
   2208       __ PoisonHeapReference(expected);
   2209       __ PoisonHeapReference(value);
   2210     }
   2211 
   2212     // TODO: Add a read barrier for the reference stored in the object
   2213     // before attempting the CAS, similar to the one in the
   2214     // art::Unsafe_compareAndSwapObject JNI implementation.
   2215     //
   2216     // Note that this code is not (yet) used when read barriers are
   2217     // enabled (see IntrinsicLocationsBuilderX86::VisitUnsafeCASObject).
   2218     DCHECK(!kEmitCompilerReadBarrier);
   2219     __ LockCmpxchgl(Address(base, offset, TIMES_1, 0), value);
   2220 
   2221     // LOCK CMPXCHG has full barrier semantics, and we don't need
   2222     // scheduling barriers at this time.
   2223 
   2224     // Convert ZF into the boolean result.
   2225     __ setb(kZero, out.AsRegister<Register>());
   2226     __ movzxb(out.AsRegister<Register>(), out.AsRegister<ByteRegister>());
   2227 
   2228     // If heap poisoning is enabled, we need to unpoison the values
   2229     // that were poisoned earlier.
   2230     if (kPoisonHeapReferences) {
   2231       if (base_equals_value) {
   2232         // `value` has been moved to a temporary register, no need to
   2233         // unpoison it.
   2234       } else {
   2235         // Ensure `value` is different from `out`, so that unpoisoning
   2236         // the former does not invalidate the latter.
   2237         DCHECK_NE(value, out.AsRegister<Register>());
   2238         __ UnpoisonHeapReference(value);
   2239       }
   2240       // Do not unpoison the reference contained in register
   2241       // `expected`, as it is the same as register `out` (EAX).
   2242     }
   2243   } else {
   2244     if (type == Primitive::kPrimInt) {
   2245       // Ensure the expected value is in EAX (required by the CMPXCHG
   2246       // instruction).
   2247       DCHECK_EQ(locations->InAt(3).AsRegister<Register>(), EAX);
   2248       __ LockCmpxchgl(Address(base, offset, TIMES_1, 0),
   2249                       locations->InAt(4).AsRegister<Register>());
   2250     } else if (type == Primitive::kPrimLong) {
   2251       // Ensure the expected value is in EAX:EDX and that the new
   2252       // value is in EBX:ECX (required by the CMPXCHG8B instruction).
   2253       DCHECK_EQ(locations->InAt(3).AsRegisterPairLow<Register>(), EAX);
   2254       DCHECK_EQ(locations->InAt(3).AsRegisterPairHigh<Register>(), EDX);
   2255       DCHECK_EQ(locations->InAt(4).AsRegisterPairLow<Register>(), EBX);
   2256       DCHECK_EQ(locations->InAt(4).AsRegisterPairHigh<Register>(), ECX);
   2257       __ LockCmpxchg8b(Address(base, offset, TIMES_1, 0));
   2258     } else {
   2259       LOG(FATAL) << "Unexpected CAS type " << type;
   2260     }
   2261 
   2262     // LOCK CMPXCHG/LOCK CMPXCHG8B have full barrier semantics, and we
   2263     // don't need scheduling barriers at this time.
   2264 
   2265     // Convert ZF into the boolean result.
