Home | History | Annotate | Download | only in MCJIT
      1 //===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "MCJIT.h"
     11 #include "llvm/ADT/STLExtras.h"
     12 #include "llvm/ExecutionEngine/GenericValue.h"
     13 #include "llvm/ExecutionEngine/JITEventListener.h"
     14 #include "llvm/ExecutionEngine/MCJIT.h"
     15 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
     16 #include "llvm/IR/DataLayout.h"
     17 #include "llvm/IR/DerivedTypes.h"
     18 #include "llvm/IR/Function.h"
     19 #include "llvm/IR/LegacyPassManager.h"
     20 #include "llvm/IR/Mangler.h"
     21 #include "llvm/IR/Module.h"
     22 #include "llvm/MC/MCAsmInfo.h"
     23 #include "llvm/Object/Archive.h"
     24 #include "llvm/Object/ObjectFile.h"
     25 #include "llvm/Support/DynamicLibrary.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/Support/MemoryBuffer.h"
     28 #include "llvm/Support/MutexGuard.h"
     29 
     30 using namespace llvm;
     31 
     32 void ObjectCache::anchor() {}
     33 
     34 namespace {
     35 
     36 static struct RegisterJIT {
     37   RegisterJIT() { MCJIT::Register(); }
     38 } JITRegistrator;
     39 
     40 }
     41 
     42 extern "C" void LLVMLinkInMCJIT() {
     43 }
     44 
     45 ExecutionEngine*
     46 MCJIT::createJIT(std::unique_ptr<Module> M,
     47                  std::string *ErrorStr,
     48                  std::shared_ptr<MCJITMemoryManager> MemMgr,
     49                  std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver,
     50                  std::unique_ptr<TargetMachine> TM) {
     51   // Try to register the program as a source of symbols to resolve against.
     52   //
     53   // FIXME: Don't do this here.
     54   sys::DynamicLibrary::LoadLibraryPermanently(nullptr, nullptr);
     55 
     56   if (!MemMgr || !Resolver) {
     57     auto RTDyldMM = std::make_shared<SectionMemoryManager>();
     58     if (!MemMgr)
     59       MemMgr = RTDyldMM;
     60     if (!Resolver)
     61       Resolver = RTDyldMM;
     62   }
     63 
     64   return new MCJIT(std::move(M), std::move(TM), std::move(MemMgr),
     65                    std::move(Resolver));
     66 }
     67 
     68 MCJIT::MCJIT(std::unique_ptr<Module> M, std::unique_ptr<TargetMachine> TM,
     69              std::shared_ptr<MCJITMemoryManager> MemMgr,
     70              std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver)
     71     : ExecutionEngine(TM->createDataLayout(), std::move(M)), TM(std::move(TM)),
     72       Ctx(nullptr), MemMgr(std::move(MemMgr)),
     73       Resolver(*this, std::move(Resolver)), Dyld(*this->MemMgr, this->Resolver),
     74       ObjCache(nullptr) {
     75   // FIXME: We are managing our modules, so we do not want the base class
     76   // ExecutionEngine to manage them as well. To avoid double destruction
     77   // of the first (and only) module added in ExecutionEngine constructor
     78   // we remove it from EE and will destruct it ourselves.
     79   //
     80   // It may make sense to move our module manager (based on SmallStPtr) back
     81   // into EE if the JIT and Interpreter can live with it.
     82   // If so, additional functions: addModule, removeModule, FindFunctionNamed,
     83   // runStaticConstructorsDestructors could be moved back to EE as well.
