Home | History | Annotate | Download | only in opencv2
      1 /*M///////////////////////////////////////////////////////////////////////////////////////
      2 //
      3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
      4 //
      5 //  By downloading, copying, installing or using the software you agree to this license.
      6 //  If you do not agree to this license, do not download, install,
      7 //  copy or use the software.
      8 //
      9 //
     10 //                           License Agreement
     11 //                For Open Source Computer Vision Library
     12 //
     13 // Copyright (C) 2000-2015, Intel Corporation, all rights reserved.
     14 // Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
     15 // Copyright (C) 2015, OpenCV Foundation, all rights reserved.
     16 // Copyright (C) 2015, Itseez Inc., all rights reserved.
     17 // Third party copyrights are property of their respective owners.
     18 //
     19 // Redistribution and use in source and binary forms, with or without modification,
     20 // are permitted provided that the following conditions are met:
     21 //
     22 //   * Redistribution's of source code must retain the above copyright notice,
     23 //     this list of conditions and the following disclaimer.
     24 //
     25 //   * Redistribution's in binary form must reproduce the above copyright notice,
     26 //     this list of conditions and the following disclaimer in the documentation
     27 //     and/or other materials provided with the distribution.
     28 //
     29 //   * The name of the copyright holders may not be used to endorse or promote products
     30 //     derived from this software without specific prior written permission.
     31 //
     32 // This software is provided by the copyright holders and contributors "as is" and
     33 // any express or implied warranties, including, but not limited to, the implied
     34 // warranties of merchantability and fitness for a particular purpose are disclaimed.
     35 // In no event shall the Intel Corporation or contributors be liable for any direct,
     36 // indirect, incidental, special, exemplary, or consequential damages
     37 // (including, but not limited to, procurement of substitute goods or services;
     38 // loss of use, data, or profits; or business interruption) however caused
     39 // and on any theory of liability, whether in contract, strict liability,
     40 // or tort (including negligence or otherwise) arising in any way out of
     41 // the use of this software, even if advised of the possibility of such damage.
     42 //
     43 //M*/
     44 
     45 #ifndef __OPENCV_CORE_HPP__
     46 #define __OPENCV_CORE_HPP__
     47 
     48 #ifndef __cplusplus
     49 #  error core.hpp header must be compiled as C++
     50 #endif
     51 
     52 #include "opencv2/core/cvdef.h"
     53 #include "opencv2/core/version.hpp"
     54 #include "opencv2/core/base.hpp"
     55 #include "opencv2/core/cvstd.hpp"
     56 #include "opencv2/core/traits.hpp"
     57 #include "opencv2/core/matx.hpp"
     58 #include "opencv2/core/types.hpp"
     59 #include "opencv2/core/mat.hpp"
     60 #include "opencv2/core/persistence.hpp"
     61 
     62 /**
     63 @defgroup core Core functionality
     64 @{
     65     @defgroup core_basic Basic structures
     66     @defgroup core_c C structures and operations
     67     @{
     68         @defgroup core_c_glue Connections with C++
     69     @}
     70     @defgroup core_array Operations on arrays
     71     @defgroup core_xml XML/YAML Persistence
     72     @defgroup core_cluster Clustering
     73     @defgroup core_utils Utility and system functions and macros
     74     @{
     75         @defgroup core_utils_neon NEON utilities
     76     @}
     77     @defgroup core_opengl OpenGL interoperability
     78     @defgroup core_ipp Intel IPP Asynchronous C/C++ Converters
     79     @defgroup core_optim Optimization Algorithms
     80     @defgroup core_directx DirectX interoperability
     81     @defgroup core_eigen Eigen support
     82     @defgroup core_opencl OpenCL support
     83 @}
     84  */
     85 
     86 namespace cv {
     87 
     88 //! @addtogroup core_utils
     89 //! @{
     90 
     91 /*! @brief Class passed to an error.
     92 
     93 This class encapsulates all or almost all necessary
     94 information about the error happened in the program. The exception is
     95 usually constructed and thrown implicitly via CV_Error and CV_Error_ macros.
     96 @see error
     97  */
     98 class CV_EXPORTS Exception : public std::exception
     99 {
    100 public:
    101     /*!
    102      Default constructor
    103      */
    104     Exception();
    105     /*!
    106      Full constructor. Normally the constuctor is not called explicitly.
    107      Instead, the macros CV_Error(), CV_Error_() and CV_Assert() are used.
    108     */
    109     Exception(int _code, const String& _err, const String& _func, const String& _file, int _line);
    110     virtual ~Exception() throw();
    111 
    112     /*!
    113      \return the error description and the context as a text string.
    114     */
    115     virtual const char *what() const throw();
    116     void formatMessage();
    117 
    118     String msg; ///< the formatted error message
    119 
    120     int code; ///< error code @see CVStatus
    121     String err; ///< error description
    122     String func; ///< function name. Available only when the compiler supports getting it
    123     String file; ///< source file name where the error has occured
    124     int line; ///< line number in the source file where the error has occured
    125 };
    126 
    127 /*! @brief Signals an error and raises the exception.
    128 
    129 By default the function prints information about the error to stderr,
    130 then it either stops if cv::setBreakOnError() had been called before or raises the exception.
    131 It is possible to alternate error processing by using cv::redirectError().
    132 @param exc the exception raisen.
    133 @deprecated drop this version
    134  */
    135 CV_EXPORTS void error( const Exception& exc );
    136 
    137 enum SortFlags { SORT_EVERY_ROW    = 0, //!< each matrix row is sorted independently
    138                  SORT_EVERY_COLUMN = 1, //!< each matrix column is sorted
    139                                         //!< independently; this flag and the previous one are
    140                                         //!< mutually exclusive.
    141                  SORT_ASCENDING    = 0, //!< each matrix row is sorted in the ascending
    142                                         //!< order.
    143                  SORT_DESCENDING   = 16 //!< each matrix row is sorted in the
    144                                         //!< descending order; this flag and the previous one are also
    145                                         //!< mutually exclusive.
    146                };
    147 
    148 //! @} core_utils
    149 
    150 //! @addtogroup core
    151 //! @{
    152 
    153 //! Covariation flags
    154 enum CovarFlags {
    155     /** The output covariance matrix is calculated as:
    156        \f[\texttt{scale}   \cdot  [  \texttt{vects}  [0]-  \texttt{mean}  , \texttt{vects}  [1]-  \texttt{mean}  ,...]^T  \cdot  [ \texttt{vects}  [0]- \texttt{mean}  , \texttt{vects}  [1]- \texttt{mean}  ,...],\f]
    157        The covariance matrix will be nsamples x nsamples. Such an unusual covariance matrix is used
    158        for fast PCA of a set of very large vectors (see, for example, the EigenFaces technique for
    159        face recognition). Eigenvalues of this "scrambled" matrix match the eigenvalues of the true
    160        covariance matrix. The "true" eigenvectors can be easily calculated from the eigenvectors of
    161        the "scrambled" covariance matrix. */
    162     COVAR_SCRAMBLED = 0,
    163     /**The output covariance matrix is calculated as:
    164         \f[\texttt{scale}   \cdot  [  \texttt{vects}  [0]-  \texttt{mean}  , \texttt{vects}  [1]-  \texttt{mean}  ,...]  \cdot  [ \texttt{vects}  [0]- \texttt{mean}  , \texttt{vects}  [1]- \texttt{mean}  ,...]^T,\f]
    165         covar will be a square matrix of the same size as the total number of elements in each input
    166         vector. One and only one of COVAR_SCRAMBLED and COVAR_NORMAL must be specified.*/
    167     COVAR_NORMAL    = 1,
    168     /** If the flag is specified, the function does not calculate mean from
    169         the input vectors but, instead, uses the passed mean vector. This is useful if mean has been
    170         pre-calculated or known in advance, or if the covariance matrix is calculated by parts. In
    171         this case, mean is not a mean vector of the input sub-set of vectors but rather the mean
    172         vector of the whole set.*/
    173     COVAR_USE_AVG   = 2,
    174     /** If the flag is specified, the covariance matrix is scaled. In the
    175         "normal" mode, scale is 1./nsamples . In the "scrambled" mode, scale is the reciprocal of the
    176         total number of elements in each input vector. By default (if the flag is not specified), the
    177         covariance matrix is not scaled ( scale=1 ).*/
    178     COVAR_SCALE     = 4,
    179     /** If the flag is
    180         specified, all the input vectors are stored as rows of the samples matrix. mean should be a
    181         single-row vector in this case.*/
    182     COVAR_ROWS      = 8,
    183     /** If the flag is
    184         specified, all the input vectors are stored as columns of the samples matrix. mean should be a
    185         single-column vector in this case.*/
    186     COVAR_COLS      = 16
    187 };
    188 
    189 //! k-Means flags
    190 enum KmeansFlags {
    191     /** Select random initial centers in each attempt.*/
    192     KMEANS_RANDOM_CENTERS     = 0,
    193     /** Use kmeans++ center initialization by Arthur and Vassilvitskii [Arthur2007].*/
    194     KMEANS_PP_CENTERS         = 2,
    195     /** During the first (and possibly the only) attempt, use the
    196         user-supplied labels instead of computing them from the initial centers. For the second and
    197         further attempts, use the random or semi-random centers. Use one of KMEANS_\*_CENTERS flag
    198         to specify the exact method.*/
    199     KMEANS_USE_INITIAL_LABELS = 1
    200 };
    201 
    202 //! type of line
    203 enum LineTypes {
    204     FILLED  = -1,
    205     LINE_4  = 4, //!< 4-connected line
    206     LINE_8  = 8, //!< 8-connected line
    207     LINE_AA = 16 //!< antialiased line
    208 };
    209 
    210 //! Only a subset of Hershey fonts
    211 //! <http://sources.isc.org/utils/misc/hershey-font.txt> are supported
    212 enum HersheyFonts {
    213     FONT_HERSHEY_SIMPLEX        = 0, //!< normal size sans-serif font
    214     FONT_HERSHEY_PLAIN          = 1, //!< small size sans-serif font
    215     FONT_HERSHEY_DUPLEX         = 2, //!< normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX)
    216     FONT_HERSHEY_COMPLEX        = 3, //!< normal size serif font
    217     FONT_HERSHEY_TRIPLEX        = 4, //!< normal size serif font (more complex than FONT_HERSHEY_COMPLEX)
    218     FONT_HERSHEY_COMPLEX_SMALL  = 5, //!< smaller version of FONT_HERSHEY_COMPLEX
    219     FONT_HERSHEY_SCRIPT_SIMPLEX = 6, //!< hand-writing style font
    220     FONT_HERSHEY_SCRIPT_COMPLEX = 7, //!< more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX
    221     FONT_ITALIC                 = 16 //!< flag for italic font
    222 };
    223 
    224 enum ReduceTypes { REDUCE_SUM = 0, //!< the output is the sum of all rows/columns of the matrix.
    225                    REDUCE_AVG = 1, //!< the output is the mean vector of all rows/columns of the matrix.
    226                    REDUCE_MAX = 2, //!< the output is the maximum (column/row-wise) of all rows/columns of the matrix.
    227                    REDUCE_MIN = 3  //!< the output is the minimum (column/row-wise) of all rows/columns of the matrix.
    228                  };
    229 
    230 
    231 /** @brief Swaps two matrices
    232 */
    233 CV_EXPORTS void swap(Mat& a, Mat& b);
    234 /** @overload */
    235 CV_EXPORTS void swap( UMat& a, UMat& b );
    236 
    237 //! @} core
    238 
    239 //! @addtogroup core_array
    240 //! @{
    241 
    242 /** @brief Computes the source location of an extrapolated pixel.
    243 
    244 The function computes and returns the coordinate of a donor pixel corresponding to the specified
    245 extrapolated pixel when using the specified extrapolation border mode. For example, if you use
    246 cv::BORDER_WRAP mode in the horizontal direction, cv::BORDER_REFLECT_101 in the vertical direction and
    247 want to compute value of the "virtual" pixel Point(-5, 100) in a floating-point image img , it
    248 looks like:
    249 @code{.cpp}
    250     float val = img.at<float>(borderInterpolate(100, img.rows, cv::BORDER_REFLECT_101),
    251                               borderInterpolate(-5, img.cols, cv::BORDER_WRAP));
    252 @endcode
    253 Normally, the function is not called directly. It is used inside filtering functions and also in
    254 copyMakeBorder.
    255 @param p 0-based coordinate of the extrapolated pixel along one of the axes, likely \<0 or \>= len
    256 @param len Length of the array along the corresponding axis.
    257 @param borderType Border type, one of the cv::BorderTypes, except for cv::BORDER_TRANSPARENT and
    258 cv::BORDER_ISOLATED . When borderType==cv::BORDER_CONSTANT , the function always returns -1, regardless
    259 of p and len.
    260 
    261 @sa copyMakeBorder
    262 */
    263 CV_EXPORTS_W int borderInterpolate(int p, int len, int borderType);
    264 
    265 /** @brief Forms a border around an image.
    266 
    267 The function copies the source image into the middle of the destination image. The areas to the
    268 left, to the right, above and below the copied source image will be filled with extrapolated
    269 pixels. This is not what filtering functions based on it do (they extrapolate pixels on-fly), but
    270 what other more complex functions, including your own, may do to simplify image boundary handling.
    271 
    272 The function supports the mode when src is already in the middle of dst . In this case, the
    273 function does not copy src itself but simply constructs the border, for example:
    274 
    275 @code{.cpp}
    276     // let border be the same in all directions
    277     int border=2;
    278     // constructs a larger image to fit both the image and the border
    279     Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth());
    280     // select the middle part of it w/o copying data
    281     Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows));
    282     // convert image from RGB to grayscale
    283     cvtColor(rgb, gray, COLOR_RGB2GRAY);
    284     // form a border in-place
    285     copyMakeBorder(gray, gray_buf, border, border,
    286                    border, border, BORDER_REPLICATE);
    287     // now do some custom filtering ...
    288     ...
    289 @endcode
    290 @note When the source image is a part (ROI) of a bigger image, the function will try to use the
    291 pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as
    292 if src was not a ROI, use borderType | BORDER_ISOLATED.
    293 
    294 @param src Source image.
    295 @param dst Destination image of the same type as src and the size Size(src.cols+left+right,
    296 src.rows+top+bottom) .
    297 @param top
    298 @param bottom
    299 @param left
    300 @param right Parameter specifying how many pixels in each direction from the source image rectangle
    301 to extrapolate. For example, top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs
    302 to be built.
    303 @param borderType Border type. See borderInterpolate for details.
    304 @param value Border value if borderType==BORDER_CONSTANT .
    305 
    306 @sa  borderInterpolate
    307 */
    308 CV_EXPORTS_W void copyMakeBorder(InputArray src, OutputArray dst,
    309                                  int top, int bottom, int left, int right,
    310                                  int borderType, const Scalar& value = Scalar() );
    311 
    312 /** @brief Calculates the per-element sum of two arrays or an array and a scalar.
    313 
    314 The function add calculates:
    315 - Sum of two arrays when both input arrays have the same size and the same number of channels:
    316 \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) +  \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
    317 - Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of
    318 elements as `src1.channels()`:
    319 \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) +  \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f]
    320 - Sum of a scalar and an array when src1 is constructed from Scalar or has the same number of
    321 elements as `src2.channels()`:
    322 \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1} +  \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f]
    323 where `I` is a multi-dimensional index of array elements. In case of multi-channel arrays, each
    324 channel is processed independently.
