Home | History | Annotate | Download | only in Utils
      1 //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs several transformations to transform natural loops into a
     11 // simpler form, which makes subsequent analyses and transformations simpler and
     12 // more effective.
     13 //
     14 // Loop pre-header insertion guarantees that there is a single, non-critical
     15 // entry edge from outside of the loop to the loop header.  This simplifies a
     16 // number of analyses and transformations, such as LICM.
     17 //
     18 // Loop exit-block insertion guarantees that all exit blocks from the loop
     19 // (blocks which are outside of the loop that have predecessors inside of the
     20 // loop) only have predecessors from inside of the loop (and are thus dominated
     21 // by the loop header).  This simplifies transformations such as store-sinking
     22 // that are built into LICM.
     23 //
     24 // This pass also guarantees that loops will have exactly one backedge.
     25 //
     26 // Indirectbr instructions introduce several complications. If the loop
     27 // contains or is entered by an indirectbr instruction, it may not be possible
     28 // to transform the loop and make these guarantees. Client code should check
     29 // that these conditions are true before relying on them.
     30 //
     31 // Note that the simplifycfg pass will clean up blocks which are split out but
     32 // end up being unnecessary, so usage of this pass should not pessimize
     33 // generated code.
     34 //
     35 // This pass obviously modifies the CFG, but updates loop information and
     36 // dominator information.
     37 //
     38 //===----------------------------------------------------------------------===//
     39 
     40 #include "llvm/Transforms/Scalar.h"
     41 #include "llvm/ADT/DepthFirstIterator.h"
     42 #include "llvm/ADT/SetOperations.h"
     43 #include "llvm/ADT/SetVector.h"
     44 #include "llvm/ADT/SmallVector.h"
     45 #include "llvm/ADT/Statistic.h"
     46 #include "llvm/Analysis/AliasAnalysis.h"
     47 #include "llvm/Analysis/BasicAliasAnalysis.h"
     48 #include "llvm/Analysis/AssumptionCache.h"
     49 #include "llvm/Analysis/DependenceAnalysis.h"
     50 #include "llvm/Analysis/GlobalsModRef.h"
     51 #include "llvm/Analysis/InstructionSimplify.h"
     52 #include "llvm/Analysis/LoopInfo.h"
     53 #include "llvm/Analysis/ScalarEvolution.h"
     54 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
     55 #include "llvm/IR/CFG.h"
     56 #include "llvm/IR/Constants.h"
     57 #include "llvm/IR/DataLayout.h"
     58 #include "llvm/IR/Dominators.h"
     59 #include "llvm/IR/Function.h"
     60 #include "llvm/IR/Instructions.h"
     61 #include "llvm/IR/IntrinsicInst.h"
     62 #include "llvm/IR/LLVMContext.h"
     63 #include "llvm/IR/Module.h"
     64 #include "llvm/IR/Type.h"
     65 #include "llvm/Support/Debug.h"
     66 #include "llvm/Support/raw_ostream.h"
     67 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     68 #include "llvm/Transforms/Utils/Local.h"
     69 #include "llvm/Transforms/Utils/LoopUtils.h"
     70 using namespace llvm;
     71 
     72 #define DEBUG_TYPE "loop-simplify"
     73 
     74 STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
     75 STATISTIC(NumNested  , "Number of nested loops split out");
     76 
     77 // If the block isn't already, move the new block to right after some 'outside
     78 // block' block.  This prevents the preheader from being placed inside the loop
     79 // body, e.g. when the loop hasn't been rotated.
     80 static void placeSplitBlockCarefully(BasicBlock *NewBB,
     81                                      SmallVectorImpl<BasicBlock *> &SplitPreds,
     82                                      Loop *L) {
     83   // Check to see if NewBB is already well placed.
     84   Function::iterator BBI = --NewBB->getIterator();
     85   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
     86     if (&*BBI == SplitPreds[i])
     87       return;
     88   }
     89 
     90   // If it isn't already after an outside block, move it after one.  This is
     91   // always good as it makes the uncond branch from the outside block into a
     92   // fall-through.