     84   //
     85   std::unique_ptr<Module> First = std::move(Modules[0]);
     86   Modules.clear();
     87 
     88   OwnedModules.addModule(std::move(First));
     89   RegisterJITEventListener(JITEventListener::createGDBRegistrationListener());
     90 }
     91 
     92 MCJIT::~MCJIT() {
     93   MutexGuard locked(lock);
     94 
     95   Dyld.deregisterEHFrames();
     96 
     97   for (auto &Obj : LoadedObjects)
     98     if (Obj)
     99       NotifyFreeingObject(*Obj);
    100 
    101   Archives.clear();
    102 }
    103 
    104 void MCJIT::addModule(std::unique_ptr<Module> M) {
    105   MutexGuard locked(lock);
    106   OwnedModules.addModule(std::move(M));
    107 }
    108 
    109 bool MCJIT::removeModule(Module *M) {
    110   MutexGuard locked(lock);
    111   return OwnedModules.removeModule(M);
    112 }
    113 
    114 void MCJIT::addObjectFile(std::unique_ptr<object::ObjectFile> Obj) {
    115   std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L = Dyld.loadObject(*Obj);
    116   if (Dyld.hasError())
    117     report_fatal_error(Dyld.getErrorString());
    118 
    119   NotifyObjectEmitted(*Obj, *L);
    120 
    121   LoadedObjects.push_back(std::move(Obj));
    122 }
    123 
    124 void MCJIT::addObjectFile(object::OwningBinary<object::ObjectFile> Obj) {
    125   std::unique_ptr<object::ObjectFile> ObjFile;
    126   std::unique_ptr<MemoryBuffer> MemBuf;
    127   std::tie(ObjFile, MemBuf) = Obj.takeBinary();
    128   addObjectFile(std::move(ObjFile));
    129   Buffers.push_back(std::move(MemBuf));
    130 }
    131 
    132 void MCJIT::addArchive(object::OwningBinary<object::Archive> A) {
    133   Archives.push_back(std::move(A));
    134 }
    135 
    136 void MCJIT::setObjectCache(ObjectCache* NewCache) {
    137   MutexGuard locked(lock);
    138   ObjCache = NewCache;
    139 }
    140 
    141 std::unique_ptr<MemoryBuffer> MCJIT::emitObject(Module *M) {
    142   MutexGuard locked(lock);
    143 
    144   // This must be a module which has already been added but not loaded to this
    145   // MCJIT instance, since these conditions are tested by our caller,
    146   // generateCodeForModule.
    147 
    148   legacy::PassManager PM;
    149 
    150   // The RuntimeDyld will take ownership of this shortly
    151   SmallVector<char, 4096> ObjBufferSV;
    152   raw_svector_ostream ObjStream(ObjBufferSV);
    153 
    154   // Turn the machine code intermediate representation into bytes in memory
    155   // that may be executed.
    156   if (TM->addPassesToEmitMC(PM, Ctx, ObjStream, !getVerifyModules()))
    157     report_fatal_error("Target does not support MC emission!");
    158 
    159   // Initialize passes.
    160   PM.run(*M);
    161   // Flush the output buffer to get the generated code into memory
    162 
    163   std::unique_ptr<MemoryBuffer> CompiledObjBuffer(
    164                                 new ObjectMemoryBuffer(std::move(ObjBufferSV)));
    165 
    166   // If we have an object cache, tell it about the new object.
    167   // Note that we're using the compiled image, not the loaded image (as below).
    168   if (ObjCache) {
    169     // MemoryBuffer is a thin wrapper around the actual memory, so it's OK
    170     // to create a temporary object here and delete it after the call.
    171     MemoryBufferRef MB = CompiledObjBuffer->getMemBufferRef();
    172     ObjCache->notifyObjectCompiled(M, MB);
    173   }
    174 
    175   return CompiledObjBuffer;
    176 }
    177 
    178 void MCJIT::generateCodeForModule(Module *M) {
    179   // Get a thread lock to make sure we aren't trying to load multiple times
    180   MutexGuard locked(lock);
    181 
    182   // This must be a module which has already been added to this MCJIT instance.
    183   assert(OwnedModules.ownsModule(M) &&
    184          "MCJIT::generateCodeForModule: Unknown module.");
    185 
    186   // Re-compilation is not supported
    187   if (OwnedModules.hasModuleBeenLoaded(M))
    188     return;
    189 
    190   std::unique_ptr<MemoryBuffer> ObjectToLoad;
    191   // Try to load the pre-compiled object from cache if possible
    192   if (ObjCache)
    193     ObjectToLoad = ObjCache->getObject(M);
    194 
    195   if (M->getDataLayout().isDefault()) {
    196     M->setDataLayout(getDataLayout());
    197   } else {
    198     assert(M->getDataLayout() == getDataLayout() && "DataLayout Mismatch");
    199   }
    200 
    201   // If the cache did not contain a suitable object, compile the object
    202   if (!ObjectToLoad) {
    203     ObjectToLoad = emitObject(M);
    204     assert(ObjectToLoad && "Compilation did not produce an object.");
    205   }
    206 
    207   // Load the object into the dynamic linker.
    208   // MCJIT now owns the ObjectImage pointer (via its LoadedObjects list).