    325 
    326 The first function in the list above can be replaced with matrix expressions:
    327 @code{.cpp}
    328     dst = src1 + src2;
    329     dst += src1; // equivalent to add(dst, src1, dst);
    330 @endcode
    331 The input arrays and the output array can all have the same or different depths. For example, you
    332 can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit
    333 floating-point array. Depth of the output array is determined by the dtype parameter. In the second
    334 and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can
    335 be set to the default -1. In this case, the output array will have the same depth as the input
    336 array, be it src1, src2 or both.
    337 @note Saturation is not applied when the output array has the depth CV_32S. You may even get
    338 result of an incorrect sign in the case of overflow.
    339 @param src1 first input array or a scalar.
    340 @param src2 second input array or a scalar.
    341 @param dst output array that has the same size and number of channels as the input array(s); the
    342 depth is defined by dtype or src1/src2.
    343 @param mask optional operation mask - 8-bit single channel array, that specifies elements of the
    344 output array to be changed.
    345 @param dtype optional depth of the output array (see the discussion below).
    346 @sa subtract, addWeighted, scaleAdd, Mat::convertTo
    347 */
    348 CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst,
    349                       InputArray mask = noArray(), int dtype = -1);
    350 
    351 /** @brief Calculates the per-element difference between two arrays or array and a scalar.
    352 
    353 The function subtract calculates:
    354 - Difference between two arrays, when both input arrays have the same size and the same number of
    355 channels:
    356     \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) -  \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f]
    357 - Difference between an array and a scalar, when src2 is constructed from Scalar or has the same
    358 number of elements as `src1.channels()`:
    359     \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) -  \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f]
    360 - Difference between a scalar and an array, when src1 is constructed from Scalar or has the same
    361 number of elements as `src2.channels()`:
    362     \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1} -  \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f]
    363 - The reverse difference between a scalar and an array in the case of `SubRS`:
    364     \f[\texttt{dst}(I) =  \texttt{saturate} ( \texttt{src2} -  \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0\f]
    365 where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
    366 channel is processed independently.
    367 
    368 The first function in the list above can be replaced with matrix expressions:
    369 @code{.cpp}
    370     dst = src1 - src2;
    371     dst -= src1; // equivalent to subtract(dst, src1, dst);
    372 @endcode
    373 The input arrays and the output array can all have the same or different depths. For example, you
    374 can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of
    375 the output array is determined by dtype parameter. In the second and third cases above, as well as
    376 in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this
    377 case the output array will have the same depth as the input array, be it src1, src2 or both.
    378 @note Saturation is not applied when the output array has the depth CV_32S. You may even get
    379 result of an incorrect sign in the case of overflow.
    380 @param src1 first input array or a scalar.
    381 @param src2 second input array or a scalar.
    382 @param dst output array of the same size and the same number of channels as the input array.
    383 @param mask optional operation mask; this is an 8-bit single channel array that specifies elements
    384 of the output array to be changed.
    385 @param dtype optional depth of the output array
    386 @sa  add, addWeighted, scaleAdd, Mat::convertTo
    387   */
    388 CV_EXPORTS_W void subtract(InputArray src1, InputArray src2, OutputArray dst,
    389                            InputArray mask = noArray(), int dtype = -1);
    390 
    391 
    392 /** @brief Calculates the per-element scaled product of two arrays.
    393 
    394 The function multiply calculates the per-element product of two arrays:
    395 
    396 \f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I)  \cdot \texttt{src2} (I))\f]
    397 
    398 There is also a @ref MatrixExpressions -friendly variant of the first function. See Mat::mul .
    399 
    400 For a not-per-element matrix product, see gemm .
    401 
    402 @note Saturation is not applied when the output array has the depth
    403 CV_32S. You may even get result of an incorrect sign in the case of
    404 overflow.
    405 @param src1 first input array.
    406 @param src2 second input array of the same size and the same type as src1.
    407 @param dst output array of the same size and type as src1.
    408 @param scale optional scale factor.
    409 @param dtype optional depth of the output array
    410 @sa add, subtract, divide, scaleAdd, addWeighted, accumulate, accumulateProduct, accumulateSquare,
    411 Mat::convertTo
    412 */
    413 CV_EXPORTS_W void multiply(InputArray src1, InputArray src2,
    414                            OutputArray dst, double scale = 1, int dtype = -1);
    415 
    416 /** @brief Performs per-element division of two arrays or a scalar by an array.
    417 
    418 The functions divide divide one array by another:
    419 \f[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\f]
    420 or a scalar by an array when there is no src1 :
    421 \f[\texttt{dst(I) = saturate(scale/src2(I))}\f]
    422 
    423 When src2(I) is zero, dst(I) will also be zero. Different channels of
    424 multi-channel arrays are processed independently.
    425 
    426 @note Saturation is not applied when the output array has the depth CV_32S. You may even get
    427 result of an incorrect sign in the case of overflow.
    428 @param src1 first input array.
    429 @param src2 second input array of the same size and type as src1.
    430 @param scale scalar factor.
    431 @param dst output array of the same size and type as src2.
    432 @param dtype optional depth of the output array; if -1, dst will have depth src2.depth(), but in
    433 case of an array-by-array division, you can only pass -1 when src1.depth()==src2.depth().
    434 @sa  multiply, add, subtract
    435 */
    436 CV_EXPORTS_W void divide(InputArray src1, InputArray src2, OutputArray dst,
    437                          double scale = 1, int dtype = -1);
    438 
    439 /** @overload */
    440 CV_EXPORTS_W void divide(double scale, InputArray src2,
    441                          OutputArray dst, int dtype = -1);
    442 
    443 /** @brief Calculates the sum of a scaled array and another array.
    444 
    445 The function scaleAdd is one of the classical primitive linear algebra operations, known as DAXPY
    446 or SAXPY in [BLAS](http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms). It calculates
    447 the sum of a scaled array and another array:
    448 \f[\texttt{dst} (I)= \texttt{scale} \cdot \texttt{src1} (I) +  \texttt{src2} (I)\f]
    449 The function can also be emulated with a matrix expression, for example:
    450 @code{.cpp}
    451     Mat A(3, 3, CV_64F);
    452     ...
    453     A.row(0) = A.row(1)*2 + A.row(2);
    454 @endcode
    455 @param src1 first input array.
    456 @param alpha scale factor for the first array.
    457 @param src2 second input array of the same size and type as src1.
    458 @param dst output array of the same size and type as src1.
    459 @sa add, addWeighted, subtract, Mat::dot, Mat::convertTo
    460 */
    461 CV_EXPORTS_W void scaleAdd(InputArray src1, double alpha, InputArray src2, OutputArray dst);
    462 
    463 /** @brief Calculates the weighted sum of two arrays.
    464 
    465 The function addWeighted calculates the weighted sum of two arrays as follows:
    466 \f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} +  \texttt{src2} (I)* \texttt{beta} +  \texttt{gamma} )\f]
    467 where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each
    468 channel is processed independently.
    469 The function can be replaced with a matrix expression:
    470 @code{.cpp}
    471     dst = src1*alpha + src2*beta + gamma;
    472 @endcode
    473 @note Saturation is not applied when the output array has the depth CV_32S. You may even get
    474 result of an incorrect sign in the case of overflow.
    475 @param src1 first input array.
    476 @param alpha weight of the first array elements.
    477 @param src2 second input array of the same size and channel number as src1.
    478 @param beta weight of the second array elements.
    479 @param gamma scalar added to each sum.
    480 @param dst output array that has the same size and number of channels as the input arrays.
    481 @param dtype optional depth of the output array; when both input arrays have the same depth, dtype
    482 can be set to -1, which will be equivalent to src1.depth().
    483 @sa  add, subtract, scaleAdd, Mat::convertTo
    484 */
    485 CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2,
    486                               double beta, double gamma, OutputArray dst, int dtype = -1);
    487 
    488 /** @brief Scales, calculates absolute values, and converts the result to 8-bit.
    489 
    490 On each element of the input array, the function convertScaleAbs
    491 performs three operations sequentially: scaling, taking an absolute
    492 value, conversion to an unsigned 8-bit type:
    493 \f[\texttt{dst} (I)= \texttt{saturate\_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} +  \texttt{beta} |)\f]
    494 In case of multi-channel arrays, the function processes each channel
    495 independently. When the output is not 8-bit, the operation can be
    496 emulated by calling the Mat::convertTo method (or by using matrix
    497 expressions) and then by calculating an absolute value of the result.
    498 For example:
    499 @code{.cpp}
    500     Mat_<float> A(30,30);
    501     randu(A, Scalar(-100), Scalar(100));
    502     Mat_<float> B = A*5 + 3;
    503     B = abs(B);
    504     // Mat_<float> B = abs(A*5+3) will also do the job,
    505     // but it will allocate a temporary matrix
    506 @endcode
    507 @param src input array.
    508 @param dst output array.
    509 @param alpha optional scale factor.
    510 @param beta optional delta added to the scaled values.
    511 @sa  Mat::convertTo, cv::abs(const Mat&)
    512 */
    513 CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst,
    514                                   double alpha = 1, double beta = 0);
    515 
    516 /** @brief Performs a look-up table transform of an array.
    517 
    518 The function LUT fills the output array with values from the look-up table. Indices of the entries
    519 are taken from the input array. That is, the function processes each element of src as follows:
    520 \f[\texttt{dst} (I)  \leftarrow \texttt{lut(src(I) + d)}\f]
    521 where
    522 \f[d =  \fork{0}{if \texttt{src} has depth \texttt{CV\_8U}}{128}{if \texttt{src} has depth \texttt{CV\_8S}}\f]
    523 @param src input array of 8-bit elements.
    524 @param lut look-up table of 256 elements; in case of multi-channel input array, the table should
    525 either have a single channel (in this case the same table is used for all channels) or the same
    526 number of channels as in the input array.
    527 @param dst output array of the same size and number of channels as src, and the same depth as lut.
    528 @sa  convertScaleAbs, Mat::convertTo
    529 */
    530 CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst);
    531 
    532 /** @brief Calculates the sum of array elements.
    533 
    534 The functions sum calculate and return the sum of array elements,
    535 independently for each channel.
    536 @param src input array that must have from 1 to 4 channels.
    537 @sa  countNonZero, mean, meanStdDev, norm, minMaxLoc, reduce
    538 */
    539 CV_EXPORTS_AS(sumElems) Scalar sum(InputArray src);
    540 
    541 /** @brief Counts non-zero array elements.
    542 
    543 The function returns the number of non-zero elements in src :
    544 \f[\sum _{I: \; \texttt{src} (I) \ne0 } 1\f]
    545 @param src single-channel array.
    546 @sa  mean, meanStdDev, norm, minMaxLoc, calcCovarMatrix
    547 */
    548 CV_EXPORTS_W int countNonZero( InputArray src );
    549 
    550 /** @brief Returns the list of locations of non-zero pixels
    551 
    552 Given a binary matrix (likely returned from an operation such
    553 as threshold(), compare(), >, ==, etc, return all of
    554 the non-zero indices as a cv::Mat or std::vector<cv::Point> (x,y)
    555 For example:
    556 @code{.cpp}
    557     cv::Mat binaryImage; // input, binary image
    558     cv::Mat locations;   // output, locations of non-zero pixels
    559     cv::findNonZero(binaryImage, locations);
    560 
    561     // access pixel coordinates
    562     Point pnt = locations.at<Point>(i);
    563 @endcode
    564 or
    565 @code{.cpp}
    566     cv::Mat binaryImage; // input, binary image
    567     vector<Point> locations;   // output, locations of non-zero pixels
    568     cv::findNonZero(binaryImage, locations);
    569 
    570     // access pixel coordinates
    571     Point pnt = locations[i];
    572 @endcode
    573 @param src single-channel array (type CV_8UC1)
    574 @param idx the output array, type of cv::Mat or std::vector<Point>, corresponding to non-zero indices in the input
    575 */
    576 CV_EXPORTS_W void findNonZero( InputArray src, OutputArray idx );
    577 
    578 /** @brief Calculates an average (mean) of array elements.
    579 
    580 The function mean calculates the mean value M of array elements,
    581 independently for each channel, and return it:
    582 \f[\begin{array}{l} N =  \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c =  \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}\f]
    583 When all the mask elements are 0's, the functions return Scalar::all(0)
    584 @param src input array that should have from 1 to 4 channels so that the result can be stored in
    585 Scalar_ .
    586 @param mask optional operation mask.
    587 @sa  countNonZero, meanStdDev, norm, minMaxLoc
    588 */
    589 CV_EXPORTS_W Scalar mean(InputArray src, InputArray mask = noArray());
    590 
    591 /** Calculates a mean and standard deviation of array elements.
    592 
    593 The function meanStdDev calculates the mean and the standard deviation M
    594 of array elements independently for each channel and returns it via the
    595 output parameters:
    596 \f[\begin{array}{l} N =  \sum _{I, \texttt{mask} (I)  \ne 0} 1 \\ \texttt{mean} _c =  \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c =  \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c -  \texttt{mean} _c \right )^2}{N}} \end{array}\f]
    597 When all the mask elements are 0's, the functions return
    598 mean=stddev=Scalar::all(0).
    599 @note The calculated standard deviation is only the diagonal of the
    600 complete normalized covariance matrix. If the full matrix is needed, you
    601 can reshape the multi-channel array M x N to the single-channel array
    602 M\*N x mtx.channels() (only possible when the matrix is continuous) and
    603 then pass the matrix to calcCovarMatrix .
    604 @param src input array that should have from 1 to 4 channels so that the results can be stored in
    605 Scalar_ 's.
    606 @param mean output parameter: calculated mean value.
    607 @param stddev output parameter: calculateded standard deviation.
    608 @param mask optional operation mask.
    609 @sa  countNonZero, mean, norm, minMaxLoc, calcCovarMatrix
    610 */
    611 CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev,
    612                              InputArray mask=noArray());
    613 
    614 /** @brief Calculates an absolute array norm, an absolute difference norm, or a
    615 relative difference norm.
    616 
    617 The functions norm calculate an absolute norm of src1 (when there is no
    618 src2 ):
    619 
    620 \f[norm =  \forkthree{\|\texttt{src1}\|_{L_{\infty}} =  \max _I | \texttt{src1} (I)|}{if  \(\texttt{normType} = \texttt{NORM\_INF}\) }
    621 { \| \texttt{src1} \| _{L_1} =  \sum _I | \texttt{src1} (I)|}{if  \(\texttt{normType} = \texttt{NORM\_L1}\) }
    622 { \| \texttt{src1} \| _{L_2} =  \sqrt{\sum_I \texttt{src1}(I)^2} }{if  \(\texttt{normType} = \texttt{NORM\_L2}\) }\f]
    623 
    624 or an absolute or relative difference norm if src2 is there:
    625 
    626 \f[norm =  \forkthree{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} =  \max _I | \texttt{src1} (I) -  \texttt{src2} (I)|}{if  \(\texttt{normType} = \texttt{NORM\_INF}\) }
    627 { \| \texttt{src1} - \texttt{src2} \| _{L_1} =  \sum _I | \texttt{src1} (I) -  \texttt{src2} (I)|}{if  \(\texttt{normType} = \texttt{NORM\_L1}\) }
    628 { \| \texttt{src1} - \texttt{src2} \| _{L_2} =  \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if  \(\texttt{normType} = \texttt{NORM\_L2}\) }\f]
    629 
    630 or
    631 
    632 \f[norm =  \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}}    }{\|\texttt{src2}\|_{L_{\infty}} }}{if  \(\texttt{normType} = \texttt{NORM\_RELATIVE\_INF}\) }
    633 { \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if  \(\texttt{normType} = \texttt{NORM\_RELATIVE\_L1}\) }
    634 { \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if  \(\texttt{normType} = \texttt{NORM\_RELATIVE\_L2}\) }\f]
    635 
    636 The functions norm return the calculated norm.
    637 
    638 When the mask parameter is specified and it is not empty, the norm is
    639 calculated only over the region specified by the mask.