   2266     __ setb(kZero, out.AsRegister<Register>());
   2267     __ movzxb(out.AsRegister<Register>(), out.AsRegister<ByteRegister>());
   2268   }
   2269 }
   2270 
   2271 void IntrinsicCodeGeneratorX86::VisitUnsafeCASInt(HInvoke* invoke) {
   2272   GenCAS(Primitive::kPrimInt, invoke, codegen_);
   2273 }
   2274 
   2275 void IntrinsicCodeGeneratorX86::VisitUnsafeCASLong(HInvoke* invoke) {
   2276   GenCAS(Primitive::kPrimLong, invoke, codegen_);
   2277 }
   2278 
   2279 void IntrinsicCodeGeneratorX86::VisitUnsafeCASObject(HInvoke* invoke) {
   2280   GenCAS(Primitive::kPrimNot, invoke, codegen_);
   2281 }
   2282 
   2283 void IntrinsicLocationsBuilderX86::VisitIntegerReverse(HInvoke* invoke) {
   2284   LocationSummary* locations = new (arena_) LocationSummary(invoke,
   2285                                                            LocationSummary::kNoCall,
   2286                                                            kIntrinsified);
   2287   locations->SetInAt(0, Location::RequiresRegister());
   2288   locations->SetOut(Location::SameAsFirstInput());
   2289   locations->AddTemp(Location::RequiresRegister());
   2290 }
   2291 
   2292 static void SwapBits(Register reg, Register temp, int32_t shift, int32_t mask,
   2293                      X86Assembler* assembler) {
   2294   Immediate imm_shift(shift);
   2295   Immediate imm_mask(mask);
   2296   __ movl(temp, reg);
   2297   __ shrl(reg, imm_shift);
   2298   __ andl(temp, imm_mask);
   2299   __ andl(reg, imm_mask);
   2300   __ shll(temp, imm_shift);
   2301   __ orl(reg, temp);
   2302 }
   2303 
   2304 void IntrinsicCodeGeneratorX86::VisitIntegerReverse(HInvoke* invoke) {
   2305   X86Assembler* assembler = GetAssembler();
   2306   LocationSummary* locations = invoke->GetLocations();
   2307 
   2308   Register reg = locations->InAt(0).AsRegister<Register>();
   2309   Register temp = locations->GetTemp(0).AsRegister<Register>();
   2310 
   2311   /*
   2312    * Use one bswap instruction to reverse byte order first and then use 3 rounds of
   2313    * swapping bits to reverse bits in a number x. Using bswap to save instructions
   2314    * compared to generic luni implementation which has 5 rounds of swapping bits.
   2315    * x = bswap x
   2316    * x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555;
   2317    * x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333;
   2318    * x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F;
   2319    */
   2320   __ bswapl(reg);
   2321   SwapBits(reg, temp, 1, 0x55555555, assembler);
   2322   SwapBits(reg, temp, 2, 0x33333333, assembler);
   2323   SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler);
   2324 }
   2325 
   2326 void IntrinsicLocationsBuilderX86::VisitLongReverse(HInvoke* invoke) {
   2327   LocationSummary* locations = new (arena_) LocationSummary(invoke,
   2328                                                            LocationSummary::kNoCall,
   2329                                                            kIntrinsified);
   2330   locations->SetInAt(0, Location::RequiresRegister());
   2331   locations->SetOut(Location::SameAsFirstInput());
   2332   locations->AddTemp(Location::RequiresRegister());
   2333 }
   2334 
   2335 void IntrinsicCodeGeneratorX86::VisitLongReverse(HInvoke* invoke) {
   2336   X86Assembler* assembler = GetAssembler();
   2337   LocationSummary* locations = invoke->GetLocations();
   2338 
   2339   Register reg_low = locations->InAt(0).AsRegisterPairLow<Register>();
   2340   Register reg_high = locations->InAt(0).AsRegisterPairHigh<Register>();
   2341   Register temp = locations->GetTemp(0).AsRegister<Register>();
   2342 
   2343   // We want to swap high/low, then bswap each one, and then do the same
   2344   // as a 32 bit reverse.
   2345   // Exchange high and low.
   2346   __ movl(temp, reg_low);
   2347   __ movl(reg_low, reg_high);
   2348   __ movl(reg_high, temp);
   2349 
   2350   // bit-reverse low
   2351   __ bswapl(reg_low);
   2352   SwapBits(reg_low, temp, 1, 0x55555555, assembler);
   2353   SwapBits(reg_low, temp, 2, 0x33333333, assembler);
   2354   SwapBits(reg_low, temp, 4, 0x0f0f0f0f, assembler);
   2355 
   2356   // bit-reverse high
   2357   __ bswapl(reg_high);
   2358   SwapBits(reg_high, temp, 1, 0x55555555, assembler);
   2359   SwapBits(reg_high, temp, 2, 0x33333333, assembler);
   2360   SwapBits(reg_high, temp, 4, 0x0f0f0f0f, assembler);
   2361 }
   2362 
   2363 static void CreateBitCountLocations(
   2364     ArenaAllocator* arena, CodeGeneratorX86* codegen, HInvoke* invoke, bool is_long) {
   2365   if (!codegen->GetInstructionSetFeatures().HasPopCnt()) {
   2366     // Do nothing if there is no popcnt support. This results in generating
   2367     // a call for the intrinsic rather than direct code.