    209   ErrorOr<std::unique_ptr<object::ObjectFile>> LoadedObject =
    210     object::ObjectFile::createObjectFile(ObjectToLoad->getMemBufferRef());
    211   std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L =
    212     Dyld.loadObject(*LoadedObject.get());
    213 
    214   if (Dyld.hasError())
    215     report_fatal_error(Dyld.getErrorString());
    216 
    217   NotifyObjectEmitted(*LoadedObject.get(), *L);
    218 
    219   Buffers.push_back(std::move(ObjectToLoad));
    220   LoadedObjects.push_back(std::move(*LoadedObject));
    221 
    222   OwnedModules.markModuleAsLoaded(M);
    223 }
    224 
    225 void MCJIT::finalizeLoadedModules() {
    226   MutexGuard locked(lock);
    227 
    228   // Resolve any outstanding relocations.
    229   Dyld.resolveRelocations();
    230 
    231   OwnedModules.markAllLoadedModulesAsFinalized();
    232 
    233   // Register EH frame data for any module we own which has been loaded
    234   Dyld.registerEHFrames();
    235 
    236   // Set page permissions.
    237   MemMgr->finalizeMemory();
    238 }
    239 
    240 // FIXME: Rename this.
    241 void MCJIT::finalizeObject() {
    242   MutexGuard locked(lock);
    243 
    244   // Generate code for module is going to move objects out of the 'added' list,
    245   // so we need to copy that out before using it:
    246   SmallVector<Module*, 16> ModsToAdd;
    247   for (auto M : OwnedModules.added())
    248     ModsToAdd.push_back(M);
    249 
    250   for (auto M : ModsToAdd)
    251     generateCodeForModule(M);
    252 
    253   finalizeLoadedModules();
    254 }
    255 
    256 void MCJIT::finalizeModule(Module *M) {
    257   MutexGuard locked(lock);
    258 
    259   // This must be a module which has already been added to this MCJIT instance.
    260   assert(OwnedModules.ownsModule(M) && "MCJIT::finalizeModule: Unknown module.");
    261 
    262   // If the module hasn't been compiled, just do that.
    263   if (!OwnedModules.hasModuleBeenLoaded(M))
    264     generateCodeForModule(M);
    265 
    266   finalizeLoadedModules();
    267 }
    268 
    269 RuntimeDyld::SymbolInfo MCJIT::findExistingSymbol(const std::string &Name) {
    270   SmallString<128> FullName;
    271   Mangler::getNameWithPrefix(FullName, Name, getDataLayout());
    272 
    273   if (void *Addr = getPointerToGlobalIfAvailable(FullName))
    274     return RuntimeDyld::SymbolInfo(static_cast<uint64_t>(
    275                                      reinterpret_cast<uintptr_t>(Addr)),
    276                                    JITSymbolFlags::Exported);
    277 
    278   return Dyld.getSymbol(FullName);
    279 }
    280 
    281 Module *MCJIT::findModuleForSymbol(const std::string &Name,
    282                                    bool CheckFunctionsOnly) {
    283   MutexGuard locked(lock);
    284 
    285   // If it hasn't already been generated, see if it's in one of our modules.
    286   for (ModulePtrSet::iterator I = OwnedModules.begin_added(),
    287                               E = OwnedModules.end_added();
    288        I != E; ++I) {
    289     Module *M = *I;
    290     Function *F = M->getFunction(Name);
    291     if (F && !F->isDeclaration())
    292       return M;
    293     if (!CheckFunctionsOnly) {
    294       GlobalVariable *G = M->getGlobalVariable(Name);
    295       if (G && !G->isDeclaration())
    296         return M;
    297       // FIXME: Do we need to worry about global aliases?
    298     }
    299   }
    300   // We didn't find the symbol in any of our modules.
    301   return nullptr;
    302 }
    303 
    304 uint64_t MCJIT::getSymbolAddress(const std::string &Name,
    305                                  bool CheckFunctionsOnly) {
    306   return findSymbol(Name, CheckFunctionsOnly).getAddress();
    307 }
    308 
    309 RuntimeDyld::SymbolInfo MCJIT::findSymbol(const std::string &Name,
    310                                           bool CheckFunctionsOnly) {
    311   MutexGuard locked(lock);
    312 
    313   // First, check to see if we already have this symbol.