    640 
    641 A multi-channel input arrays are treated as a single-channel, that is,
    642 the results for all channels are combined.
    643 
    644 @param src1 first input array.
    645 @param normType type of the norm (see cv::NormTypes).
    646 @param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
    647 */
    648 CV_EXPORTS_W double norm(InputArray src1, int normType = NORM_L2, InputArray mask = noArray());
    649 
    650 /** @overload
    651 @param src1 first input array.
    652 @param src2 second input array of the same size and the same type as src1.
    653 @param normType type of the norm (cv::NormTypes).
    654 @param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
    655 */
    656 CV_EXPORTS_W double norm(InputArray src1, InputArray src2,
    657                          int normType = NORM_L2, InputArray mask = noArray());
    658 /** @overload
    659 @param src first input array.
    660 @param normType type of the norm (see cv::NormTypes).
    661 */
    662 CV_EXPORTS double norm( const SparseMat& src, int normType );
    663 
    664 /** @brief computes PSNR image/video quality metric
    665 
    666 see http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio for details
    667 @todo document
    668   */
    669 CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2);
    670 
    671 /** @brief naive nearest neighbor finder
    672 
    673 see http://en.wikipedia.org/wiki/Nearest_neighbor_search
    674 @todo document
    675   */
    676 CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2,
    677                                 OutputArray dist, int dtype, OutputArray nidx,
    678                                 int normType = NORM_L2, int K = 0,
    679                                 InputArray mask = noArray(), int update = 0,
    680                                 bool crosscheck = false);
    681 
    682 /** @brief Normalizes the norm or value range of an array.
    683 
    684 The functions normalize scale and shift the input array elements so that
    685 \f[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\f]
    686 (where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that
    687 \f[\min _I  \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I  \texttt{dst} (I)= \texttt{beta}\f]
    688 
    689 when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be
    690 normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this
    691 sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or
    692 min-max but modify the whole array, you can use norm and Mat::convertTo.
    693 
    694 In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this,
    695 the range transformation for sparse matrices is not allowed since it can shift the zero level.
    696 
    697 @param src input array.
    698 @param dst output array of the same size as src .
    699 @param alpha norm value to normalize to or the lower range boundary in case of the range
    700 normalization.
    701 @param beta upper range boundary in case of the range normalization; it is not used for the norm
    702 normalization.
    703 @param norm_type normalization type (see cv::NormTypes).
    704 @param dtype when negative, the output array has the same type as src; otherwise, it has the same
    705 number of channels as src and the depth =CV_MAT_DEPTH(dtype).
    706 @param mask optional operation mask.
    707 @sa norm, Mat::convertTo, SparseMat::convertTo
    708 */
    709 CV_EXPORTS_W void normalize( InputArray src, InputOutputArray dst, double alpha = 1, double beta = 0,
    710                              int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray());
    711 
    712 /** @overload
    713 @param src input array.
    714 @param dst output array of the same size as src .
    715 @param alpha norm value to normalize to or the lower range boundary in case of the range
    716 normalization.
    717 @param normType normalization type (see cv::NormTypes).
    718 */
    719 CV_EXPORTS void normalize( const SparseMat& src, SparseMat& dst, double alpha, int normType );
    720 
    721 /** @brief Finds the global minimum and maximum in an array.
    722 
    723 The functions minMaxLoc find the minimum and maximum element values and their positions. The
    724 extremums are searched across the whole array or, if mask is not an empty array, in the specified
    725 array region.
    726 
    727 The functions do not work with multi-channel arrays. If you need to find minimum or maximum
    728 elements across all the channels, use Mat::reshape first to reinterpret the array as
    729 single-channel. Or you may extract the particular channel using either extractImageCOI , or
    730 mixChannels , or split .
    731 @param src input single-channel array.
    732 @param minVal pointer to the returned minimum value; NULL is used if not required.
    733 @param maxVal pointer to the returned maximum value; NULL is used if not required.
    734 @param minLoc pointer to the returned minimum location (in 2D case); NULL is used if not required.
    735 @param maxLoc pointer to the returned maximum location (in 2D case); NULL is used if not required.
    736 @param mask optional mask used to select a sub-array.
    737 @sa max, min, compare, inRange, extractImageCOI, mixChannels, split, Mat::reshape
    738 */
    739 CV_EXPORTS_W void minMaxLoc(InputArray src, CV_OUT double* minVal,
    740                             CV_OUT double* maxVal = 0, CV_OUT Point* minLoc = 0,
    741                             CV_OUT Point* maxLoc = 0, InputArray mask = noArray());
    742 
    743 
    744 /** @brief Finds the global minimum and maximum in an array
    745 
    746 The function minMaxIdx finds the minimum and maximum element values and their positions. The
    747 extremums are searched across the whole array or, if mask is not an empty array, in the specified
    748 array region. The function does not work with multi-channel arrays. If you need to find minimum or
    749 maximum elements across all the channels, use Mat::reshape first to reinterpret the array as
    750 single-channel. Or you may extract the particular channel using either extractImageCOI , or
    751 mixChannels , or split . In case of a sparse matrix, the minimum is found among non-zero elements
    752 only.
    753 @note When minIdx is not NULL, it must have at least 2 elements (as well as maxIdx), even if src is
    754 a single-row or single-column matrix. In OpenCV (following MATLAB) each array has at least 2
    755 dimensions, i.e. single-column matrix is Mx1 matrix (and therefore minIdx/maxIdx will be
    756 (i1,0)/(i2,0)) and single-row matrix is 1xN matrix (and therefore minIdx/maxIdx will be
    757 (0,j1)/(0,j2)).
    758 @param src input single-channel array.
    759 @param minVal pointer to the returned minimum value; NULL is used if not required.
    760 @param maxVal pointer to the returned maximum value; NULL is used if not required.
    761 @param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required;
    762 Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element
    763 in each dimension are stored there sequentially.
    764 @param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required.
    765 @param mask specified array region
    766 */
    767 CV_EXPORTS void minMaxIdx(InputArray src, double* minVal, double* maxVal = 0,
    768                           int* minIdx = 0, int* maxIdx = 0, InputArray mask = noArray());
    769 
    770 /** @overload
    771 @param a input single-channel array.
    772 @param minVal pointer to the returned minimum value; NULL is used if not required.
    773 @param maxVal pointer to the returned maximum value; NULL is used if not required.
    774 @param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required;
    775 Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element
    776 in each dimension are stored there sequentially.
    777 @param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required.
    778 */
    779 CV_EXPORTS void minMaxLoc(const SparseMat& a, double* minVal,
    780                           double* maxVal, int* minIdx = 0, int* maxIdx = 0);
    781 
    782 /** @brief Reduces a matrix to a vector.
    783 
    784 The function reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
    785 1D vectors and performing the specified operation on the vectors until a single row/column is
    786 obtained. For example, the function can be used to compute horizontal and vertical projections of a
    787 raster image. In case of REDUCE_SUM and REDUCE_AVG , the output may have a larger element
    788 bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction
    789 modes.
    790 @param src input 2D matrix.
    791 @param dst output vector. Its size and type is defined by dim and dtype parameters.
    792 @param dim dimension index along which the matrix is reduced. 0 means that the matrix is reduced to
    793 a single row. 1 means that the matrix is reduced to a single column.
    794 @param rtype reduction operation that could be one of cv::ReduceTypes
    795 @param dtype when negative, the output vector will have the same type as the input matrix,
    796 otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()).
    797 @sa repeat
    798 */
    799 CV_EXPORTS_W void reduce(InputArray src, OutputArray dst, int dim, int rtype, int dtype = -1);
    800 
    801 /** @brief Creates one multichannel array out of several single-channel ones.
    802 
    803 The functions merge merge several arrays to make a single multi-channel array. That is, each
    804 element of the output array will be a concatenation of the elements of the input arrays, where
    805 elements of i-th input array are treated as mv[i].channels()-element vectors.
    806 
    807 The function split does the reverse operation. If you need to shuffle channels in some other
    808 advanced way, use mixChannels .
    809 @param mv input array of matrices to be merged; all the matrices in mv must have the same
    810 size and the same depth.
    811 @param count number of input matrices when mv is a plain C array; it must be greater than zero.
    812 @param dst output array of the same size and the same depth as mv[0]; The number of channels will
    813 be the total number of channels in the matrix array.
    814 @sa  mixChannels, split, Mat::reshape
    815 */
    816 CV_EXPORTS void merge(const Mat* mv, size_t count, OutputArray dst);
    817 
    818 /** @overload
    819 @param mv input vector of matrices to be merged; all the matrices in mv must have the same
    820 size and the same depth.
    821 @param dst output array of the same size and the same depth as mv[0]; The number of channels will
    822 be the total number of channels in the matrix array.
    823   */
    824 CV_EXPORTS_W void merge(InputArrayOfArrays mv, OutputArray dst);
    825 
    826 /** @brief Divides a multi-channel array into several single-channel arrays.
    827 
    828 The functions split split a multi-channel array into separate single-channel arrays:
    829 \f[\texttt{mv} [c](I) =  \texttt{src} (I)_c\f]
    830 If you need to extract a single channel or do some other sophisticated channel permutation, use
    831 mixChannels .
    832 @param src input multi-channel array.
    833 @param mvbegin output array; the number of arrays must match src.channels(); the arrays themselves are
    834 reallocated, if needed.
    835 @sa merge, mixChannels, cvtColor
    836 */
    837 CV_EXPORTS void split(const Mat& src, Mat* mvbegin);
    838 
    839 /** @overload
    840 @param m input multi-channel array.
    841 @param mv output vector of arrays; the arrays themselves are reallocated, if needed.
    842 */
    843 CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv);
    844 
    845 /** @brief Copies specified channels from input arrays to the specified channels of
    846 output arrays.
    847 
    848 The functions mixChannels provide an advanced mechanism for shuffling image channels.
    849 
    850 split and merge and some forms of cvtColor are partial cases of mixChannels .
    851 
    852 In the example below, the code splits a 4-channel RGBA image into a 3-channel BGR (with R and B
    853 channels swapped) and a separate alpha-channel image:
    854 @code{.cpp}
    855     Mat rgba( 100, 100, CV_8UC4, Scalar(1,2,3,4) );
    856     Mat bgr( rgba.rows, rgba.cols, CV_8UC3 );
    857     Mat alpha( rgba.rows, rgba.cols, CV_8UC1 );
    858 
    859     // forming an array of matrices is a quite efficient operation,
    860     // because the matrix data is not copied, only the headers
    861     Mat out[] = { bgr, alpha };
    862     // rgba[0] -> bgr[2], rgba[1] -> bgr[1],
    863     // rgba[2] -> bgr[0], rgba[3] -> alpha[0]
    864     int from_to[] = { 0,2, 1,1, 2,0, 3,3 };
    865     mixChannels( &rgba, 1, out, 2, from_to, 4 );
    866 @endcode
    867 @note Unlike many other new-style C++ functions in OpenCV (see the introduction section and
    868 Mat::create ), mixChannels requires the output arrays to be pre-allocated before calling the
    869 function.
    870 @param src input array or vector of matricesl; all of the matrices must have the same size and the
    871 same depth.
    872 @param nsrcs number of matrices in src.
    873 @param dst output array or vector of matrices; all the matrices *must be allocated*; their size and
    874 depth must be the same as in src[0].
    875 @param ndsts number of matrices in dst.
    876 @param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
    877 a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
    878 dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
    879 src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
    880 src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
    881 channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
    882 filled with zero .
    883 @param npairs number of index pairs in fromTo.
    884 @sa split, merge, cvtColor
    885 */
    886 CV_EXPORTS void mixChannels(const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts,
    887                             const int* fromTo, size_t npairs);
    888 
    889 /** @overload
    890 @param src input array or vector of matricesl; all of the matrices must have the same size and the
    891 same depth.
    892 @param dst output array or vector of matrices; all the matrices *must be allocated*; their size and
    893 depth must be the same as in src[0].
    894 @param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
    895 a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
    896 dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
    897 src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
    898 src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
    899 channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
    900 filled with zero .
    901 @param npairs number of index pairs in fromTo.
    902 */
    903 CV_EXPORTS void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
    904                             const int* fromTo, size_t npairs);
    905 
    906 /** @overload
    907 @param src input array or vector of matricesl; all of the matrices must have the same size and the
    908 same depth.
    909 @param dst output array or vector of matrices; all the matrices *must be allocated*; their size and
    910 depth must be the same as in src[0].
    911 @param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is
    912 a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in
    913 dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to
    914 src[0].channels()-1, the second input image channels are indexed from src[0].channels() to
    915 src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image
    916 channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is
    917 filled with zero .
    918 */
    919 CV_EXPORTS_W void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
    920                               const std::vector<int>& fromTo);
    921 
    922 /** @brief extracts a single channel from src (coi is 0-based index)
    923 @todo document
    924 */
    925 CV_EXPORTS_W void extractChannel(InputArray src, OutputArray dst, int coi);
    926 
    927 /** @brief inserts a single channel to dst (coi is 0-based index)
    928 @todo document
    929 */
    930 CV_EXPORTS_W void insertChannel(InputArray src, InputOutputArray dst, int coi);
    931 
    932 /** @brief Flips a 2D array around vertical, horizontal, or both axes.
    933 
    934 The function flip flips the array in one of three different ways (row
    935 and column indices are 0-based):
    936 \f[\texttt{dst} _{ij} =
    937 \left\{
    938 \begin{array}{l l}
    939 \texttt{src} _{\texttt{src.rows}-i-1,j} & if\;  \texttt{flipCode} = 0 \\
    940 \texttt{src} _{i, \texttt{src.cols} -j-1} & if\;  \texttt{flipCode} > 0 \\
    941 \texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\
    942 \end{array}
    943 \right.\f]
    944 The example scenarios of using the function are the following:
    945 *   Vertical flipping of the image (flipCode == 0) to switch between
    946     top-left and bottom-left image origin. This is a typical operation
    947     in video processing on Microsoft Windows\* OS.
    948 *   Horizontal flipping of the image with the subsequent horizontal
    949     shift and absolute difference calculation to check for a
    950     vertical-axis symmetry (flipCode \> 0).
    951 *   Simultaneous horizontal and vertical flipping of the image with
    952     the subsequent shift and absolute difference calculation to check
    953     for a central symmetry (flipCode \< 0).
    954 *   Reversing the order of point arrays (flipCode \> 0 or
    955     flipCode == 0).
    956 @param src input array.
    957 @param dst output array of the same size and type as src.
    958 @param flipCode a flag to specify how to flip the array; 0 means
    959 flipping around the x-axis and positive value (for example, 1) means
    960 flipping around y-axis. Negative value (for example, -1) means flipping
    961 around both axes.
    962 @sa transpose , repeat , completeSymm
    963 */
    964 CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode);
    965 
    966 /** @brief Fills the output array with repeated copies of the input array.
    967 
    968 The functions repeat duplicate the input array one or more times along each of the two axes:
    969 \f[\texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }\f]
    970 The second variant of the function is more convenient to use with @ref MatrixExpressions.
    971 @param src input array to replicate.
    972 @param dst output array of the same type as src.
    973 @param ny Flag to specify how many times the src is repeated along the
    974 vertical axis.
    975 @param nx Flag to specify how many times the src is repeated along the
    976 horizontal axis.
    977 @sa reduce
    978 */
    979 CV_EXPORTS_W void repeat(InputArray src, int ny, int nx, OutputArray dst);
    980 
    981 /** @overload
    982 @param src input array to replicate.