   2368     return;
   2369   }
   2370   LocationSummary* locations = new (arena) LocationSummary(invoke,
   2371                                                            LocationSummary::kNoCall,
   2372                                                            kIntrinsified);
   2373   if (is_long) {
   2374     locations->AddTemp(Location::RequiresRegister());
   2375   }
   2376   locations->SetInAt(0, Location::Any());
   2377   locations->SetOut(Location::RequiresRegister());
   2378 }
   2379 
   2380 static void GenBitCount(X86Assembler* assembler,
   2381                         CodeGeneratorX86* codegen,
   2382                         HInvoke* invoke, bool is_long) {
   2383   LocationSummary* locations = invoke->GetLocations();
   2384   Location src = locations->InAt(0);
   2385   Register out = locations->Out().AsRegister<Register>();
   2386 
   2387   if (invoke->InputAt(0)->IsConstant()) {
   2388     // Evaluate this at compile time.
   2389     int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
   2390     int32_t result = is_long
   2391         ? POPCOUNT(static_cast<uint64_t>(value))
   2392         : POPCOUNT(static_cast<uint32_t>(value));
   2393     codegen->Load32BitValue(out, result);
   2394     return;
   2395   }
   2396 
   2397   // Handle the non-constant cases.
   2398   if (!is_long) {
   2399     if (src.IsRegister()) {
   2400       __ popcntl(out, src.AsRegister<Register>());
   2401     } else {
   2402       DCHECK(src.IsStackSlot());
   2403       __ popcntl(out, Address(ESP, src.GetStackIndex()));
   2404     }
   2405   } else {
   2406     // The 64-bit case needs to worry about two parts.
   2407     Register temp = locations->GetTemp(0).AsRegister<Register>();
   2408     if (src.IsRegisterPair()) {
   2409       __ popcntl(temp, src.AsRegisterPairLow<Register>());
   2410       __ popcntl(out, src.AsRegisterPairHigh<Register>());
   2411     } else {
   2412       DCHECK(src.IsDoubleStackSlot());
   2413       __ popcntl(temp, Address(ESP, src.GetStackIndex()));
   2414       __ popcntl(out, Address(ESP, src.GetHighStackIndex(kX86WordSize)));
   2415     }
   2416     __ addl(out, temp);
   2417   }
   2418 }
   2419 
   2420 void IntrinsicLocationsBuilderX86::VisitIntegerBitCount(HInvoke* invoke) {
   2421   CreateBitCountLocations(arena_, codegen_, invoke, /* is_long */ false);
   2422 }
   2423 
   2424 void IntrinsicCodeGeneratorX86::VisitIntegerBitCount(HInvoke* invoke) {
   2425   GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ false);
   2426 }
   2427 
   2428 void IntrinsicLocationsBuilderX86::VisitLongBitCount(HInvoke* invoke) {
   2429   CreateBitCountLocations(arena_, codegen_, invoke, /* is_long */ true);
   2430 }
   2431 
   2432 void IntrinsicCodeGeneratorX86::VisitLongBitCount(HInvoke* invoke) {
   2433   GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ true);
   2434 }
   2435 
   2436 static void CreateLeadingZeroLocations(ArenaAllocator* arena, HInvoke* invoke, bool is_long) {
   2437   LocationSummary* locations = new (arena) LocationSummary(invoke,
   2438                                                            LocationSummary::kNoCall,
   2439                                                            kIntrinsified);
   2440   if (is_long) {
   2441     locations->SetInAt(0, Location::RequiresRegister());
   2442   } else {
   2443     locations->SetInAt(0, Location::Any());
   2444   }
   2445   locations->SetOut(Location::RequiresRegister());
   2446 }
   2447 
   2448 static void GenLeadingZeros(X86Assembler* assembler,
   2449                             CodeGeneratorX86* codegen,
   2450                             HInvoke* invoke, bool is_long) {
   2451   LocationSummary* locations = invoke->GetLocations();
   2452   Location src = locations->InAt(0);
   2453   Register out = locations->Out().AsRegister<Register>();
   2454 
   2455   if (invoke->InputAt(0)->IsConstant()) {
   2456     // Evaluate this at compile time.