    314   if (auto Sym = findExistingSymbol(Name))
    315     return Sym;
    316 
    317   for (object::OwningBinary<object::Archive> &OB : Archives) {
    318     object::Archive *A = OB.getBinary();
    319     // Look for our symbols in each Archive
    320     object::Archive::child_iterator ChildIt = A->findSym(Name);
    321     if (std::error_code EC = ChildIt->getError())
    322       report_fatal_error(EC.message());
    323     if (ChildIt != A->child_end()) {
    324       // FIXME: Support nested archives?
    325       ErrorOr<std::unique_ptr<object::Binary>> ChildBinOrErr =
    326           (*ChildIt)->getAsBinary();
    327       if (ChildBinOrErr.getError())
    328         continue;
    329       std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
    330       if (ChildBin->isObject()) {
    331         std::unique_ptr<object::ObjectFile> OF(
    332             static_cast<object::ObjectFile *>(ChildBin.release()));
    333         // This causes the object file to be loaded.
    334         addObjectFile(std::move(OF));
    335         // The address should be here now.
    336         if (auto Sym = findExistingSymbol(Name))
    337           return Sym;
    338       }
    339     }
    340   }
    341 
    342   // If it hasn't already been generated, see if it's in one of our modules.
    343   Module *M = findModuleForSymbol(Name, CheckFunctionsOnly);
    344   if (M) {
    345     generateCodeForModule(M);
    346 
    347     // Check the RuntimeDyld table again, it should be there now.
    348     return findExistingSymbol(Name);
    349   }
    350 
    351   // If a LazyFunctionCreator is installed, use it to get/create the function.
    352   // FIXME: Should we instead have a LazySymbolCreator callback?
    353   if (LazyFunctionCreator) {
    354     auto Addr = static_cast<uint64_t>(
    355                   reinterpret_cast<uintptr_t>(LazyFunctionCreator(Name)));
    356     return RuntimeDyld::SymbolInfo(Addr, JITSymbolFlags::Exported);
    357   }
    358 
    359   return nullptr;
    360 }
    361 
    362 uint64_t MCJIT::getGlobalValueAddress(const std::string &Name) {
    363   MutexGuard locked(lock);
    364   uint64_t Result = getSymbolAddress(Name, false);
    365   if (Result != 0)
    366     finalizeLoadedModules();
    367   return Result;
    368 }
    369 
    370 uint64_t MCJIT::getFunctionAddress(const std::string &Name) {
    371   MutexGuard locked(lock);
    372   uint64_t Result = getSymbolAddress(Name, true);
    373   if (Result != 0)
    374     finalizeLoadedModules();
    375   return Result;
    376 }
    377 
    378 // Deprecated.  Use getFunctionAddress instead.
    379 void *MCJIT::getPointerToFunction(Function *F) {
    380   MutexGuard locked(lock);
    381 
    382   Mangler Mang;
    383   SmallString<128> Name;
    384   TM->getNameWithPrefix(Name, F, Mang);
    385 
    386   if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
    387     bool AbortOnFailure = !F->hasExternalWeakLinkage();
    388     void *Addr = getPointerToNamedFunction(Name, AbortOnFailure);
    389     updateGlobalMapping(F, Addr);
    390     return Addr;
    391   }
    392 
    393   Module *M = F->getParent();
    394   bool HasBeenAddedButNotLoaded = OwnedModules.hasModuleBeenAddedButNotLoaded(M);
    395 
    396   // Make sure the relevant module has been compiled and loaded.
    397   if (HasBeenAddedButNotLoaded)
    398     generateCodeForModule(M);
    399   else if (!OwnedModules.hasModuleBeenLoaded(M)) {
    400     // If this function doesn't belong to one of our modules, we're done.
    401     // FIXME: Asking for the pointer to a function that hasn't been registered,
    402     //        and isn't a declaration (which is handled above) should probably
    403     //        be an assertion.
    404     return nullptr;
    405   }
    406 
    407   // FIXME: Should the Dyld be retaining module information? Probably not.
    408   //
    409   // This is the accessor for the target address, so make sure to check the
    410   // load address of the symbol, not the local address.
    411   return (void*)Dyld.getSymbol(Name).getAddress();
    412 }
    413 
    414 void MCJIT::runStaticConstructorsDestructorsInModulePtrSet(
    415     bool isDtors, ModulePtrSet::iterator I, ModulePtrSet::iterator E) {
    416   for (; I != E; ++I) {
    417     ExecutionEngine::runStaticConstructorsDestructors(**I, isDtors);
    418   }
    419 }
    420 
    421 void MCJIT::runStaticConstructorsDestructors(bool isDtors) {
    422   // Execute global ctors/dtors for each module in the program.