     93 
     94   // Figure out *which* outside block to put this after.  Prefer an outside
     95   // block that neighbors a BB actually in the loop.
     96   BasicBlock *FoundBB = nullptr;
     97   for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
     98     Function::iterator BBI = SplitPreds[i]->getIterator();
     99     if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) {
    100       FoundBB = SplitPreds[i];
    101       break;
    102     }
    103   }
    104 
    105   // If our heuristic for a *good* bb to place this after doesn't find
    106   // anything, just pick something.  It's likely better than leaving it within
    107   // the loop.
    108   if (!FoundBB)
    109     FoundBB = SplitPreds[0];
    110   NewBB->moveAfter(FoundBB);
    111 }
    112 
    113 /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
    114 /// preheader, this method is called to insert one.  This method has two phases:
    115 /// preheader insertion and analysis updating.
    116 ///
    117 BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT,
    118                                          LoopInfo *LI, bool PreserveLCSSA) {
    119   BasicBlock *Header = L->getHeader();
    120 
    121   // Compute the set of predecessors of the loop that are not in the loop.
    122   SmallVector<BasicBlock*, 8> OutsideBlocks;
    123   for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
    124        PI != PE; ++PI) {
    125     BasicBlock *P = *PI;
    126     if (!L->contains(P)) {         // Coming in from outside the loop?
    127       // If the loop is branched to from an indirect branch, we won't
    128       // be able to fully transform the loop, because it prohibits
    129       // edge splitting.
    130       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
    131 
    132       // Keep track of it.
    133       OutsideBlocks.push_back(P);
    134     }
    135   }
    136 
    137   // Split out the loop pre-header.
    138   BasicBlock *PreheaderBB;
    139   PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT,
    140                                        LI, PreserveLCSSA);
    141   if (!PreheaderBB)
    142     return nullptr;
    143 
    144   DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
    145                << PreheaderBB->getName() << "\n");
    146 
    147   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
    148   // code layout too horribly.
    149   placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
    150 
    151   return PreheaderBB;
    152 }
    153 
    154 /// \brief Ensure that the loop preheader dominates all exit blocks.
    155 ///
    156 /// This method is used to split exit blocks that have predecessors outside of
    157 /// the loop.
    158 static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit,
    159                                         DominatorTree *DT, LoopInfo *LI,
    160                                         bool PreserveLCSSA) {
    161   SmallVector<BasicBlock*, 8> LoopBlocks;
    162   for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
    163     BasicBlock *P = *I;
    164     if (L->contains(P)) {
    165       // Don't do this if the loop is exited via an indirect branch.
    166       if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
    167 
    168       LoopBlocks.push_back(P);
    169     }
    170   }
    171 
    172   assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
    173   BasicBlock *NewExitBB = nullptr;
    174 
    175   NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", DT, LI,
    176                                      PreserveLCSSA);
    177   if (!NewExitBB)
    178     return nullptr;
    179 
    180   DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
    181                << NewExitBB->getName() << "\n");
    182   return NewExitBB;
    183 }
    184 
    185 /// Add the specified block, and all of its predecessors, to the specified set,
    186 /// if it's not already in there.  Stop predecessor traversal when we reach
    187 /// StopBlock.
    188 static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
    189                                   std::set<BasicBlock*> &Blocks) {
    190   SmallVector<BasicBlock *, 8> Worklist;
    191   Worklist.push_back(InputBB);
    192   do {
    193     BasicBlock *BB = Worklist.pop_back_val();
    194     if (Blocks.insert(BB).second && BB != StopBlock)
    195       // If BB is not already processed and it is not a stop block then
    196       // insert its predecessor in the work list
    197       for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
    198         BasicBlock *WBB = *I;
    199         Worklist.push_back(WBB);
    200       }
    201   } while (!Worklist.empty());
    202 }
    203 
    204 /// \brief The first part of loop-nestification is to find a PHI node that tells
    205 /// us how to partition the loops.