    983 @param ny Flag to specify how many times the src is repeated along the
    984 vertical axis.
    985 @param nx Flag to specify how many times the src is repeated along the
    986 horizontal axis.
    987   */
    988 CV_EXPORTS Mat repeat(const Mat& src, int ny, int nx);
    989 
    990 /** @brief Applies horizontal concatenation to given matrices.
    991 
    992 The function horizontally concatenates two or more cv::Mat matrices (with the same number of rows).
    993 @code{.cpp}
    994     cv::Mat matArray[] = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
    995                            cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
    996                            cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
    997 
    998     cv::Mat out;
    999     cv::hconcat( matArray, 3, out );
   1000     //out:
   1001     //[1, 2, 3;
   1002     // 1, 2, 3;
   1003     // 1, 2, 3;
   1004     // 1, 2, 3]
   1005 @endcode
   1006 @param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth.
   1007 @param nsrc number of matrices in src.
   1008 @param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src.
   1009 @sa cv::vconcat(const Mat*, size_t, OutputArray), @sa cv::vconcat(InputArrayOfArrays, OutputArray) and @sa cv::vconcat(InputArray, InputArray, OutputArray)
   1010 */
   1011 CV_EXPORTS void hconcat(const Mat* src, size_t nsrc, OutputArray dst);
   1012 /** @overload
   1013  @code{.cpp}
   1014     cv::Mat_<float> A = (cv::Mat_<float>(3, 2) << 1, 4,
   1015                                                   2, 5,
   1016                                                   3, 6);
   1017     cv::Mat_<float> B = (cv::Mat_<float>(3, 2) << 7, 10,
   1018                                                   8, 11,
   1019                                                   9, 12);
   1020 
   1021     cv::Mat C;
   1022     cv::hconcat(A, B, C);
   1023     //C:
   1024     //[1, 4, 7, 10;
   1025     // 2, 5, 8, 11;
   1026     // 3, 6, 9, 12]
   1027  @endcode
   1028  @param src1 first input array to be considered for horizontal concatenation.
   1029  @param src2 second input array to be considered for horizontal concatenation.
   1030  @param dst output array. It has the same number of rows and depth as the src1 and src2, and the sum of cols of the src1 and src2.
   1031  */
   1032 CV_EXPORTS void hconcat(InputArray src1, InputArray src2, OutputArray dst);
   1033 /** @overload
   1034  @code{.cpp}
   1035     std::vector<cv::Mat> matrices = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)),
   1036                                       cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)),
   1037                                       cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),};
   1038 
   1039     cv::Mat out;
   1040     cv::hconcat( matrices, out );
   1041     //out:
   1042     //[1, 2, 3;
   1043     // 1, 2, 3;
   1044     // 1, 2, 3;
   1045     // 1, 2, 3]
   1046  @endcode
   1047  @param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth.
   1048  @param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src.
   1049 same depth.
   1050  */
   1051 CV_EXPORTS_W void hconcat(InputArrayOfArrays src, OutputArray dst);
   1052 
   1053 /** @brief Applies vertical concatenation to given matrices.
   1054 
   1055 The function vertically concatenates two or more cv::Mat matrices (with the same number of cols).
   1056 @code{.cpp}
   1057     cv::Mat matArray[] = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
   1058                            cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
   1059                            cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
   1060 
   1061     cv::Mat out;
   1062     cv::vconcat( matArray, 3, out );
   1063     //out:
   1064     //[1,   1,   1,   1;
   1065     // 2,   2,   2,   2;
   1066     // 3,   3,   3,   3]
   1067 @endcode
   1068 @param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth.
   1069 @param nsrc number of matrices in src.
   1070 @param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src.
   1071 @sa cv::hconcat(const Mat*, size_t, OutputArray), @sa cv::hconcat(InputArrayOfArrays, OutputArray) and @sa cv::hconcat(InputArray, InputArray, OutputArray)
   1072 */
   1073 CV_EXPORTS void vconcat(const Mat* src, size_t nsrc, OutputArray dst);
   1074 /** @overload
   1075  @code{.cpp}
   1076     cv::Mat_<float> A = (cv::Mat_<float>(3, 2) << 1, 7,
   1077                                                   2, 8,
   1078                                                   3, 9);
   1079     cv::Mat_<float> B = (cv::Mat_<float>(3, 2) << 4, 10,
   1080                                                   5, 11,
   1081                                                   6, 12);
   1082 
   1083     cv::Mat C;
   1084     cv::vconcat(A, B, C);
   1085     //C:
   1086     //[1, 7;
   1087     // 2, 8;
   1088     // 3, 9;
   1089     // 4, 10;
   1090     // 5, 11;
   1091     // 6, 12]
   1092  @endcode
   1093  @param src1 first input array to be considered for vertical concatenation.
   1094  @param src2 second input array to be considered for vertical concatenation.
   1095  @param dst output array. It has the same number of cols and depth as the src1 and src2, and the sum of rows of the src1 and src2.
   1096  */
   1097 CV_EXPORTS void vconcat(InputArray src1, InputArray src2, OutputArray dst);
   1098 /** @overload
   1099  @code{.cpp}
   1100     std::vector<cv::Mat> matrices = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)),
   1101                                       cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)),
   1102                                       cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),};
   1103 
   1104     cv::Mat out;
   1105     cv::vconcat( matrices, out );
   1106     //out:
   1107     //[1,   1,   1,   1;
   1108     // 2,   2,   2,   2;
   1109     // 3,   3,   3,   3]
   1110  @endcode
   1111  @param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth
   1112  @param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src.
   1113 same depth.
   1114  */
   1115 CV_EXPORTS_W void vconcat(InputArrayOfArrays src, OutputArray dst);
   1116 
   1117 /** @brief computes bitwise conjunction of the two arrays (dst = src1 & src2)
   1118 Calculates the per-element bit-wise conjunction of two arrays or an
   1119 array and a scalar.
   1120 
   1121 The function calculates the per-element bit-wise logical conjunction for:
   1122 *   Two arrays when src1 and src2 have the same size:
   1123     \f[\texttt{dst} (I) =  \texttt{src1} (I)  \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
   1124 *   An array and a scalar when src2 is constructed from Scalar or has
   1125     the same number of elements as `src1.channels()`:
   1126     \f[\texttt{dst} (I) =  \texttt{src1} (I)  \wedge \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
   1127 *   A scalar and an array when src1 is constructed from Scalar or has
   1128     the same number of elements as `src2.channels()`:
   1129     \f[\texttt{dst} (I) =  \texttt{src1}  \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
   1130 In case of floating-point arrays, their machine-specific bit
   1131 representations (usually IEEE754-compliant) are used for the operation.
   1132 In case of multi-channel arrays, each channel is processed
   1133 independently. In the second and third cases above, the scalar is first
   1134 converted to the array type.
   1135 @param src1 first input array or a scalar.
   1136 @param src2 second input array or a scalar.
   1137 @param dst output array that has the same size and type as the input
   1138 arrays.
   1139 @param mask optional operation mask, 8-bit single channel array, that
   1140 specifies elements of the output array to be changed.
   1141 */
   1142 CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2,
   1143                               OutputArray dst, InputArray mask = noArray());
   1144 
   1145 /** @brief Calculates the per-element bit-wise disjunction of two arrays or an
   1146 array and a scalar.
   1147 
   1148 The function calculates the per-element bit-wise logical disjunction for:
   1149 *   Two arrays when src1 and src2 have the same size:
   1150     \f[\texttt{dst} (I) =  \texttt{src1} (I)  \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
   1151 *   An array and a scalar when src2 is constructed from Scalar or has
   1152     the same number of elements as `src1.channels()`:
   1153     \f[\texttt{dst} (I) =  \texttt{src1} (I)  \vee \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
   1154 *   A scalar and an array when src1 is constructed from Scalar or has
   1155     the same number of elements as `src2.channels()`:
   1156     \f[\texttt{dst} (I) =  \texttt{src1}  \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
   1157 In case of floating-point arrays, their machine-specific bit
   1158 representations (usually IEEE754-compliant) are used for the operation.
   1159 In case of multi-channel arrays, each channel is processed
   1160 independently. In the second and third cases above, the scalar is first
   1161 converted to the array type.
   1162 @param src1 first input array or a scalar.
   1163 @param src2 second input array or a scalar.
   1164 @param dst output array that has the same size and type as the input
   1165 arrays.
   1166 @param mask optional operation mask, 8-bit single channel array, that
   1167 specifies elements of the output array to be changed.
   1168 */
   1169 CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2,
   1170                              OutputArray dst, InputArray mask = noArray());
   1171 
   1172 /** @brief Calculates the per-element bit-wise "exclusive or" operation on two
   1173 arrays or an array and a scalar.
   1174 
   1175 The function calculates the per-element bit-wise logical "exclusive-or"
   1176 operation for:
   1177 *   Two arrays when src1 and src2 have the same size:
   1178     \f[\texttt{dst} (I) =  \texttt{src1} (I)  \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
   1179 *   An array and a scalar when src2 is constructed from Scalar or has
   1180     the same number of elements as `src1.channels()`:
   1181     \f[\texttt{dst} (I) =  \texttt{src1} (I)  \oplus \texttt{src2} \quad \texttt{if mask} (I) \ne0\f]
   1182 *   A scalar and an array when src1 is constructed from Scalar or has
   1183     the same number of elements as `src2.channels()`:
   1184     \f[\texttt{dst} (I) =  \texttt{src1}  \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
   1185 In case of floating-point arrays, their machine-specific bit
   1186 representations (usually IEEE754-compliant) are used for the operation.
   1187 In case of multi-channel arrays, each channel is processed
   1188 independently. In the 2nd and 3rd cases above, the scalar is first
   1189 converted to the array type.
   1190 @param src1 first input array or a scalar.
   1191 @param src2 second input array or a scalar.
   1192 @param dst output array that has the same size and type as the input
   1193 arrays.
   1194 @param mask optional operation mask, 8-bit single channel array, that
   1195 specifies elements of the output array to be changed.
   1196 */
   1197 CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2,
   1198                               OutputArray dst, InputArray mask = noArray());
   1199 
   1200 /** @brief  Inverts every bit of an array.
   1201 
   1202 The function calculates per-element bit-wise inversion of the input
   1203 array:
   1204 \f[\texttt{dst} (I) =  \neg \texttt{src} (I)\f]
   1205 In case of a floating-point input array, its machine-specific bit
   1206 representation (usually IEEE754-compliant) is used for the operation. In
   1207 case of multi-channel arrays, each channel is processed independently.
   1208 @param src input array.
   1209 @param dst output array that has the same size and type as the input
   1210 array.
   1211 @param mask optional operation mask, 8-bit single channel array, that
   1212 specifies elements of the output array to be changed.
   1213 */
   1214 CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst,
   1215                               InputArray mask = noArray());
   1216 
   1217 /** @brief Calculates the per-element absolute difference between two arrays or between an array and a scalar.
   1218 
   1219 The function absdiff calculates:
   1220 *   Absolute difference between two arrays when they have the same
   1221     size and type:
   1222     \f[\texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1}(I) -  \texttt{src2}(I)|)\f]
   1223 *   Absolute difference between an array and a scalar when the second
   1224     array is constructed from Scalar or has as many elements as the
   1225     number of channels in `src1`:
   1226     \f[\texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1}(I) -  \texttt{src2} |)\f]
   1227 *   Absolute difference between a scalar and an array when the first
   1228     array is constructed from Scalar or has as many elements as the
   1229     number of channels in `src2`:
   1230     \f[\texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1} -  \texttt{src2}(I) |)\f]
   1231     where I is a multi-dimensional index of array elements. In case of
   1232     multi-channel arrays, each channel is processed independently.
   1233 @note Saturation is not applied when the arrays have the depth CV_32S.
   1234 You may even get a negative value in the case of overflow.
   1235 @param src1 first input array or a scalar.
   1236 @param src2 second input array or a scalar.
   1237 @param dst output array that has the same size and type as input arrays.
   1238 @sa cv::abs(const Mat&)
   1239 */
   1240 CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst);
   1241 
   1242 /** @brief  Checks if array elements lie between the elements of two other arrays.
   1243 
   1244 The function checks the range as follows:
   1245 -   For every element of a single-channel input array:
   1246     \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0  \leq \texttt{src} (I)_0 \leq  \texttt{upperb} (I)_0\f]
   1247 -   For two-channel arrays:
   1248     \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0  \leq \texttt{src} (I)_0 \leq  \texttt{upperb} (I)_0  \land \texttt{lowerb} (I)_1  \leq \texttt{src} (I)_1 \leq  \texttt{upperb} (I)_1\f]
   1249 -   and so forth.
   1250 
   1251 That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the
   1252 specified 1D, 2D, 3D, ... box and 0 otherwise.
   1253 
   1254 When the lower and/or upper boundary parameters are scalars, the indexes
   1255 (I) at lowerb and upperb in the above formulas should be omitted.
   1256 @param src first input array.
   1257 @param lowerb inclusive lower boundary array or a scalar.
   1258 @param upperb inclusive upper boundary array or a scalar.
   1259 @param dst output array of the same size as src and CV_8U type.
   1260 */
   1261 CV_EXPORTS_W void inRange(InputArray src, InputArray lowerb,
   1262                           InputArray upperb, OutputArray dst);
   1263 
   1264 /** @brief Performs the per-element comparison of two arrays or an array and scalar value.
   1265 
   1266 The function compares:
   1267 *   Elements of two arrays when src1 and src2 have the same size:
   1268     \f[\texttt{dst} (I) =  \texttt{src1} (I)  \,\texttt{cmpop}\, \texttt{src2} (I)\f]
   1269 *   Elements of src1 with a scalar src2 when src2 is constructed from
   1270     Scalar or has a single element:
   1271     \f[\texttt{dst} (I) =  \texttt{src1}(I) \,\texttt{cmpop}\,  \texttt{src2}\f]
   1272 *   src1 with elements of src2 when src1 is constructed from Scalar or
   1273     has a single element:
   1274     \f[\texttt{dst} (I) =  \texttt{src1}  \,\texttt{cmpop}\, \texttt{src2} (I)\f]
   1275 When the comparison result is true, the corresponding element of output
   1276 array is set to 255. The comparison operations can be replaced with the
   1277 equivalent matrix expressions:
   1278 @code{.cpp}
   1279     Mat dst1 = src1 >= src2;
   1280     Mat dst2 = src1 < 8;
   1281     ...
   1282 @endcode
   1283 @param src1 first input array or a scalar; when it is an array, it must have a single channel.
   1284 @param src2 second input array or a scalar; when it is an array, it must have a single channel.
   1285 @param dst output array of type ref CV_8U that has the same size and the same number of channels as
   1286     the input arrays.
   1287 @param cmpop a flag, that specifies correspondence between the arrays (cv::CmpTypes)
   1288 @sa checkRange, min, max, threshold
   1289 */
   1290 CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop);
   1291 
   1292 /** @brief Calculates per-element minimum of two arrays or an array and a scalar.
   1293 
   1294 The functions min calculate the per-element minimum of two arrays:
   1295 \f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))\f]
   1296 or array and a scalar:
   1297 \f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{value} )\f]
   1298 @param src1 first input array.
   1299 @param src2 second input array of the same size and type as src1.
   1300 @param dst output array of the same size and type as src1.
   1301 @sa max, compare, inRange, minMaxLoc
   1302 */
   1303 CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst);
   1304 /** @overload
   1305 needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
   1306 */
   1307 CV_EXPORTS void min(const Mat& src1, const Mat& src2, Mat& dst);
   1308 /** @overload
   1309 needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
   1310 */
   1311 CV_EXPORTS void min(const UMat& src1, const UMat& src2, UMat& dst);
   1312 
   1313 /** @brief Calculates per-element maximum of two arrays or an array and a scalar.