   2457     int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
   2458     if (value == 0) {
   2459       value = is_long ? 64 : 32;
   2460     } else {
   2461       value = is_long ? CLZ(static_cast<uint64_t>(value)) : CLZ(static_cast<uint32_t>(value));
   2462     }
   2463     codegen->Load32BitValue(out, value);
   2464     return;
   2465   }
   2466 
   2467   // Handle the non-constant cases.
   2468   if (!is_long) {
   2469     if (src.IsRegister()) {
   2470       __ bsrl(out, src.AsRegister<Register>());
   2471     } else {
   2472       DCHECK(src.IsStackSlot());
   2473       __ bsrl(out, Address(ESP, src.GetStackIndex()));
   2474     }
   2475 
   2476     // BSR sets ZF if the input was zero, and the output is undefined.
   2477     NearLabel all_zeroes, done;
   2478     __ j(kEqual, &all_zeroes);
   2479 
   2480     // Correct the result from BSR to get the final CLZ result.
   2481     __ xorl(out, Immediate(31));
   2482     __ jmp(&done);
   2483 
   2484     // Fix the zero case with the expected result.
   2485     __ Bind(&all_zeroes);
   2486     __ movl(out, Immediate(32));
   2487 
   2488     __ Bind(&done);
   2489     return;
   2490   }
   2491 
   2492   // 64 bit case needs to worry about both parts of the register.
   2493   DCHECK(src.IsRegisterPair());
   2494   Register src_lo = src.AsRegisterPairLow<Register>();
   2495   Register src_hi = src.AsRegisterPairHigh<Register>();
   2496   NearLabel handle_low, done, all_zeroes;
   2497 
   2498   // Is the high word zero?
   2499   __ testl(src_hi, src_hi);
   2500   __ j(kEqual, &handle_low);
   2501 
   2502   // High word is not zero. We know that the BSR result is defined in this case.
   2503   __ bsrl(out, src_hi);
   2504 
   2505   // Correct the result from BSR to get the final CLZ result.
   2506   __ xorl(out, Immediate(31));
   2507   __ jmp(&done);
   2508 
   2509   // High word was zero.  We have to compute the low word count and add 32.
   2510   __ Bind(&handle_low);
   2511   __ bsrl(out, src_lo);
   2512   __ j(kEqual, &all_zeroes);
   2513 
   2514   // We had a valid result.  Use an XOR to both correct the result and add 32.
   2515   __ xorl(out, Immediate(63));
   2516   __ jmp(&done);
   2517 
   2518   // All zero case.
   2519   __ Bind(&all_zeroes);
   2520   __ movl(out, Immediate(64));
   2521 
   2522   __ Bind(&done);
   2523 }
   2524 
   2525 void IntrinsicLocationsBuilderX86::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
   2526   CreateLeadingZeroLocations(arena_, invoke, /* is_long */ false);
   2527 }
   2528 
   2529 void IntrinsicCodeGeneratorX86::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
   2530   GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false);
   2531 }
   2532 
   2533 void IntrinsicLocationsBuilderX86::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
   2534   CreateLeadingZeroLocations(arena_, invoke, /* is_long */ true);
   2535 }
   2536 
   2537 void IntrinsicCodeGeneratorX86::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
   2538   GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true);
   2539 }
   2540 
   2541 static void CreateTrailingZeroLocations(ArenaAllocator* arena, HInvoke* invoke, bool is_long) {
   2542   LocationSummary* locations = new (arena) LocationSummary(invoke,
   2543                                                            LocationSummary::kNoCall,
   2544                                                            kIntrinsified);
   2545   if (is_long) {
   2546     locations->SetInAt(0, Location::RequiresRegister());
   2547   } else {
   2548     locations->SetInAt(0, Location::Any());
   2549   }
   2550   locations->SetOut(Location::RequiresRegister());
   2551 }
   2552 
   2553 static void GenTrailingZeros(X86Assembler* assembler,
   2554                              CodeGeneratorX86* codegen,
   2555                              HInvoke* invoke, bool is_long) {
   2556   LocationSummary* locations = invoke->GetLocations();
   2557   Location src = locations->InAt(0);
   2558   Register out = locations->Out().AsRegister<Register>();
   2559 
   2560   if (invoke->InputAt(0)->IsConstant()) {
   2561     // Evaluate this at compile time.