    206 static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT,
    207                                         AssumptionCache *AC) {
    208   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
    209   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
    210     PHINode *PN = cast<PHINode>(I);
    211     ++I;
    212     if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
    213       // This is a degenerate PHI already, don't modify it!
    214       PN->replaceAllUsesWith(V);
    215       PN->eraseFromParent();
    216       continue;
    217     }
    218 
    219     // Scan this PHI node looking for a use of the PHI node by itself.
    220     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    221       if (PN->getIncomingValue(i) == PN &&
    222           L->contains(PN->getIncomingBlock(i)))
    223         // We found something tasty to remove.
    224         return PN;
    225   }
    226   return nullptr;
    227 }
    228 
    229 /// \brief If this loop has multiple backedges, try to pull one of them out into
    230 /// a nested loop.
    231 ///
    232 /// This is important for code that looks like
    233 /// this:
    234 ///
    235 ///  Loop:
    236 ///     ...
    237 ///     br cond, Loop, Next
    238 ///     ...
    239 ///     br cond2, Loop, Out
    240 ///
    241 /// To identify this common case, we look at the PHI nodes in the header of the
    242 /// loop.  PHI nodes with unchanging values on one backedge correspond to values
    243 /// that change in the "outer" loop, but not in the "inner" loop.
    244 ///
    245 /// If we are able to separate out a loop, return the new outer loop that was
    246 /// created.
    247 ///
    248 static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
    249                                 DominatorTree *DT, LoopInfo *LI,
    250                                 ScalarEvolution *SE, bool PreserveLCSSA,
    251                                 AssumptionCache *AC) {
    252   // Don't try to separate loops without a preheader.
    253   if (!Preheader)
    254     return nullptr;
    255 
    256   // The header is not a landing pad; preheader insertion should ensure this.
    257   BasicBlock *Header = L->getHeader();
    258   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
    259 
    260   PHINode *PN = findPHIToPartitionLoops(L, DT, AC);
    261   if (!PN) return nullptr;  // No known way to partition.
    262 
    263   // Pull out all predecessors that have varying values in the loop.  This
    264   // handles the case when a PHI node has multiple instances of itself as
    265   // arguments.
    266   SmallVector<BasicBlock*, 8> OuterLoopPreds;
    267   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    268     if (PN->getIncomingValue(i) != PN ||
    269         !L->contains(PN->getIncomingBlock(i))) {
    270       // We can't split indirectbr edges.
    271       if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
    272         return nullptr;
    273       OuterLoopPreds.push_back(PN->getIncomingBlock(i));
    274     }
    275   }
    276   DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
    277 
    278   // If ScalarEvolution is around and knows anything about values in
    279   // this loop, tell it to forget them, because we're about to
    280   // substantially change it.
    281   if (SE)
    282     SE->forgetLoop(L);
    283 
    284   BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer",
    285                                              DT, LI, PreserveLCSSA);
    286 
    287   // Make sure that NewBB is put someplace intelligent, which doesn't mess up
    288   // code layout too horribly.
    289   placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
    290 
    291   // Create the new outer loop.
    292   Loop *NewOuter = new Loop();
    293 
    294   // Change the parent loop to use the outer loop as its child now.
    295   if (Loop *Parent = L->getParentLoop())
    296     Parent->replaceChildLoopWith(L, NewOuter);
    297   else
    298     LI->changeTopLevelLoop(L, NewOuter);
    299 
    300   // L is now a subloop of our outer loop.
    301   NewOuter->addChildLoop(L);
    302 
    303   for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
    304        I != E; ++I)
    305     NewOuter->addBlockEntry(*I);
    306 
    307   // Now reset the header in L, which had been moved by
    308   // SplitBlockPredecessors for the outer loop.
    309   L->moveToHeader(Header);
    310 
    311   // Determine which blocks should stay in L and which should be moved out to
    312   // the Outer loop now.
    313   std::set<BasicBlock*> BlocksInL;
    314   for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
    315     BasicBlock *P = *PI;
    316     if (DT->dominates(Header, P))
    317       addBlockAndPredsToSet(P, Header, BlocksInL);
    318   }
    319 
    320   // Scan all of the loop children of L, moving them to OuterLoop if they are
    321   // not part of the inner loop.