   1314 
   1315 The functions max calculate the per-element maximum of two arrays:
   1316 \f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))\f]
   1317 or array and a scalar:
   1318 \f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{value} )\f]
   1319 @param src1 first input array.
   1320 @param src2 second input array of the same size and type as src1 .
   1321 @param dst output array of the same size and type as src1.
   1322 @sa  min, compare, inRange, minMaxLoc, @ref MatrixExpressions
   1323 */
   1324 CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst);
   1325 /** @overload
   1326 needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
   1327 */
   1328 CV_EXPORTS void max(const Mat& src1, const Mat& src2, Mat& dst);
   1329 /** @overload
   1330 needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare)
   1331 */
   1332 CV_EXPORTS void max(const UMat& src1, const UMat& src2, UMat& dst);
   1333 
   1334 /** @brief Calculates a square root of array elements.
   1335 
   1336 The functions sqrt calculate a square root of each input array element.
   1337 In case of multi-channel arrays, each channel is processed
   1338 independently. The accuracy is approximately the same as of the built-in
   1339 std::sqrt .
   1340 @param src input floating-point array.
   1341 @param dst output array of the same size and type as src.
   1342 */
   1343 CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst);
   1344 
   1345 /** @brief Raises every array element to a power.
   1346 
   1347 The function pow raises every element of the input array to power :
   1348 \f[\texttt{dst} (I) =  \fork{\texttt{src}(I)^power}{if \texttt{power} is integer}{|\texttt{src}(I)|^power}{otherwise}\f]
   1349 
   1350 So, for a non-integer power exponent, the absolute values of input array
   1351 elements are used. However, it is possible to get true values for
   1352 negative values using some extra operations. In the example below,
   1353 computing the 5th root of array src shows:
   1354 @code{.cpp}
   1355     Mat mask = src < 0;
   1356     pow(src, 1./5, dst);
   1357     subtract(Scalar::all(0), dst, dst, mask);
   1358 @endcode
   1359 For some values of power, such as integer values, 0.5 and -0.5,
   1360 specialized faster algorithms are used.
   1361 
   1362 Special values (NaN, Inf) are not handled.
   1363 @param src input array.
   1364 @param power exponent of power.
   1365 @param dst output array of the same size and type as src.
   1366 @sa sqrt, exp, log, cartToPolar, polarToCart
   1367 */
   1368 CV_EXPORTS_W void pow(InputArray src, double power, OutputArray dst);
   1369 
   1370 /** @brief Calculates the exponent of every array element.
   1371 
   1372 The function exp calculates the exponent of every element of the input
   1373 array:
   1374 \f[\texttt{dst} [I] = e^{ src(I) }\f]
   1375 
   1376 The maximum relative error is about 7e-6 for single-precision input and
   1377 less than 1e-10 for double-precision input. Currently, the function
   1378 converts denormalized values to zeros on output. Special values (NaN,
   1379 Inf) are not handled.
   1380 @param src input array.
   1381 @param dst output array of the same size and type as src.
   1382 @sa log , cartToPolar , polarToCart , phase , pow , sqrt , magnitude
   1383 */
   1384 CV_EXPORTS_W void exp(InputArray src, OutputArray dst);
   1385 
   1386 /** @brief Calculates the natural logarithm of every array element.
   1387 
   1388 The function log calculates the natural logarithm of the absolute value
   1389 of every element of the input array:
   1390 \f[\texttt{dst} (I) =  \fork{\log |\texttt{src}(I)|}{if \(\texttt{src}(I) \ne 0\) }{\texttt{C}}{otherwise}\f]
   1391 
   1392 where C is a large negative number (about -700 in the current
   1393 implementation). The maximum relative error is about 7e-6 for
   1394 single-precision input and less than 1e-10 for double-precision input.
   1395 Special values (NaN, Inf) are not handled.
   1396 @param src input array.
   1397 @param dst output array of the same size and type as src .
   1398 @sa exp, cartToPolar, polarToCart, phase, pow, sqrt, magnitude
   1399 */
   1400 CV_EXPORTS_W void log(InputArray src, OutputArray dst);
   1401 
   1402 /** @brief Calculates x and y coordinates of 2D vectors from their magnitude and angle.
   1403 
   1404 The function polarToCart calculates the Cartesian coordinates of each 2D
   1405 vector represented by the corresponding elements of magnitude and angle:
   1406 \f[\begin{array}{l} \texttt{x} (I) =  \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) =  \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}\f]
   1407 
   1408 The relative accuracy of the estimated coordinates is about 1e-6.
   1409 @param magnitude input floating-point array of magnitudes of 2D vectors;
   1410 it can be an empty matrix (=Mat()), in this case, the function assumes
   1411 that all the magnitudes are =1; if it is not empty, it must have the
   1412 same size and type as angle.
   1413 @param angle input floating-point array of angles of 2D vectors.
   1414 @param x output array of x-coordinates of 2D vectors; it has the same
   1415 size and type as angle.
   1416 @param y output array of y-coordinates of 2D vectors; it has the same
   1417 size and type as angle.
   1418 @param angleInDegrees when true, the input angles are measured in
   1419 degrees, otherwise, they are measured in radians.
   1420 @sa cartToPolar, magnitude, phase, exp, log, pow, sqrt
   1421 */
   1422 CV_EXPORTS_W void polarToCart(InputArray magnitude, InputArray angle,
   1423                               OutputArray x, OutputArray y, bool angleInDegrees = false);
   1424 
   1425 /** @brief Calculates the magnitude and angle of 2D vectors.
   1426 
   1427 The function cartToPolar calculates either the magnitude, angle, or both
   1428 for every 2D vector (x(I),y(I)):
   1429 \f[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}\f]
   1430 
   1431 The angles are calculated with accuracy about 0.3 degrees. For the point
   1432 (0,0), the angle is set to 0.
   1433 @param x array of x-coordinates; this must be a single-precision or
   1434 double-precision floating-point array.
   1435 @param y array of y-coordinates, that must have the same size and same type as x.
   1436 @param magnitude output array of magnitudes of the same size and type as x.
   1437 @param angle output array of angles that has the same size and type as
   1438 x; the angles are measured in radians (from 0 to 2\*Pi) or in degrees (0 to 360 degrees).
   1439 @param angleInDegrees a flag, indicating whether the angles are measured
   1440 in radians (which is by default), or in degrees.
   1441 @sa Sobel, Scharr
   1442 */
   1443 CV_EXPORTS_W void cartToPolar(InputArray x, InputArray y,
   1444                               OutputArray magnitude, OutputArray angle,
   1445                               bool angleInDegrees = false);
   1446 
   1447 /** @brief Calculates the rotation angle of 2D vectors.
   1448 
   1449 The function phase calculates the rotation angle of each 2D vector that
   1450 is formed from the corresponding elements of x and y :
   1451 \f[\texttt{angle} (I) =  \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))\f]
   1452 
   1453 The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 ,
   1454 the corresponding angle(I) is set to 0.
   1455 @param x input floating-point array of x-coordinates of 2D vectors.
   1456 @param y input array of y-coordinates of 2D vectors; it must have the
   1457 same size and the same type as x.
   1458 @param angle output array of vector angles; it has the same size and
   1459 same type as x .
   1460 @param angleInDegrees when true, the function calculates the angle in
   1461 degrees, otherwise, they are measured in radians.
   1462 */
   1463 CV_EXPORTS_W void phase(InputArray x, InputArray y, OutputArray angle,
   1464                         bool angleInDegrees = false);
   1465 
   1466 /** @brief Calculates the magnitude of 2D vectors.
   1467 
   1468 The function magnitude calculates the magnitude of 2D vectors formed
   1469 from the corresponding elements of x and y arrays:
   1470 \f[\texttt{dst} (I) =  \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}\f]
   1471 @param x floating-point array of x-coordinates of the vectors.
   1472 @param y floating-point array of y-coordinates of the vectors; it must
   1473 have the same size as x.
   1474 @param magnitude output array of the same size and type as x.
   1475 @sa cartToPolar, polarToCart, phase, sqrt
   1476 */
   1477 CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude);
   1478 
   1479 /** @brief Checks every element of an input array for invalid values.
   1480 
   1481 The functions checkRange check that every array element is neither NaN nor infinite. When minVal \<
   1482 -DBL_MAX and maxVal \< DBL_MAX, the functions also check that each value is between minVal and
   1483 maxVal. In case of multi-channel arrays, each channel is processed independently. If some values
   1484 are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the
   1485 functions either return false (when quiet=true) or throw an exception.
   1486 @param a input array.
   1487 @param quiet a flag, indicating whether the functions quietly return false when the array elements
   1488 are out of range or they throw an exception.
   1489 @param pos optional output parameter, when not NULL, must be a pointer to array of src.dims
   1490 elements.
   1491 @param minVal inclusive lower boundary of valid values range.
   1492 @param maxVal exclusive upper boundary of valid values range.
   1493 */
   1494 CV_EXPORTS_W bool checkRange(InputArray a, bool quiet = true, CV_OUT Point* pos = 0,
   1495                             double minVal = -DBL_MAX, double maxVal = DBL_MAX);
   1496 
   1497 /** @brief converts NaN's to the given number
   1498 */
   1499 CV_EXPORTS_W void patchNaNs(InputOutputArray a, double val = 0);
   1500 
   1501 /** @brief Performs generalized matrix multiplication.
   1502 
   1503 The function performs generalized matrix multiplication similar to the
   1504 gemm functions in BLAS level 3. For example,
   1505 `gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)`
   1506 corresponds to
   1507 \f[\texttt{dst} =  \texttt{alpha} \cdot \texttt{src1} ^T  \cdot \texttt{src2} +  \texttt{beta} \cdot \texttt{src3} ^T\f]
   1508 
   1509 In case of complex (two-channel) data, performed a complex matrix
   1510 multiplication.
   1511 
   1512 The function can be replaced with a matrix expression. For example, the
   1513 above call can be replaced with:
   1514 @code{.cpp}
   1515     dst = alpha*src1.t()*src2 + beta*src3.t();
   1516 @endcode
   1517 @param src1 first multiplied input matrix that could be real(CV_32FC1,
   1518 CV_64FC1) or complex(CV_32FC2, CV_64FC2).
   1519 @param src2 second multiplied input matrix of the same type as src1.
   1520 @param alpha weight of the matrix product.
   1521 @param src3 third optional delta matrix added to the matrix product; it
   1522 should have the same type as src1 and src2.
   1523 @param beta weight of src3.
   1524 @param dst output matrix; it has the proper size and the same type as
   1525 input matrices.
   1526 @param flags operation flags (cv::GemmFlags)
   1527 @sa mulTransposed , transform
   1528 */
   1529 CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha,
   1530                        InputArray src3, double beta, OutputArray dst, int flags = 0);
   1531 
   1532 /** @brief Calculates the product of a matrix and its transposition.
   1533 
   1534 The function mulTransposed calculates the product of src and its
   1535 transposition:
   1536 \f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )\f]
   1537 if aTa=true , and
   1538 \f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T\f]
   1539 otherwise. The function is used to calculate the covariance matrix. With
   1540 zero delta, it can be used as a faster substitute for general matrix
   1541 product A\*B when B=A'
   1542 @param src input single-channel matrix. Note that unlike gemm, the
   1543 function can multiply not only floating-point matrices.
   1544 @param dst output square matrix.
   1545 @param aTa Flag specifying the multiplication ordering. See the
   1546 description below.
   1547 @param delta Optional delta matrix subtracted from src before the
   1548 multiplication. When the matrix is empty ( delta=noArray() ), it is
   1549 assumed to be zero, that is, nothing is subtracted. If it has the same
   1550 size as src , it is simply subtracted. Otherwise, it is "repeated" (see
   1551 repeat ) to cover the full src and then subtracted. Type of the delta
   1552 matrix, when it is not empty, must be the same as the type of created
   1553 output matrix. See the dtype parameter description below.
   1554 @param scale Optional scale factor for the matrix product.
   1555 @param dtype Optional type of the output matrix. When it is negative,
   1556 the output matrix will have the same type as src . Otherwise, it will be
   1557 type=CV_MAT_DEPTH(dtype) that should be either CV_32F or CV_64F .
   1558 @sa calcCovarMatrix, gemm, repeat, reduce
   1559 */
   1560 CV_EXPORTS_W void mulTransposed( InputArray src, OutputArray dst, bool aTa,
   1561                                  InputArray delta = noArray(),
   1562                                  double scale = 1, int dtype = -1 );
   1563 
   1564 /** @brief Transposes a matrix.
   1565 
   1566 The function transpose transposes the matrix src :
   1567 \f[\texttt{dst} (i,j) =  \texttt{src} (j,i)\f]
   1568 @note No complex conjugation is done in case of a complex matrix. It it
   1569 should be done separately if needed.
   1570 @param src input array.
   1571 @param dst output array of the same type as src.
   1572 */
   1573 CV_EXPORTS_W void transpose(InputArray src, OutputArray dst);
   1574 
   1575 /** @brief Performs the matrix transformation of every array element.
   1576 
   1577 The function transform performs the matrix transformation of every
   1578 element of the array src and stores the results in dst :
   1579 \f[\texttt{dst} (I) =  \texttt{m} \cdot \texttt{src} (I)\f]
   1580 (when m.cols=src.channels() ), or
   1581 \f[\texttt{dst} (I) =  \texttt{m} \cdot [ \texttt{src} (I); 1]\f]
   1582 (when m.cols=src.channels()+1 )
   1583 
   1584 Every element of the N -channel array src is interpreted as N -element
   1585 vector that is transformed using the M x N or M x (N+1) matrix m to
   1586 M-element vector - the corresponding element of the output array dst .
   1587 
   1588 The function may be used for geometrical transformation of
   1589 N -dimensional points, arbitrary linear color space transformation (such
   1590 as various kinds of RGB to YUV transforms), shuffling the image
   1591 channels, and so forth.
   1592 @param src input array that must have as many channels (1 to 4) as
   1593 m.cols or m.cols-1.
   1594 @param dst output array of the same size and depth as src; it has as
   1595 many channels as m.rows.
   1596 @param m transformation 2x2 or 2x3 floating-point matrix.
   1597 @sa perspectiveTransform, getAffineTransform, estimateRigidTransform, warpAffine, warpPerspective
   1598 */
   1599 CV_EXPORTS_W void transform(InputArray src, OutputArray dst, InputArray m );
   1600 
   1601 /** @brief Performs the perspective matrix transformation of vectors.
   1602 
   1603 The function perspectiveTransform transforms every element of src by
   1604 treating it as a 2D or 3D vector, in the following way:
   1605 \f[(x, y, z)  \rightarrow (x'/w, y'/w, z'/w)\f]
   1606 where
   1607 \f[(x', y', z', w') =  \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1  \end{bmatrix}\f]
   1608 and
   1609 \f[w =  \fork{w'}{if \(w' \ne 0\)}{\infty}{otherwise}\f]
   1610 
   1611 Here a 3D vector transformation is shown. In case of a 2D vector
   1612 transformation, the z component is omitted.
   1613 
   1614 @note The function transforms a sparse set of 2D or 3D vectors. If you
   1615 want to transform an image using perspective transformation, use
   1616 warpPerspective . If you have an inverse problem, that is, you want to
   1617 compute the most probable perspective transformation out of several
   1618 pairs of corresponding points, you can use getPerspectiveTransform or
   1619 findHomography .
   1620 @param src input two-channel or three-channel floating-point array; each
   1621 element is a 2D/3D vector to be transformed.
   1622 @param dst output array of the same size and type as src.