    423   runStaticConstructorsDestructorsInModulePtrSet(
    424       isDtors, OwnedModules.begin_added(), OwnedModules.end_added());
    425   runStaticConstructorsDestructorsInModulePtrSet(
    426       isDtors, OwnedModules.begin_loaded(), OwnedModules.end_loaded());
    427   runStaticConstructorsDestructorsInModulePtrSet(
    428       isDtors, OwnedModules.begin_finalized(), OwnedModules.end_finalized());
    429 }
    430 
    431 Function *MCJIT::FindFunctionNamedInModulePtrSet(const char *FnName,
    432                                                  ModulePtrSet::iterator I,
    433                                                  ModulePtrSet::iterator E) {
    434   for (; I != E; ++I) {
    435     Function *F = (*I)->getFunction(FnName);
    436     if (F && !F->isDeclaration())
    437       return F;
    438   }
    439   return nullptr;
    440 }
    441 
    442 GlobalVariable *MCJIT::FindGlobalVariableNamedInModulePtrSet(const char *Name,
    443                                                              bool AllowInternal,
    444                                                              ModulePtrSet::iterator I,
    445                                                              ModulePtrSet::iterator E) {
    446   for (; I != E; ++I) {
    447     GlobalVariable *GV = (*I)->getGlobalVariable(Name, AllowInternal);
    448     if (GV && !GV->isDeclaration())
    449       return GV;
    450   }
    451   return nullptr;
    452 }
    453 
    454 
    455 Function *MCJIT::FindFunctionNamed(const char *FnName) {
    456   Function *F = FindFunctionNamedInModulePtrSet(
    457       FnName, OwnedModules.begin_added(), OwnedModules.end_added());
    458   if (!F)
    459     F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_loaded(),
    460                                         OwnedModules.end_loaded());
    461   if (!F)
    462     F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_finalized(),
    463                                         OwnedModules.end_finalized());
    464   return F;
    465 }
    466 
    467 GlobalVariable *MCJIT::FindGlobalVariableNamed(const char *Name, bool AllowInternal) {
    468   GlobalVariable *GV = FindGlobalVariableNamedInModulePtrSet(
    469       Name, AllowInternal, OwnedModules.begin_added(), OwnedModules.end_added());
    470   if (!GV)
    471     GV = FindGlobalVariableNamedInModulePtrSet(Name, AllowInternal, OwnedModules.begin_loaded(),
    472                                         OwnedModules.end_loaded());
    473   if (!GV)
    474     GV = FindGlobalVariableNamedInModulePtrSet(Name, AllowInternal, OwnedModules.begin_finalized(),
    475                                         OwnedModules.end_finalized());
    476   return GV;
    477 }
    478 
    479 GenericValue MCJIT::runFunction(Function *F, ArrayRef<GenericValue> ArgValues) {
    480   assert(F && "Function *F was null at entry to run()");
    481 
    482   void *FPtr = getPointerToFunction(F);
    483   assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
    484   FunctionType *FTy = F->getFunctionType();
    485   Type *RetTy = FTy->getReturnType();
    486 
    487   assert((FTy->getNumParams() == ArgValues.size() ||
    488           (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
    489          "Wrong number of arguments passed into function!");
    490   assert(FTy->getNumParams() == ArgValues.size() &&
    491          "This doesn't support passing arguments through varargs (yet)!");
    492 
    493   // Handle some common cases first.  These cases correspond to common `main'
    494   // prototypes.
    495   if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
    496     switch (ArgValues.size()) {
    497     case 3:
    498       if (FTy->getParamType(0)->isIntegerTy(32) &&
    499           FTy->getParamType(1)->isPointerTy() &&
    500           FTy->getParamType(2)->isPointerTy()) {
    501         int (*PF)(int, char **, const char **) =
    502           (int(*)(int, char **, const char **))(intptr_t)FPtr;
    503 
    504         // Call the function.
    505         GenericValue rv;
    506         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
    507                                  (char **)GVTOP(ArgValues[1]),
    508                                  (const char **)GVTOP(ArgValues[2])));
    509         return rv;
    510       }
    511       break;
    512     case 2:
    513       if (FTy->getParamType(0)->isIntegerTy(32) &&
    514           FTy->getParamType(1)->isPointerTy()) {
    515         int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
    516 
    517         // Call the function.