    322   const std::vector<Loop*> &SubLoops = L->getSubLoops();
    323   for (size_t I = 0; I != SubLoops.size(); )
    324     if (BlocksInL.count(SubLoops[I]->getHeader()))
    325       ++I;   // Loop remains in L
    326     else
    327       NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
    328 
    329   // Now that we know which blocks are in L and which need to be moved to
    330   // OuterLoop, move any blocks that need it.
    331   for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
    332     BasicBlock *BB = L->getBlocks()[i];
    333     if (!BlocksInL.count(BB)) {
    334       // Move this block to the parent, updating the exit blocks sets
    335       L->removeBlockFromLoop(BB);
    336       if ((*LI)[BB] == L)
    337         LI->changeLoopFor(BB, NewOuter);
    338       --i;
    339     }
    340   }
    341 
    342   return NewOuter;
    343 }
    344 
    345 /// \brief This method is called when the specified loop has more than one
    346 /// backedge in it.
    347 ///
    348 /// If this occurs, revector all of these backedges to target a new basic block
    349 /// and have that block branch to the loop header.  This ensures that loops
    350 /// have exactly one backedge.
    351 static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
    352                                              DominatorTree *DT, LoopInfo *LI) {
    353   assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
    354 
    355   // Get information about the loop
    356   BasicBlock *Header = L->getHeader();
    357   Function *F = Header->getParent();
    358 
    359   // Unique backedge insertion currently depends on having a preheader.
    360   if (!Preheader)
    361     return nullptr;
    362 
    363   // The header is not an EH pad; preheader insertion should ensure this.
    364   assert(!Header->isEHPad() && "Can't insert backedge to EH pad");
    365 
    366   // Figure out which basic blocks contain back-edges to the loop header.
    367   std::vector<BasicBlock*> BackedgeBlocks;
    368   for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
    369     BasicBlock *P = *I;
    370 
    371     // Indirectbr edges cannot be split, so we must fail if we find one.
    372     if (isa<IndirectBrInst>(P->getTerminator()))
    373       return nullptr;
    374 
    375     if (P != Preheader) BackedgeBlocks.push_back(P);
    376   }
    377 
    378   // Create and insert the new backedge block...
    379   BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
    380                                            Header->getName() + ".backedge", F);
    381   BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
    382   BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc());
    383 
    384   DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
    385                << BEBlock->getName() << "\n");
    386 
    387   // Move the new backedge block to right after the last backedge block.
    388   Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator();
    389   F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
    390 
    391   // Now that the block has been inserted into the function, create PHI nodes in
    392   // the backedge block which correspond to any PHI nodes in the header block.
    393   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    394     PHINode *PN = cast<PHINode>(I);
    395     PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
    396                                      PN->getName()+".be", BETerminator);
    397 
    398     // Loop over the PHI node, moving all entries except the one for the
    399     // preheader over to the new PHI node.
    400     unsigned PreheaderIdx = ~0U;
    401     bool HasUniqueIncomingValue = true;
    402     Value *UniqueValue = nullptr;
    403     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    404       BasicBlock *IBB = PN->getIncomingBlock(i);
    405       Value *IV = PN->getIncomingValue(i);
    406       if (IBB == Preheader) {
    407         PreheaderIdx = i;
    408       } else {
    409         NewPN->addIncoming(IV, IBB);
    410         if (HasUniqueIncomingValue) {
    411           if (!UniqueValue)
    412             UniqueValue = IV;
    413           else if (UniqueValue != IV)
    414             HasUniqueIncomingValue = false;
    415         }
    416       }
    417     }
    418 
    419     // Delete all of the incoming values from the old PN except the preheader's
    420     assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
    421     if (PreheaderIdx != 0) {
    422       PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
    423       PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
    424     }
    425     // Nuke all entries except the zero'th.
    426     for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
    427       PN->removeIncomingValue(e-i, false);
    428 
    429     // Finally, add the newly constructed PHI node as the entry for the BEBlock.