   1623 @param m 3x3 or 4x4 floating-point transformation matrix.
   1624 @sa  transform, warpPerspective, getPerspectiveTransform, findHomography
   1625 */
   1626 CV_EXPORTS_W void perspectiveTransform(InputArray src, OutputArray dst, InputArray m );
   1627 
   1628 /** @brief Copies the lower or the upper half of a square matrix to another half.
   1629 
   1630 The function completeSymm copies the lower half of a square matrix to
   1631 its another half. The matrix diagonal remains unchanged:
   1632 *   \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i > j\f$ if
   1633     lowerToUpper=false
   1634 *   \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i < j\f$ if
   1635     lowerToUpper=true
   1636 @param mtx input-output floating-point square matrix.
   1637 @param lowerToUpper operation flag; if true, the lower half is copied to
   1638 the upper half. Otherwise, the upper half is copied to the lower half.
   1639 @sa flip, transpose
   1640 */
   1641 CV_EXPORTS_W void completeSymm(InputOutputArray mtx, bool lowerToUpper = false);
   1642 
   1643 /** @brief Initializes a scaled identity matrix.
   1644 
   1645 The function setIdentity initializes a scaled identity matrix:
   1646 \f[\texttt{mtx} (i,j)= \fork{\texttt{value}}{ if \(i=j\)}{0}{otherwise}\f]
   1647 
   1648 The function can also be emulated using the matrix initializers and the
   1649 matrix expressions:
   1650 @code
   1651     Mat A = Mat::eye(4, 3, CV_32F)*5;
   1652     // A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]
   1653 @endcode
   1654 @param mtx matrix to initialize (not necessarily square).
   1655 @param s value to assign to diagonal elements.
   1656 @sa Mat::zeros, Mat::ones, Mat::setTo, Mat::operator=
   1657 */
   1658 CV_EXPORTS_W void setIdentity(InputOutputArray mtx, const Scalar& s = Scalar(1));
   1659 
   1660 /** @brief Returns the determinant of a square floating-point matrix.
   1661 
   1662 The function determinant calculates and returns the determinant of the
   1663 specified matrix. For small matrices ( mtx.cols=mtx.rows\<=3 ), the
   1664 direct method is used. For larger matrices, the function uses LU
   1665 factorization with partial pivoting.
   1666 
   1667 For symmetric positively-determined matrices, it is also possible to use
   1668 eigen decomposition to calculate the determinant.
   1669 @param mtx input matrix that must have CV_32FC1 or CV_64FC1 type and
   1670 square size.
   1671 @sa trace, invert, solve, eigen, @ref MatrixExpressions
   1672 */
   1673 CV_EXPORTS_W double determinant(InputArray mtx);
   1674 
   1675 /** @brief Returns the trace of a matrix.
   1676 
   1677 The function trace returns the sum of the diagonal elements of the
   1678 matrix mtx .
   1679 \f[\mathrm{tr} ( \texttt{mtx} ) =  \sum _i  \texttt{mtx} (i,i)\f]
   1680 @param mtx input matrix.
   1681 */
   1682 CV_EXPORTS_W Scalar trace(InputArray mtx);
   1683 
   1684 /** @brief Finds the inverse or pseudo-inverse of a matrix.
   1685 
   1686 The function invert inverts the matrix src and stores the result in dst
   1687 . When the matrix src is singular or non-square, the function calculates
   1688 the pseudo-inverse matrix (the dst matrix) so that norm(src\*dst - I) is
   1689 minimal, where I is an identity matrix.
   1690 
   1691 In case of the DECOMP_LU method, the function returns non-zero value if
   1692 the inverse has been successfully calculated and 0 if src is singular.
   1693 
   1694 In case of the DECOMP_SVD method, the function returns the inverse
   1695 condition number of src (the ratio of the smallest singular value to the
   1696 largest singular value) and 0 if src is singular. The SVD method
   1697 calculates a pseudo-inverse matrix if src is singular.
   1698 
   1699 Similarly to DECOMP_LU, the method DECOMP_CHOLESKY works only with
   1700 non-singular square matrices that should also be symmetrical and
   1701 positively defined. In this case, the function stores the inverted
   1702 matrix in dst and returns non-zero. Otherwise, it returns 0.
   1703 
   1704 @param src input floating-point M x N matrix.
   1705 @param dst output matrix of N x M size and the same type as src.
   1706 @param flags inversion method (cv::DecompTypes)
   1707 @sa solve, SVD
   1708 */
   1709 CV_EXPORTS_W double invert(InputArray src, OutputArray dst, int flags = DECOMP_LU);
   1710 
   1711 /** @brief Solves one or more linear systems or least-squares problems.
   1712 
   1713 The function solve solves a linear system or least-squares problem (the
   1714 latter is possible with SVD or QR methods, or by specifying the flag
   1715 DECOMP_NORMAL ):
   1716 \f[\texttt{dst} =  \arg \min _X \| \texttt{src1} \cdot \texttt{X} -  \texttt{src2} \|\f]
   1717 
   1718 If DECOMP_LU or DECOMP_CHOLESKY method is used, the function returns 1
   1719 if src1 (or \f$\texttt{src1}^T\texttt{src1}\f$ ) is non-singular. Otherwise,
   1720 it returns 0. In the latter case, dst is not valid. Other methods find a
   1721 pseudo-solution in case of a singular left-hand side part.
   1722 
   1723 @note If you want to find a unity-norm solution of an under-defined
   1724 singular system \f$\texttt{src1}\cdot\texttt{dst}=0\f$ , the function solve
   1725 will not do the work. Use SVD::solveZ instead.
   1726 
   1727 @param src1 input matrix on the left-hand side of the system.
   1728 @param src2 input matrix on the right-hand side of the system.
   1729 @param dst output solution.
   1730 @param flags solution (matrix inversion) method (cv::DecompTypes)
   1731 @sa invert, SVD, eigen
   1732 */
   1733 CV_EXPORTS_W bool solve(InputArray src1, InputArray src2,
   1734                         OutputArray dst, int flags = DECOMP_LU);
   1735 
   1736 /** @brief Sorts each row or each column of a matrix.
   1737 
   1738 The function sort sorts each matrix row or each matrix column in
   1739 ascending or descending order. So you should pass two operation flags to
   1740 get desired behaviour. If you want to sort matrix rows or columns
   1741 lexicographically, you can use STL std::sort generic function with the
   1742 proper comparison predicate.
   1743 
   1744 @param src input single-channel array.
   1745 @param dst output array of the same size and type as src.
   1746 @param flags operation flags, a combination of cv::SortFlags
   1747 @sa sortIdx, randShuffle
   1748 */
   1749 CV_EXPORTS_W void sort(InputArray src, OutputArray dst, int flags);
   1750 
   1751 /** @brief Sorts each row or each column of a matrix.
   1752 
   1753 The function sortIdx sorts each matrix row or each matrix column in the
   1754 ascending or descending order. So you should pass two operation flags to
   1755 get desired behaviour. Instead of reordering the elements themselves, it
   1756 stores the indices of sorted elements in the output array. For example:
   1757 @code
   1758     Mat A = Mat::eye(3,3,CV_32F), B;
   1759     sortIdx(A, B, SORT_EVERY_ROW + SORT_ASCENDING);
   1760     // B will probably contain
   1761     // (because of equal elements in A some permutations are possible):
   1762     // [[1, 2, 0], [0, 2, 1], [0, 1, 2]]
   1763 @endcode
   1764 @param src input single-channel array.
   1765 @param dst output integer array of the same size as src.
   1766 @param flags operation flags that could be a combination of cv::SortFlags
   1767 @sa sort, randShuffle
   1768 */
   1769 CV_EXPORTS_W void sortIdx(InputArray src, OutputArray dst, int flags);
   1770 
   1771 /** @brief Finds the real roots of a cubic equation.
   1772 
   1773 The function solveCubic finds the real roots of a cubic equation:
   1774 -   if coeffs is a 4-element vector:
   1775 \f[\texttt{coeffs} [0] x^3 +  \texttt{coeffs} [1] x^2 +  \texttt{coeffs} [2] x +  \texttt{coeffs} [3] = 0\f]
   1776 -   if coeffs is a 3-element vector:
   1777 \f[x^3 +  \texttt{coeffs} [0] x^2 +  \texttt{coeffs} [1] x +  \texttt{coeffs} [2] = 0\f]
   1778 
   1779 The roots are stored in the roots array.
   1780 @param coeffs equation coefficients, an array of 3 or 4 elements.
   1781 @param roots output array of real roots that has 1 or 3 elements.
   1782 */
   1783 CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots);
   1784 
   1785 /** @brief Finds the real or complex roots of a polynomial equation.
   1786 
   1787 The function solvePoly finds real and complex roots of a polynomial equation:
   1788 \f[\texttt{coeffs} [n] x^{n} +  \texttt{coeffs} [n-1] x^{n-1} + ... +  \texttt{coeffs} [1] x +  \texttt{coeffs} [0] = 0\f]
   1789 @param coeffs array of polynomial coefficients.
   1790 @param roots output (complex) array of roots.
   1791 @param maxIters maximum number of iterations the algorithm does.
   1792 */
   1793 CV_EXPORTS_W double solvePoly(InputArray coeffs, OutputArray roots, int maxIters = 300);
   1794 
   1795 /** @brief Calculates eigenvalues and eigenvectors of a symmetric matrix.
   1796 
   1797 The functions eigen calculate just eigenvalues, or eigenvalues and eigenvectors of the symmetric
   1798 matrix src:
   1799 @code
   1800     src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
   1801 @endcode
   1802 @note in the new and the old interfaces different ordering of eigenvalues and eigenvectors
   1803 parameters is used.
   1804 @param src input matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmetrical
   1805 (src ^T^ == src).
   1806 @param eigenvalues output vector of eigenvalues of the same type as src; the eigenvalues are stored
   1807 in the descending order.
   1808 @param eigenvectors output matrix of eigenvectors; it has the same size and type as src; the
   1809 eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding
   1810 eigenvalues.
   1811 @sa completeSymm , PCA
   1812 */
   1813 CV_EXPORTS_W bool eigen(InputArray src, OutputArray eigenvalues,
   1814                         OutputArray eigenvectors = noArray());
   1815 
   1816 /** @brief Calculates the covariance matrix of a set of vectors.
   1817 
   1818 The functions calcCovarMatrix calculate the covariance matrix and, optionally, the mean vector of
   1819 the set of input vectors.
   1820 @param samples samples stored as separate matrices
   1821 @param nsamples number of samples
   1822 @param covar output covariance matrix of the type ctype and square size.
   1823 @param mean input or output (depending on the flags) array as the average value of the input vectors.
   1824 @param flags operation flags as a combination of cv::CovarFlags
   1825 @param ctype type of the matrixl; it equals 'CV_64F' by default.
   1826 @sa PCA, mulTransposed, Mahalanobis
   1827 @todo InputArrayOfArrays
   1828 */
   1829 CV_EXPORTS void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean,
   1830                                  int flags, int ctype = CV_64F);
   1831 
   1832 /** @overload
   1833 @note use cv::COVAR_ROWS or cv::COVAR_COLS flag
   1834 @param samples samples stored as rows/columns of a single matrix.
   1835 @param covar output covariance matrix of the type ctype and square size.
   1836 @param mean input or output (depending on the flags) array as the average value of the input vectors.
   1837 @param flags operation flags as a combination of cv::CovarFlags
   1838 @param ctype type of the matrixl; it equals 'CV_64F' by default.
   1839 */
   1840 CV_EXPORTS_W void calcCovarMatrix( InputArray samples, OutputArray covar,
   1841                                    InputOutputArray mean, int flags, int ctype = CV_64F);
   1842 
   1843 /** wrap PCA::operator() */
   1844 CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
   1845                              OutputArray eigenvectors, int maxComponents = 0);
   1846 
   1847 /** wrap PCA::operator() */
   1848 CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean,
   1849                              OutputArray eigenvectors, double retainedVariance);
   1850 
   1851 /** wrap PCA::project */
   1852 CV_EXPORTS_W void PCAProject(InputArray data, InputArray mean,
   1853                              InputArray eigenvectors, OutputArray result);
   1854 
   1855 /** wrap PCA::backProject */
   1856 CV_EXPORTS_W void PCABackProject(InputArray data, InputArray mean,
   1857                                  InputArray eigenvectors, OutputArray result);
   1858 
   1859 /** wrap SVD::compute */
   1860 CV_EXPORTS_W void SVDecomp( InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags = 0 );
   1861 
   1862 /** wrap SVD::backSubst */
   1863 CV_EXPORTS_W void SVBackSubst( InputArray w, InputArray u, InputArray vt,
   1864                                InputArray rhs, OutputArray dst );
   1865 
   1866 /** @brief Calculates the Mahalanobis distance between two vectors.
   1867 
   1868 The function Mahalanobis calculates and returns the weighted distance between two vectors:
   1869 \f[d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }\f]
   1870 The covariance matrix may be calculated using the cv::calcCovarMatrix function and then inverted using
   1871 the invert function (preferably using the cv::DECOMP_SVD method, as the most accurate).
   1872 @param v1 first 1D input vector.
   1873 @param v2 second 1D input vector.
   1874 @param icovar inverse covariance matrix.
   1875 */
   1876 CV_EXPORTS_W double Mahalanobis(InputArray v1, InputArray v2, InputArray icovar);
   1877 
   1878 /** @brief Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
   1879 
   1880 The function performs one of the following:
   1881 -   Forward the Fourier transform of a 1D vector of N elements:
   1882     \f[Y = F^{(N)}  \cdot X,\f]
   1883     where \f$F^{(N)}_{jk}=\exp(-2\pi i j k/N)\f$ and \f$i=\sqrt{-1}\f$
   1884 -   Inverse the Fourier transform of a 1D vector of N elements:
   1885     \f[\begin{array}{l} X'=  \left (F^{(N)} \right )^{-1}  \cdot Y =  \left (F^{(N)} \right )^*  \cdot y  \\ X = (1/N)  \cdot X, \end{array}\f]
   1886     where \f$F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T\f$
   1887 -   Forward the 2D Fourier transform of a M x N matrix:
   1888     \f[Y = F^{(M)}  \cdot X  \cdot F^{(N)}\f]
   1889 -   Inverse the 2D Fourier transform of a M x N matrix:
   1890     \f[\begin{array}{l} X'=  \left (F^{(M)} \right )^*  \cdot Y  \cdot \left (F^{(N)} \right )^* \\ X =  \frac{1}{M \cdot N} \cdot X' \end{array}\f]
   1891 
   1892 In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input
   1893 spectrum of the inverse Fourier transform can be represented in a packed format called *CCS*
   1894 (complex-conjugate-symmetrical). It was borrowed from IPL (Intel\* Image Processing Library). Here
   1895 is how 2D *CCS* spectrum looks:
   1896 \f[\begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} &  \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2}  \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} &  \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2}  \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} &  \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2}  \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} &  Re Y_{M-3,1}  & Im Y_{M-3,1} &  \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2}  \\ Im Y_{M/2-1,0} &  Re Y_{M-2,1}  & Im Y_{M-2,1} &  \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2}  \\ Re Y_{M/2,0}  &  Re Y_{M-1,1} &  Im Y_{M-1,1} &  \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}\f]
   1897 
   1898 In case of 1D transform of a real vector, the output looks like the first row of the matrix above.
   1899 
   1900 So, the function chooses an operation mode depending on the flags and size of the input array:
   1901 -   If DFT_ROWS is set or the input array has a single row or single column, the function
   1902     performs a 1D forward or inverse transform of each row of a matrix when DFT_ROWS is set.