   2562     int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
   2563     if (value == 0) {
   2564       value = is_long ? 64 : 32;
   2565     } else {
   2566       value = is_long ? CTZ(static_cast<uint64_t>(value)) : CTZ(static_cast<uint32_t>(value));
   2567     }
   2568     codegen->Load32BitValue(out, value);
   2569     return;
   2570   }
   2571 
   2572   // Handle the non-constant cases.
   2573   if (!is_long) {
   2574     if (src.IsRegister()) {
   2575       __ bsfl(out, src.AsRegister<Register>());
   2576     } else {
   2577       DCHECK(src.IsStackSlot());
   2578       __ bsfl(out, Address(ESP, src.GetStackIndex()));
   2579     }
   2580 
   2581     // BSF sets ZF if the input was zero, and the output is undefined.
   2582     NearLabel done;
   2583     __ j(kNotEqual, &done);
   2584 
   2585     // Fix the zero case with the expected result.
   2586     __ movl(out, Immediate(32));
   2587 
   2588     __ Bind(&done);
   2589     return;
   2590   }
   2591 
   2592   // 64 bit case needs to worry about both parts of the register.
   2593   DCHECK(src.IsRegisterPair());
   2594   Register src_lo = src.AsRegisterPairLow<Register>();
   2595   Register src_hi = src.AsRegisterPairHigh<Register>();
   2596   NearLabel done, all_zeroes;
   2597 
   2598   // If the low word is zero, then ZF will be set.  If not, we have the answer.
   2599   __ bsfl(out, src_lo);
   2600   __ j(kNotEqual, &done);
   2601 
   2602   // Low word was zero.  We have to compute the high word count and add 32.
   2603   __ bsfl(out, src_hi);
   2604   __ j(kEqual, &all_zeroes);
   2605 
   2606   // We had a valid result.  Add 32 to account for the low word being zero.
   2607   __ addl(out, Immediate(32));
   2608   __ jmp(&done);
   2609 
   2610   // All zero case.
   2611   __ Bind(&all_zeroes);
   2612   __ movl(out, Immediate(64));
   2613 
   2614   __ Bind(&done);
   2615 }
   2616 
   2617 void IntrinsicLocationsBuilderX86::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
   2618   CreateTrailingZeroLocations(arena_, invoke, /* is_long */ false);
   2619 }
   2620 
   2621 void IntrinsicCodeGeneratorX86::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
   2622   GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false);
   2623 }
   2624 
   2625 void IntrinsicLocationsBuilderX86::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
   2626   CreateTrailingZeroLocations(arena_, invoke, /* is_long */ true);
   2627 }
   2628 
   2629 void IntrinsicCodeGeneratorX86::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
   2630   GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true);
   2631 }
   2632 
   2633 UNIMPLEMENTED_INTRINSIC(X86, MathRoundDouble)
   2634 UNIMPLEMENTED_INTRINSIC(X86, ReferenceGetReferent)
   2635 UNIMPLEMENTED_INTRINSIC(X86, SystemArrayCopy)
   2636 UNIMPLEMENTED_INTRINSIC(X86, FloatIsInfinite)
   2637 UNIMPLEMENTED_INTRINSIC(X86, DoubleIsInfinite)
   2638 UNIMPLEMENTED_INTRINSIC(X86, IntegerHighestOneBit)
   2639 UNIMPLEMENTED_INTRINSIC(X86, LongHighestOneBit)
   2640 UNIMPLEMENTED_INTRINSIC(X86, IntegerLowestOneBit)
   2641 UNIMPLEMENTED_INTRINSIC(X86, LongLowestOneBit)
   2642 
   2643 // 1.8.
   2644 UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndAddInt)
   2645 UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndAddLong)
   2646 UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndSetInt)
   2647 UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndSetLong)
   2648 UNIMPLEMENTED_INTRINSIC(X86, UnsafeGetAndSetObject)
   2649 
   2650 UNREACHABLE_INTRINSICS(X86)
   2651 
   2652 #undef __
   2653 
   2654 }  // namespace x86
   2655 }  // namespace art
   2656