    430     PN->addIncoming(NewPN, BEBlock);
    431 
    432     // As an optimization, if all incoming values in the new PhiNode (which is a
    433     // subset of the incoming values of the old PHI node) have the same value,
    434     // eliminate the PHI Node.
    435     if (HasUniqueIncomingValue) {
    436       NewPN->replaceAllUsesWith(UniqueValue);
    437       BEBlock->getInstList().erase(NewPN);
    438     }
    439   }
    440 
    441   // Now that all of the PHI nodes have been inserted and adjusted, modify the
    442   // backedge blocks to just to the BEBlock instead of the header.
    443   for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
    444     TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
    445     for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
    446       if (TI->getSuccessor(Op) == Header)
    447         TI->setSuccessor(Op, BEBlock);
    448   }
    449 
    450   //===--- Update all analyses which we must preserve now -----------------===//
    451 
    452   // Update Loop Information - we know that this block is now in the current
    453   // loop and all parent loops.
    454   L->addBasicBlockToLoop(BEBlock, *LI);
    455 
    456   // Update dominator information
    457   DT->splitBlock(BEBlock);
    458 
    459   return BEBlock;
    460 }
    461 
    462 /// \brief Simplify one loop and queue further loops for simplification.
    463 static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
    464                             DominatorTree *DT, LoopInfo *LI,
    465                             ScalarEvolution *SE, AssumptionCache *AC,
    466                             bool PreserveLCSSA) {
    467   bool Changed = false;
    468 ReprocessLoop:
    469 
    470   // Check to see that no blocks (other than the header) in this loop have
    471   // predecessors that are not in the loop.  This is not valid for natural
    472   // loops, but can occur if the blocks are unreachable.  Since they are
    473   // unreachable we can just shamelessly delete those CFG edges!
    474   for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
    475        BB != E; ++BB) {
    476     if (*BB == L->getHeader()) continue;
    477 
    478     SmallPtrSet<BasicBlock*, 4> BadPreds;
    479     for (pred_iterator PI = pred_begin(*BB),
    480          PE = pred_end(*BB); PI != PE; ++PI) {
    481       BasicBlock *P = *PI;
    482       if (!L->contains(P))
    483         BadPreds.insert(P);
    484     }
    485 
    486     // Delete each unique out-of-loop (and thus dead) predecessor.
    487     for (BasicBlock *P : BadPreds) {
    488 
    489       DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
    490                    << P->getName() << "\n");
    491 
    492       // Inform each successor of each dead pred.
    493       for (succ_iterator SI = succ_begin(P), SE = succ_end(P); SI != SE; ++SI)
    494         (*SI)->removePredecessor(P);
    495       // Zap the dead pred's terminator and replace it with unreachable.
    496       TerminatorInst *TI = P->getTerminator();
    497        TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
    498       P->getTerminator()->eraseFromParent();
    499       new UnreachableInst(P->getContext(), P);
    500       Changed = true;
    501     }
    502   }
    503 
    504   // If there are exiting blocks with branches on undef, resolve the undef in
    505   // the direction which will exit the loop. This will help simplify loop
    506   // trip count computations.
    507   SmallVector<BasicBlock*, 8> ExitingBlocks;
    508   L->getExitingBlocks(ExitingBlocks);
    509   for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
    510        E = ExitingBlocks.end(); I != E; ++I)
    511     if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
    512       if (BI->isConditional()) {
    513         if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
    514 
    515           DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
    516                        << (*I)->getName() << "\n");
    517 
    518           BI->setCondition(ConstantInt::get(Cond->getType(),
    519                                             !L->contains(BI->getSuccessor(0))));
    520 
    521           // This may make the loop analyzable, force SCEV recomputation.
    522           if (SE)
    523             SE->forgetLoop(L);
    524 
    525           Changed = true;
    526         }
    527       }
    528 
    529   // Does the loop already have a preheader?  If so, don't insert one.