    518         GenericValue rv;
    519         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
    520                                  (char **)GVTOP(ArgValues[1])));
    521         return rv;
    522       }
    523       break;
    524     case 1:
    525       if (FTy->getNumParams() == 1 &&
    526           FTy->getParamType(0)->isIntegerTy(32)) {
    527         GenericValue rv;
    528         int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
    529         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
    530         return rv;
    531       }
    532       break;
    533     }
    534   }
    535 
    536   // Handle cases where no arguments are passed first.
    537   if (ArgValues.empty()) {
    538     GenericValue rv;
    539     switch (RetTy->getTypeID()) {
    540     default: llvm_unreachable("Unknown return type for function call!");
    541     case Type::IntegerTyID: {
    542       unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
    543       if (BitWidth == 1)
    544         rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
    545       else if (BitWidth <= 8)
    546         rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
    547       else if (BitWidth <= 16)
    548         rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
    549       else if (BitWidth <= 32)
    550         rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
    551       else if (BitWidth <= 64)
    552         rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
    553       else
    554         llvm_unreachable("Integer types > 64 bits not supported");
    555       return rv;
    556     }
    557     case Type::VoidTyID:
    558       rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
    559       return rv;
    560     case Type::FloatTyID:
    561       rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
    562       return rv;
    563     case Type::DoubleTyID:
    564       rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
    565       return rv;
    566     case Type::X86_FP80TyID:
    567     case Type::FP128TyID:
    568     case Type::PPC_FP128TyID:
    569       llvm_unreachable("long double not supported yet");
    570     case Type::PointerTyID:
    571       return PTOGV(((void*(*)())(intptr_t)FPtr)());
    572     }
    573   }
    574 
    575   llvm_unreachable("Full-featured argument passing not supported yet!");
    576 }
    577 
    578 void *MCJIT::getPointerToNamedFunction(StringRef Name, bool AbortOnFailure) {
    579   if (!isSymbolSearchingDisabled()) {
    580     void *ptr =
    581       reinterpret_cast<void*>(
    582         static_cast<uintptr_t>(Resolver.findSymbol(Name).getAddress()));
    583     if (ptr)
    584       return ptr;
    585   }
    586 
    587   /// If a LazyFunctionCreator is installed, use it to get/create the function.
    588   if (LazyFunctionCreator)
    589     if (void *RP = LazyFunctionCreator(Name))
    590       return RP;
    591 
    592   if (AbortOnFailure) {
    593     report_fatal_error("Program used external function '"+Name+
    594                        "' which could not be resolved!");
    595   }
    596   return nullptr;
    597 }
    598 
    599 void MCJIT::RegisterJITEventListener(JITEventListener *L) {
    600   if (!L)
    601     return;
    602   MutexGuard locked(lock);
    603   EventListeners.push_back(L);
    604 }
    605 
    606 void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
    607   if (!L)
    608     return;
    609   MutexGuard locked(lock);
    610   auto I = std::find(EventListeners.rbegin(), EventListeners.rend(), L);
    611   if (I != EventListeners.rend()) {
    612     std::swap(*I, EventListeners.back());
    613     EventListeners.pop_back();
    614   }
    615 }
    616 
    617 void MCJIT::NotifyObjectEmitted(const object::ObjectFile& Obj,
    618                                 const RuntimeDyld::LoadedObjectInfo &L) {
    619   MutexGuard locked(lock);
    620   MemMgr->notifyObjectLoaded(this, Obj);
    621   for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
    622     EventListeners[I]->NotifyObjectEmitted(Obj, L);
    623   }
    624 }
    625 
    626 void MCJIT::NotifyFreeingObject(const object::ObjectFile& Obj) {
    627   MutexGuard locked(lock);
    628   for (JITEventListener *L : EventListeners)
    629     L->NotifyFreeingObject(Obj);
    630 }
    631 
    632 RuntimeDyld::SymbolInfo
    633 LinkingSymbolResolver::findSymbol(const std::string &Name) {
    634   auto Result = ParentEngine.findSymbol(Name, false);
    635   // If the symbols wasn't found and it begins with an underscore, try again
    636   // without the underscore.
    637   if (!Result && Name[0] == '_')
    638     Result = ParentEngine.findSymbol(Name.substr(1), false);
    639   if (Result)
    640     return Result;
    641   if (ParentEngine.isSymbolSearchingDisabled())
    642     return nullptr;
    643   return ClientResolver->findSymbol(Name);
    644 }
    645