   1903     Otherwise, it performs a 2D transform.
   1904 -   If the input array is real and DFT_INVERSE is not set, the function performs a forward 1D or
   1905     2D transform:
   1906     -   When DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as
   1907         input.
   1908     -   When DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as
   1909         input. In case of 2D transform, it uses the packed format as shown above. In case of a
   1910         single 1D transform, it looks like the first row of the matrix above. In case of
   1911         multiple 1D transforms (when using the DFT_ROWS flag), each row of the output matrix
   1912         looks like the first row of the matrix above.
   1913 -   If the input array is complex and either DFT_INVERSE or DFT_REAL_OUTPUT are not set, the
   1914     output is a complex array of the same size as input. The function performs a forward or
   1915     inverse 1D or 2D transform of the whole input array or each row of the input array
   1916     independently, depending on the flags DFT_INVERSE and DFT_ROWS.
   1917 -   When DFT_INVERSE is set and the input array is real, or it is complex but DFT_REAL_OUTPUT
   1918     is set, the output is a real array of the same size as input. The function performs a 1D or 2D
   1919     inverse transformation of the whole input array or each individual row, depending on the flags
   1920     DFT_INVERSE and DFT_ROWS.
   1921 
   1922 If DFT_SCALE is set, the scaling is done after the transformation.
   1923 
   1924 Unlike dct , the function supports arrays of arbitrary size. But only those arrays are processed
   1925 efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the
   1926 current implementation). Such an efficient DFT size can be calculated using the getOptimalDFTSize
   1927 method.
   1928 
   1929 The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays:
   1930 @code
   1931     void convolveDFT(InputArray A, InputArray B, OutputArray C)
   1932     {
   1933         // reallocate the output array if needed
   1934         C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
   1935         Size dftSize;
   1936         // calculate the size of DFT transform
   1937         dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
   1938         dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
   1939 
   1940         // allocate temporary buffers and initialize them with 0's
   1941         Mat tempA(dftSize, A.type(), Scalar::all(0));
   1942         Mat tempB(dftSize, B.type(), Scalar::all(0));
   1943 
   1944         // copy A and B to the top-left corners of tempA and tempB, respectively
   1945         Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
   1946         A.copyTo(roiA);
   1947         Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
   1948         B.copyTo(roiB);
   1949 
   1950         // now transform the padded A & B in-place;
   1951         // use "nonzeroRows" hint for faster processing
   1952         dft(tempA, tempA, 0, A.rows);
   1953         dft(tempB, tempB, 0, B.rows);
   1954 
   1955         // multiply the spectrums;
   1956         // the function handles packed spectrum representations well
   1957         mulSpectrums(tempA, tempB, tempA);
   1958 
   1959         // transform the product back from the frequency domain.
   1960         // Even though all the result rows will be non-zero,
   1961         // you need only the first C.rows of them, and thus you
   1962         // pass nonzeroRows == C.rows
   1963         dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
   1964 
   1965         // now copy the result back to C.
   1966         tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
   1967 
   1968         // all the temporary buffers will be deallocated automatically
   1969     }
   1970 @endcode
   1971 To optimize this sample, consider the following approaches:
   1972 -   Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to
   1973     the top-left corners of tempA and tempB, respectively, it is not necessary to clear the whole
   1974     tempA and tempB. It is only necessary to clear the tempA.cols - A.cols ( tempB.cols - B.cols)
   1975     rightmost columns of the matrices.
   1976 -   This DFT-based convolution does not have to be applied to the whole big arrays, especially if B
   1977     is significantly smaller than A or vice versa. Instead, you can calculate convolution by parts.
   1978     To do this, you need to split the output array C into multiple tiles. For each tile, estimate
   1979     which parts of A and B are required to calculate convolution in this tile. If the tiles in C are
   1980     too small, the speed will decrease a lot because of repeated work. In the ultimate case, when
   1981     each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution
   1982     algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and
   1983     there is also a slowdown because of bad cache locality. So, there is an optimal tile size
   1984     somewhere in the middle.
   1985 -   If different tiles in C can be calculated in parallel and, thus, the convolution is done by
   1986     parts, the loop can be threaded.
   1987 
   1988 All of the above improvements have been implemented in matchTemplate and filter2D . Therefore, by
   1989 using them, you can get the performance even better than with the above theoretically optimal
   1990 implementation. Though, those two functions actually calculate cross-correlation, not convolution,
   1991 so you need to "flip" the second convolution operand B vertically and horizontally using flip .
   1992 @note
   1993 -   An example using the discrete fourier transform can be found at
   1994     opencv_source_code/samples/cpp/dft.cpp
   1995 -   (Python) An example using the dft functionality to perform Wiener deconvolution can be found
   1996     at opencv_source/samples/python2/deconvolution.py
   1997 -   (Python) An example rearranging the quadrants of a Fourier image can be found at
   1998     opencv_source/samples/python2/dft.py
   1999 @param src input array that could be real or complex.
   2000 @param dst output array whose size and type depends on the flags .
   2001 @param flags transformation flags, representing a combination of the cv::DftFlags
   2002 @param nonzeroRows when the parameter is not zero, the function assumes that only the first
   2003 nonzeroRows rows of the input array (DFT_INVERSE is not set) or only the first nonzeroRows of the
   2004 output array (DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the
   2005 rows more efficiently and save some time; this technique is very useful for calculating array
   2006 cross-correlation or convolution using DFT.
   2007 @sa dct , getOptimalDFTSize , mulSpectrums, filter2D , matchTemplate , flip , cartToPolar ,
   2008 magnitude , phase
   2009 */
   2010 CV_EXPORTS_W void dft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
   2011 
   2012 /** @brief Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
   2013 
   2014 idft(src, dst, flags) is equivalent to dft(src, dst, flags | DFT_INVERSE) .
   2015 @note None of dft and idft scales the result by default. So, you should pass DFT_SCALE to one of
   2016 dft or idft explicitly to make these transforms mutually inverse.
   2017 @sa dft, dct, idct, mulSpectrums, getOptimalDFTSize
   2018 @param src input floating-point real or complex array.
   2019 @param dst output array whose size and type depend on the flags.
   2020 @param flags operation flags (see dft and cv::DftFlags).
   2021 @param nonzeroRows number of dst rows to process; the rest of the rows have undefined content (see
   2022 the convolution sample in dft description.
   2023 */
   2024 CV_EXPORTS_W void idft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0);
   2025 
   2026 /** @brief Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
   2027 
   2028 The function dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D
   2029 floating-point array:
   2030 -   Forward Cosine transform of a 1D vector of N elements:
   2031     \f[Y = C^{(N)}  \cdot X\f]
   2032     where
   2033     \f[C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left ( \frac{\pi(2k+1)j}{2N} \right )\f]
   2034     and
   2035     \f$\alpha_0=1\f$, \f$\alpha_j=2\f$ for *j \> 0*.
   2036 -   Inverse Cosine transform of a 1D vector of N elements:
   2037     \f[X =  \left (C^{(N)} \right )^{-1}  \cdot Y =  \left (C^{(N)} \right )^T  \cdot Y\f]
   2038     (since \f$C^{(N)}\f$ is an orthogonal matrix, \f$C^{(N)} \cdot \left(C^{(N)}\right)^T = I\f$ )
   2039 -   Forward 2D Cosine transform of M x N matrix:
   2040     \f[Y = C^{(N)}  \cdot X  \cdot \left (C^{(N)} \right )^T\f]
   2041 -   Inverse 2D Cosine transform of M x N matrix:
   2042     \f[X =  \left (C^{(N)} \right )^T  \cdot X  \cdot C^{(N)}\f]
   2043 
   2044 The function chooses the mode of operation by looking at the flags and size of the input array:
   2045 -   If (flags & DCT_INVERSE) == 0 , the function does a forward 1D or 2D transform. Otherwise, it
   2046     is an inverse 1D or 2D transform.
   2047 -   If (flags & DCT_ROWS) != 0 , the function performs a 1D transform of each row.
   2048 -   If the array is a single column or a single row, the function performs a 1D transform.
   2049 -   If none of the above is true, the function performs a 2D transform.
   2050 
   2051 @note Currently dct supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you
   2052 can pad the array when necessary.
   2053 Also, the function performance depends very much, and not monotonically, on the array size (see
   2054 getOptimalDFTSize ). In the current implementation DCT of a vector of size N is calculated via DFT
   2055 of a vector of size N/2 . Thus, the optimal DCT size N1 \>= N can be calculated as:
   2056 @code
   2057     size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
   2058     N1 = getOptimalDCTSize(N);
   2059 @endcode
   2060 @param src input floating-point array.
   2061 @param dst output array of the same size and type as src .
   2062 @param flags transformation flags as a combination of cv::DftFlags (DCT_*)
   2063 @sa dft , getOptimalDFTSize , idct
   2064 */
   2065 CV_EXPORTS_W void dct(InputArray src, OutputArray dst, int flags = 0);
   2066 
   2067 /** @brief Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
   2068 
   2069 idct(src, dst, flags) is equivalent to dct(src, dst, flags | DCT_INVERSE).
   2070 @param src input floating-point single-channel array.
   2071 @param dst output array of the same size and type as src.
   2072 @param flags operation flags.
   2073 @sa  dct, dft, idft, getOptimalDFTSize
   2074 */
   2075 CV_EXPORTS_W void idct(InputArray src, OutputArray dst, int flags = 0);
   2076 
   2077 /** @brief Performs the per-element multiplication of two Fourier spectrums.
   2078 
   2079 The function mulSpectrums performs the per-element multiplication of the two CCS-packed or complex
   2080 matrices that are results of a real or complex Fourier transform.
   2081 
   2082 The function, together with dft and idft , may be used to calculate convolution (pass conjB=false )
   2083 or correlation (pass conjB=true ) of two arrays rapidly. When the arrays are complex, they are
   2084 simply multiplied (per element) with an optional conjugation of the second-array elements. When the
   2085 arrays are real, they are assumed to be CCS-packed (see dft for details).
   2086 @param a first input array.
   2087 @param b second input array of the same size and type as src1 .
   2088 @param c output array of the same size and type as src1 .
   2089 @param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
   2090 each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value.
   2091 @param conjB optional flag that conjugates the second input array before the multiplication (true)
   2092 or not (false).
   2093 */
   2094 CV_EXPORTS_W void mulSpectrums(InputArray a, InputArray b, OutputArray c,
   2095                                int flags, bool conjB = false);
   2096 
   2097 /** @brief Returns the optimal DFT size for a given vector size.
   2098 
   2099 DFT performance is not a monotonic function of a vector size. Therefore, when you calculate
   2100 convolution of two arrays or perform the spectral analysis of an array, it usually makes sense to
   2101 pad the input data with zeros to get a bit larger array that can be transformed much faster than the
   2102 original one. Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the fastest to process.
   2103 Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5\*5\*3\*2\*2)
   2104 are also processed quite efficiently.
   2105 
   2106 The function getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize
   2107 so that the DFT of a vector of size N can be processed efficiently. In the current implementation N
   2108 = 2 ^p^ \* 3 ^q^ \* 5 ^r^ for some integer p, q, r.
   2109 
   2110 The function returns a negative number if vecsize is too large (very close to INT_MAX ).
   2111 
   2112 While the function cannot be used directly to estimate the optimal vector size for DCT transform
   2113 (since the current DCT implementation supports only even-size vectors), it can be easily processed
   2114 as getOptimalDFTSize((vecsize+1)/2)\*2.
   2115 @param vecsize vector size.
   2116 @sa dft , dct , idft , idct , mulSpectrums
   2117 */
   2118 CV_EXPORTS_W int getOptimalDFTSize(int vecsize);
   2119 
   2120 /** @brief Returns the default random number generator.
   2121 
   2122 The function theRNG returns the default random number generator. For each thread, there is a
   2123 separate random number generator, so you can use the function safely in multi-thread environments.
   2124 If you just need to get a single random number using this generator or initialize an array, you can
   2125 use randu or randn instead. But if you are going to generate many random numbers inside a loop, it
   2126 is much faster to use this function to retrieve the generator and then use RNG::operator _Tp() .
   2127 @sa RNG, randu, randn
   2128 */
   2129 CV_EXPORTS RNG& theRNG();
   2130 
   2131 /** @brief Generates a single uniformly-distributed random number or an array of random numbers.
   2132 
   2133 Non-template variant of the function fills the matrix dst with uniformly-distributed
   2134 random numbers from the specified range:
   2135 \f[\texttt{low} _c  \leq \texttt{dst} (I)_c <  \texttt{high} _c\f]
   2136 @param dst output array of random numbers; the array must be pre-allocated.
   2137 @param low inclusive lower boundary of the generated random numbers.
   2138 @param high exclusive upper boundary of the generated random numbers.
   2139 @sa RNG, randn, theRNG
   2140 */
   2141 CV_EXPORTS_W void randu(InputOutputArray dst, InputArray low, InputArray high);
   2142 
   2143 /** @brief Fills the array with normally distributed random numbers.
   2144 
   2145 The function randn fills the matrix dst with normally distributed random numbers with the specified
   2146 mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the
   2147 value range of the output array data type.
   2148 @param dst output array of random numbers; the array must be pre-allocated and have 1 to 4 channels.
   2149 @param mean mean value (expectation) of the generated random numbers.
   2150 @param stddev standard deviation of the generated random numbers; it can be either a vector (in
   2151 which case a diagonal standard deviation matrix is assumed) or a square matrix.
   2152 @sa RNG, randu
   2153 */
   2154 CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev);
   2155 
   2156 /** @brief Shuffles the array elements randomly.
   2157 
   2158 The function randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and
   2159 swapping them. The number of such swap operations will be dst.rows\*dst.cols\*iterFactor .
   2160 @param dst input/output numerical 1D array.
   2161 @param iterFactor scale factor that determines the number of random swap operations (see the details
   2162 below).
   2163 @param rng optional random number generator used for shuffling; if it is zero, theRNG () is used
   2164 instead.
   2165 @sa RNG, sort
   2166 */
   2167 CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0);
   2168 
   2169 /** @brief Principal Component Analysis
   2170 
   2171 The class is used to calculate a special basis for a set of vectors. The
   2172 basis will consist of eigenvectors of the covariance matrix calculated
   2173 from the input set of vectors. The class %PCA can also transform
   2174 vectors to/from the new coordinate space defined by the basis. Usually,
   2175 in this new coordinate system, each vector from the original set (and
   2176 any linear combination of such vectors) can be quite accurately
   2177 approximated by taking its first few components, corresponding to the
   2178 eigenvectors of the largest eigenvalues of the covariance matrix.
   2179 Geometrically it means that you calculate a projection of the vector to
   2180 a subspace formed by a few eigenvectors corresponding to the dominant
   2181 eigenvalues of the covariance matrix. And usually such a projection is
   2182 very close to the original vector. So, you can represent the original
   2183 vector from a high-dimensional space with a much shorter vector
   2184 consisting of the projected vector's coordinates in the subspace. Such a
   2185 transformation is also known as Karhunen-Loeve Transform, or KLT.