    530   BasicBlock *Preheader = L->getLoopPreheader();
    531   if (!Preheader) {
    532     Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA);
    533     if (Preheader) {
    534       ++NumInserted;
    535       Changed = true;
    536     }
    537   }
    538 
    539   // Next, check to make sure that all exit nodes of the loop only have
    540   // predecessors that are inside of the loop.  This check guarantees that the
    541   // loop preheader/header will dominate the exit blocks.  If the exit block has
    542   // predecessors from outside of the loop, split the edge now.
    543   SmallVector<BasicBlock*, 8> ExitBlocks;
    544   L->getExitBlocks(ExitBlocks);
    545 
    546   SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
    547                                                ExitBlocks.end());
    548   for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
    549          E = ExitBlockSet.end(); I != E; ++I) {
    550     BasicBlock *ExitBlock = *I;
    551     for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
    552          PI != PE; ++PI)
    553       // Must be exactly this loop: no subloops, parent loops, or non-loop preds
    554       // allowed.
    555       if (!L->contains(*PI)) {
    556         if (rewriteLoopExitBlock(L, ExitBlock, DT, LI, PreserveLCSSA)) {
    557           ++NumInserted;
    558           Changed = true;
    559         }
    560         break;
    561       }
    562   }
    563 
    564   // If the header has more than two predecessors at this point (from the
    565   // preheader and from multiple backedges), we must adjust the loop.
    566   BasicBlock *LoopLatch = L->getLoopLatch();
    567   if (!LoopLatch) {
    568     // If this is really a nested loop, rip it out into a child loop.  Don't do
    569     // this for loops with a giant number of backedges, just factor them into a
    570     // common backedge instead.
    571     if (L->getNumBackEdges() < 8) {
    572       if (Loop *OuterL =
    573               separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) {
    574         ++NumNested;
    575         // Enqueue the outer loop as it should be processed next in our
    576         // depth-first nest walk.
    577         Worklist.push_back(OuterL);
    578 
    579         // This is a big restructuring change, reprocess the whole loop.
    580         Changed = true;
    581         // GCC doesn't tail recursion eliminate this.
    582         // FIXME: It isn't clear we can't rely on LLVM to TRE this.
    583         goto ReprocessLoop;
    584       }
    585     }
    586 
    587     // If we either couldn't, or didn't want to, identify nesting of the loops,
    588     // insert a new block that all backedges target, then make it jump to the
    589     // loop header.
    590     LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI);
    591     if (LoopLatch) {
    592       ++NumInserted;
    593       Changed = true;
    594     }
    595   }
    596 
    597   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
    598 
    599   // Scan over the PHI nodes in the loop header.  Since they now have only two
    600   // incoming values (the loop is canonicalized), we may have simplified the PHI
    601   // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
    602   PHINode *PN;
    603   for (BasicBlock::iterator I = L->getHeader()->begin();
    604        (PN = dyn_cast<PHINode>(I++)); )
    605     if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) {
    606       if (SE) SE->forgetValue(PN);
    607       PN->replaceAllUsesWith(V);
    608       PN->eraseFromParent();
    609     }
    610 
    611   // If this loop has multiple exits and the exits all go to the same
    612   // block, attempt to merge the exits. This helps several passes, such
    613   // as LoopRotation, which do not support loops with multiple exits.
    614   // SimplifyCFG also does this (and this code uses the same utility
    615   // function), however this code is loop-aware, where SimplifyCFG is
    616   // not. That gives it the advantage of being able to hoist
    617   // loop-invariant instructions out of the way to open up more
    618   // opportunities, and the disadvantage of having the responsibility
    619   // to preserve dominator information.
    620   bool UniqueExit = true;
    621   if (!ExitBlocks.empty())
    622     for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
    623       if (ExitBlocks[i] != ExitBlocks[0]) {
    624         UniqueExit = false;
    625         break;
    626       }
    627   if (UniqueExit) {
    628     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    629       BasicBlock *ExitingBlock = ExitingBlocks[i];
    630       if (!ExitingBlock->getSinglePredecessor()) continue;
    631       BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
    632       if (!BI || !BI->isConditional()) continue;
    633       CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
    634       if (!CI || CI->getParent() != ExitingBlock) continue;
    635 
    636       // Attempt to hoist out all instructions except for the
    637       // comparison and the branch.
    638       bool AllInvariant = true;
    639       bool AnyInvariant = false;
    640       for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
    641         Instruction *Inst = &*I++;
    642         // Skip debug info intrinsics.
    643         if (isa<DbgInfoIntrinsic>(Inst))
    644           continue;
    645         if (Inst == CI)
    646           continue;
    647         if (!L->makeLoopInvariant(Inst, AnyInvariant,
    648                                   Preheader ? Preheader->getTerminator()
    649                                             : nullptr)) {
    650           AllInvariant = false;
    651           break;
    652         }
    653       }
    654       if (AnyInvariant) {
    655         Changed = true;
    656         // The loop disposition of all SCEV expressions that depend on any
    657         // hoisted values have also changed.
    658         if (SE)
    659           SE->forgetLoopDispositions(L);
    660       }
    661       if (!AllInvariant) continue;
    662 
    663       // The block has now been cleared of all instructions except for
    664       // a comparison and a conditional branch. SimplifyCFG may be able
    665       // to fold it now.
    666       if (!FoldBranchToCommonDest(BI))
    667         continue;
    668 
    669       // Success. The block is now dead, so remove it from the loop,
    670       // update the dominator tree and delete it.
    671       DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
    672                    << ExitingBlock->getName() << "\n");
    673 
    674       // Notify ScalarEvolution before deleting this block. Currently assume the
    675       // parent loop doesn't change (spliting edges doesn't count). If blocks,
    676       // CFG edges, or other values in the parent loop change, then we need call
    677       // to forgetLoop() for the parent instead.
    678       if (SE)
    679         SE->forgetLoop(L);
    680 
    681       assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
    682       Changed = true;
    683       LI->removeBlock(ExitingBlock);
    684 
    685       DomTreeNode *Node = DT->getNode(ExitingBlock);
    686       const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
    687         Node->getChildren();
    688       while (!Children.empty()) {
    689         DomTreeNode *Child = Children.front();
    690         DT->changeImmediateDominator(Child, Node->getIDom());
    691       }
    692       DT->eraseNode(ExitingBlock);
    693 
    694       BI->getSuccessor(0)->removePredecessor(ExitingBlock);
    695       BI->getSuccessor(1)->removePredecessor(ExitingBlock);
    696       ExitingBlock->eraseFromParent();
    697     }
    698   }
    699 
    700   return Changed;
    701 }
    702 
    703 bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI,
    704                         ScalarEvolution *SE, AssumptionCache *AC,
    705                         bool PreserveLCSSA) {
    706   bool Changed = false;
    707 
    708   // Worklist maintains our depth-first queue of loops in this nest to process.
    709   SmallVector<Loop *, 4> Worklist;
    710   Worklist.push_back(L);
    711 
    712   // Walk the worklist from front to back, pushing newly found sub loops onto
    713   // the back. This will let us process loops from back to front in depth-first
    714   // order. We can use this simple process because loops form a tree.
    715   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
    716     Loop *L2 = Worklist[Idx];
    717     Worklist.append(L2->begin(), L2->end());
    718   }
    719 
    720   while (!Worklist.empty())
    721     Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE,
    722                                AC, PreserveLCSSA);
    723 
    724   return Changed;
    725 }
    726 
    727 namespace {
    728   struct LoopSimplify : public FunctionPass {
    729     static char ID; // Pass identification, replacement for typeid
    730     LoopSimplify() : FunctionPass(ID) {
    731       initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
    732     }
    733 
    734     DominatorTree *DT;
    735     LoopInfo *LI;
    736     ScalarEvolution *SE;
    737     AssumptionCache *AC;
    738 
    739     bool runOnFunction(Function &F) override;
    740 
    741     void getAnalysisUsage(AnalysisUsage &AU) const override {
    742       AU.addRequired<AssumptionCacheTracker>();
    743 
    744       // We need loop information to identify the loops...
    745       AU.addRequired<DominatorTreeWrapperPass>();
    746       AU.addPreserved<DominatorTreeWrapperPass>();
    747 
    748       AU.addRequired<LoopInfoWrapperPass>();
    749       AU.addPreserved<LoopInfoWrapperPass>();
    750 
    751       AU.addPreserved<BasicAAWrapperPass>();
    752       AU.addPreserved<AAResultsWrapperPass>();
    753       AU.addPreserved<GlobalsAAWrapperPass>();
    754       AU.addPreserved<ScalarEvolutionWrapperPass>();
    755       AU.addPreserved<SCEVAAWrapperPass>();
    756       AU.addPreserved<DependenceAnalysis>();
    757       AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
    758     }
    759 
    760     /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
    761     void verifyAnalysis() const override;
    762   };
    763 }
    764 
    765 char LoopSimplify::ID = 0;
    766 INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
    767                 "Canonicalize natural loops", false, false)
    768 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    769 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    770 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    771 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
    772 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
    773 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
    774 INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
    775                 "Canonicalize natural loops", false, false)
    776 
    777 // Publicly exposed interface to pass...
    778 char &llvm::LoopSimplifyID = LoopSimplify::ID;
    779 Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
    780 
    781 /// runOnFunction - Run down all loops in the CFG (recursively, but we could do
    782 /// it in any convenient order) inserting preheaders...
    783 ///
    784 bool LoopSimplify::runOnFunction(Function &F) {
    785   bool Changed = false;
    786   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    787   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    788   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
    789   SE = SEWP ? &SEWP->getSE() : nullptr;
    790   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    791   bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
    792 
    793   // Simplify each loop nest in the function.
    794   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
    795     Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA);
    796 
    797   return Changed;
    798 }
    799 
    800 // FIXME: Restore this code when we re-enable verification in verifyAnalysis
    801 // below.
    802 #if 0
    803 static void verifyLoop(Loop *L) {
    804   // Verify subloops.
    805   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
    806     verifyLoop(*I);
    807 
    808   // It used to be possible to just assert L->isLoopSimplifyForm(), however
    809   // with the introduction of indirectbr, there are now cases where it's
    810   // not possible to transform a loop as necessary. We can at least check
    811   // that there is an indirectbr near any time there's trouble.
    812 
    813   // Indirectbr can interfere with preheader and unique backedge insertion.
    814   if (!L->getLoopPreheader() || !L->getLoopLatch()) {
    815     bool HasIndBrPred = false;
    816     for (pred_iterator PI = pred_begin(L->getHeader()),
    817          PE = pred_end(L->getHeader()); PI != PE; ++PI)
    818       if (isa<IndirectBrInst>((*PI)->getTerminator())) {
    819         HasIndBrPred = true;
    820         break;
    821       }
    822     assert(HasIndBrPred &&
    823            "LoopSimplify has no excuse for missing loop header info!");
    824     (void)HasIndBrPred;
    825   }
    826 
    827   // Indirectbr can interfere with exit block canonicalization.
    828   if (!L->hasDedicatedExits()) {
    829     bool HasIndBrExiting = false;
    830     SmallVector<BasicBlock*, 8> ExitingBlocks;
    831     L->getExitingBlocks(ExitingBlocks);
    832     for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
    833       if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
    834         HasIndBrExiting = true;
    835         break;
    836       }
    837     }
    838 
    839     assert(HasIndBrExiting &&
    840            "LoopSimplify has no excuse for missing exit block info!");
    841     (void)HasIndBrExiting;
    842   }
    843 }
    844 #endif
    845 
    846 void LoopSimplify::verifyAnalysis() const {
    847   // FIXME: This routine is being called mid-way through the loop pass manager
    848   // as loop passes destroy this analysis. That's actually fine, but we have no
    849   // way of expressing that here. Once all of the passes that destroy this are
    850   // hoisted out of the loop pass manager we can add back verification here.
    851 #if 0
    852   for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
    853     verifyLoop(*I);
    854 #endif
    855 }
    856