   2186 See http://en.wikipedia.org/wiki/Principal_component_analysis
   2187 
   2188 The sample below is the function that takes two matrices. The first
   2189 function stores a set of vectors (a row per vector) that is used to
   2190 calculate PCA. The second function stores another "test" set of vectors
   2191 (a row per vector). First, these vectors are compressed with PCA, then
   2192 reconstructed back, and then the reconstruction error norm is computed
   2193 and printed for each vector. :
   2194 
   2195 @code{.cpp}
   2196 using namespace cv;
   2197 
   2198 PCA compressPCA(const Mat& pcaset, int maxComponents,
   2199                 const Mat& testset, Mat& compressed)
   2200 {
   2201     PCA pca(pcaset, // pass the data
   2202             Mat(), // we do not have a pre-computed mean vector,
   2203                    // so let the PCA engine to compute it
   2204             PCA::DATA_AS_ROW, // indicate that the vectors
   2205                                 // are stored as matrix rows
   2206                                 // (use PCA::DATA_AS_COL if the vectors are
   2207                                 // the matrix columns)
   2208             maxComponents // specify, how many principal components to retain
   2209             );
   2210     // if there is no test data, just return the computed basis, ready-to-use
   2211     if( !testset.data )
   2212         return pca;
   2213     CV_Assert( testset.cols == pcaset.cols );
   2214 
   2215     compressed.create(testset.rows, maxComponents, testset.type());
   2216 
   2217     Mat reconstructed;
   2218     for( int i = 0; i < testset.rows; i++ )
   2219     {
   2220         Mat vec = testset.row(i), coeffs = compressed.row(i), reconstructed;
   2221         // compress the vector, the result will be stored
   2222         // in the i-th row of the output matrix
   2223         pca.project(vec, coeffs);
   2224         // and then reconstruct it
   2225         pca.backProject(coeffs, reconstructed);
   2226         // and measure the error
   2227         printf("%d. diff = %g\n", i, norm(vec, reconstructed, NORM_L2));
   2228     }
   2229     return pca;
   2230 }
   2231 @endcode
   2232 @sa calcCovarMatrix, mulTransposed, SVD, dft, dct
   2233 */
   2234 class CV_EXPORTS PCA
   2235 {
   2236 public:
   2237     enum Flags { DATA_AS_ROW = 0, //!< indicates that the input samples are stored as matrix rows
   2238                  DATA_AS_COL = 1, //!< indicates that the input samples are stored as matrix columns
   2239                  USE_AVG     = 2  //!
   2240                };
   2241 
   2242     /** @brief default constructor
   2243 
   2244     The default constructor initializes an empty %PCA structure. The other
   2245     constructors initialize the structure and call PCA::operator()().
   2246     */
   2247     PCA();
   2248 
   2249     /** @overload
   2250     @param data input samples stored as matrix rows or matrix columns.
   2251     @param mean optional mean value; if the matrix is empty (@c noArray()),
   2252     the mean is computed from the data.
   2253     @param flags operation flags; currently the parameter is only used to
   2254     specify the data layout (PCA::Flags)
   2255     @param maxComponents maximum number of components that %PCA should
   2256     retain; by default, all the components are retained.
   2257     */
   2258     PCA(InputArray data, InputArray mean, int flags, int maxComponents = 0);
   2259 
   2260     /** @overload
   2261     @param data input samples stored as matrix rows or matrix columns.
   2262     @param mean optional mean value; if the matrix is empty (noArray()),
   2263     the mean is computed from the data.
   2264     @param flags operation flags; currently the parameter is only used to
   2265     specify the data layout (PCA::Flags)
   2266     @param retainedVariance Percentage of variance that PCA should retain.
   2267     Using this parameter will let the PCA decided how many components to
   2268     retain but it will always keep at least 2.
   2269     */
   2270     PCA(InputArray data, InputArray mean, int flags, double retainedVariance);
   2271 
   2272     /** @brief performs %PCA
   2273 
   2274     The operator performs %PCA of the supplied dataset. It is safe to reuse
   2275     the same PCA structure for multiple datasets. That is, if the structure
   2276     has been previously used with another dataset, the existing internal
   2277     data is reclaimed and the new eigenvalues, @ref eigenvectors , and @ref
   2278     mean are allocated and computed.
   2279 
   2280     The computed eigenvalues are sorted from the largest to the smallest and
   2281     the corresponding eigenvectors are stored as eigenvectors rows.
   2282 
   2283     @param data input samples stored as the matrix rows or as the matrix
   2284     columns.
   2285     @param mean optional mean value; if the matrix is empty (noArray()),
   2286     the mean is computed from the data.
   2287     @param flags operation flags; currently the parameter is only used to
   2288     specify the data layout. (Flags)
   2289     @param maxComponents maximum number of components that PCA should
   2290     retain; by default, all the components are retained.
   2291     */
   2292     PCA& operator()(InputArray data, InputArray mean, int flags, int maxComponents = 0);
   2293 
   2294     /** @overload
   2295     @param data input samples stored as the matrix rows or as the matrix
   2296     columns.
   2297     @param mean optional mean value; if the matrix is empty (noArray()),
   2298     the mean is computed from the data.
   2299     @param flags operation flags; currently the parameter is only used to
   2300     specify the data layout. (PCA::Flags)
   2301     @param retainedVariance Percentage of variance that %PCA should retain.
   2302     Using this parameter will let the %PCA decided how many components to
   2303     retain but it will always keep at least 2.
   2304      */
   2305     PCA& operator()(InputArray data, InputArray mean, int flags, double retainedVariance);
   2306 
   2307     /** @brief Projects vector(s) to the principal component subspace.
   2308 
   2309     The methods project one or more vectors to the principal component
   2310     subspace, where each vector projection is represented by coefficients in
   2311     the principal component basis. The first form of the method returns the
   2312     matrix that the second form writes to the result. So the first form can
   2313     be used as a part of expression while the second form can be more
   2314     efficient in a processing loop.
   2315     @param vec input vector(s); must have the same dimensionality and the
   2316     same layout as the input data used at %PCA phase, that is, if
   2317     DATA_AS_ROW are specified, then `vec.cols==data.cols`
   2318     (vector dimensionality) and `vec.rows` is the number of vectors to
   2319     project, and the same is true for the PCA::DATA_AS_COL case.
   2320     */
   2321     Mat project(InputArray vec) const;
   2322 
   2323     /** @overload
   2324     @param vec input vector(s); must have the same dimensionality and the
   2325     same layout as the input data used at PCA phase, that is, if
   2326     DATA_AS_ROW are specified, then `vec.cols==data.cols`
   2327     (vector dimensionality) and `vec.rows` is the number of vectors to
   2328     project, and the same is true for the PCA::DATA_AS_COL case.
   2329     @param result output vectors; in case of PCA::DATA_AS_COL, the
   2330     output matrix has as many columns as the number of input vectors, this
   2331     means that `result.cols==vec.cols` and the number of rows match the
   2332     number of principal components (for example, `maxComponents` parameter
   2333     passed to the constructor).
   2334      */
   2335     void project(InputArray vec, OutputArray result) const;
   2336 
   2337     /** @brief Reconstructs vectors from their PC projections.
   2338 
   2339     The methods are inverse operations to PCA::project. They take PC
   2340     coordinates of projected vectors and reconstruct the original vectors.
   2341     Unless all the principal components have been retained, the
   2342     reconstructed vectors are different from the originals. But typically,
   2343     the difference is small if the number of components is large enough (but
   2344     still much smaller than the original vector dimensionality). As a
   2345     result, PCA is used.
   2346     @param vec coordinates of the vectors in the principal component
   2347     subspace, the layout and size are the same as of PCA::project output
   2348     vectors.
   2349      */
   2350     Mat backProject(InputArray vec) const;
   2351 
   2352     /** @overload
   2353     @param vec coordinates of the vectors in the principal component
   2354     subspace, the layout and size are the same as of PCA::project output
   2355     vectors.
   2356     @param result reconstructed vectors; the layout and size are the same as
   2357     of PCA::project input vectors.
   2358      */
   2359     void backProject(InputArray vec, OutputArray result) const;
   2360 
   2361     /** @brief write and load PCA matrix
   2362 
   2363 */
   2364     void write(FileStorage& fs ) const;
   2365     void read(const FileNode& fs);
   2366 
   2367     Mat eigenvectors; //!< eigenvectors of the covariation matrix
   2368     Mat eigenvalues; //!< eigenvalues of the covariation matrix
   2369     Mat mean; //!< mean value subtracted before the projection and added after the back projection
   2370 };
   2371 
   2372 /** @example pca.cpp
   2373   An example using %PCA for dimensionality reduction while maintaining an amount of variance
   2374  */
   2375 
   2376 /**
   2377    @brief Linear Discriminant Analysis
   2378    @todo document this class
   2379  */
   2380 class CV_EXPORTS LDA
   2381 {
   2382 public:
   2383     /** @brief constructor
   2384     Initializes a LDA with num_components (default 0) and specifies how
   2385     samples are aligned (default dataAsRow=true).
   2386     */
   2387     explicit LDA(int num_components = 0);
   2388 
   2389     /** Initializes and performs a Discriminant Analysis with Fisher's
   2390      Optimization Criterion on given data in src and corresponding labels
   2391      in labels. If 0 (or less) number of components are given, they are
   2392      automatically determined for given data in computation.
   2393     */
   2394     LDA(InputArrayOfArrays src, InputArray labels, int num_components = 0);
   2395 
   2396     /** Serializes this object to a given filename.
   2397       */
   2398     void save(const String& filename) const;
   2399 
   2400     /** Deserializes this object from a given filename.
   2401       */
   2402     void load(const String& filename);
   2403 
   2404     /** Serializes this object to a given cv::FileStorage.
   2405       */
   2406     void save(FileStorage& fs) const;
   2407 
   2408     /** Deserializes this object from a given cv::FileStorage.
   2409       */
   2410     void load(const FileStorage& node);
   2411 
   2412     /** destructor
   2413       */
   2414     ~LDA();
   2415 
   2416     /** Compute the discriminants for data in src and labels.
   2417       */
   2418     void compute(InputArrayOfArrays src, InputArray labels);
   2419 
   2420     /** Projects samples into the LDA subspace.
   2421       */
   2422     Mat project(InputArray src);
   2423 
   2424     /** Reconstructs projections from the LDA subspace.
   2425       */
   2426     Mat reconstruct(InputArray src);
   2427 
   2428     /** Returns the eigenvectors of this LDA.
   2429       */
   2430     Mat eigenvectors() const { return _eigenvectors; }
   2431 
   2432     /** Returns the eigenvalues of this LDA.
   2433       */
   2434     Mat eigenvalues() const { return _eigenvalues; }
   2435 
   2436     static Mat subspaceProject(InputArray W, InputArray mean, InputArray src);
   2437     static Mat subspaceReconstruct(InputArray W, InputArray mean, InputArray src);
   2438 
   2439 protected:
   2440     bool _dataAsRow;
   2441     int _num_components;
   2442     Mat _eigenvectors;
   2443     Mat _eigenvalues;
   2444 
   2445     void lda(InputArrayOfArrays src, InputArray labels);
   2446 };
   2447 
   2448 /** @brief Singular Value Decomposition
   2449 
   2450 Class for computing Singular Value Decomposition of a floating-point
   2451 matrix. The Singular Value Decomposition is used to solve least-square
   2452 problems, under-determined linear systems, invert matrices, compute
   2453 condition numbers, and so on.
   2454 
   2455 If you want to compute a condition number of a matrix or an absolute value of
   2456 its determinant, you do not need `u` and `vt`. You can pass
   2457 flags=SVD::NO_UV|... . Another flag SVD::FULL_UV indicates that full-size u
   2458 and vt must be computed, which is not necessary most of the time.
   2459 
   2460 @sa invert, solve, eigen, determinant
   2461 */
   2462 class CV_EXPORTS SVD
   2463 {
   2464 public:
   2465     enum Flags {
   2466         /** allow the algorithm to modify the decomposed matrix; it can save space and speed up
   2467             processing. currently ignored. */
   2468         MODIFY_A = 1,
   2469         /** indicates that only a vector of singular values `w` is to be processed, while u and vt
   2470             will be set to empty matrices */
   2471         NO_UV    = 2,
   2472         /** when the matrix is not square, by default the algorithm produces u and vt matrices of
   2473             sufficiently large size for the further A reconstruction; if, however, FULL_UV flag is
   2474             specified, u and vt will be full-size square orthogonal matrices.*/
   2475         FULL_UV  = 4
   2476     };
   2477 
   2478     /** @brief the default constructor
   2479 
   2480     initializes an empty SVD structure
   2481       */
   2482     SVD();
   2483 
   2484     /** @overload
   2485     initializes an empty SVD structure and then calls SVD::operator()
   2486     @param src decomposed matrix.
   2487     @param flags operation flags (SVD::Flags)
   2488       */
   2489     SVD( InputArray src, int flags = 0 );
   2490 
   2491     /** @brief the operator that performs SVD. The previously allocated u, w and vt are released.
   2492 
   2493     The operator performs the singular value decomposition of the supplied
   2494     matrix. The u,`vt` , and the vector of singular values w are stored in
   2495     the structure. The same SVD structure can be reused many times with
   2496     different matrices. Each time, if needed, the previous u,`vt` , and w
   2497     are reclaimed and the new matrices are created, which is all handled by
   2498     Mat::create.
   2499     @param src decomposed matrix.
   2500     @param flags operation flags (SVD::Flags)
   2501       */
   2502     SVD& operator ()( InputArray src, int flags = 0 );
   2503 
   2504     /** @brief decomposes matrix and stores the results to user-provided matrices
   2505 
   2506     The methods/functions perform SVD of matrix. Unlike SVD::SVD constructor
   2507     and SVD::operator(), they store the results to the user-provided
   2508     matrices:
   2509 
   2510     @code{.cpp}
   2511     Mat A, w, u, vt;
   2512     SVD::compute(A, w, u, vt);
   2513     @endcode
   2514 
   2515     @param src decomposed matrix
   2516     @param w calculated singular values
   2517     @param u calculated left singular vectors
   2518     @param vt transposed matrix of right singular values
   2519     @param flags operation flags - see SVD::SVD.
   2520       */
   2521     static void compute( InputArray src, OutputArray w,
   2522                          OutputArray u, OutputArray vt, int flags = 0 );
   2523 
   2524     /** @overload
   2525     computes singular values of a matrix
   2526     @param src decomposed matrix
   2527     @param w calculated singular values
   2528     @param flags operation flags - see SVD::Flags.
   2529       */
   2530     static void compute( InputArray src, OutputArray w, int flags = 0 );
   2531 
   2532     /** @brief performs back substitution
   2533       */
   2534     static void backSubst( InputArray w, InputArray u,
   2535                            InputArray vt, InputArray rhs,
   2536                            OutputArray dst );
   2537 
   2538     /** @brief solves an under-determined singular linear system
   2539 
   2540     The method finds a unit-length solution x of a singular linear system
   2541     A\*x = 0. Depending on the rank of A, there can be no solutions, a
   2542     single solution or an infinite number of solutions. In general, the
   2543     algorithm solves the following problem:
   2544     \f[dst =  \arg \min _{x:  \| x \| =1}  \| src  \cdot x  \|\f]
   2545     @param src left-hand-side matrix.
   2546     @param dst found solution.
   2547       */
   2548     static void solveZ( InputArray src, OutputArray dst );
   2549 
   2550     /** @brief performs a singular value back substitution.
   2551 
   2552     The method calculates a back substitution for the specified right-hand
   2553     side:
   2554 
   2555     \f[\texttt{x} =  \texttt{vt} ^T  \cdot diag( \texttt{w} )^{-1}  \cdot \texttt{u} ^T  \cdot \texttt{rhs} \sim \texttt{A} ^{-1}  \cdot \texttt{rhs}\f]
   2556 
   2557     Using this technique you can either get a very accurate solution of the
   2558     convenient linear system, or the best (in the least-squares terms)
   2559     pseudo-solution of an overdetermined linear system.
   2560 
   2561     @param rhs right-hand side of a linear system (u\*w\*v')\*dst = rhs to
   2562     be solved, where A has been previously decomposed.
   2563 
   2564     @param dst found solution of the system.
   2565 
   2566     @note Explicit SVD with the further back substitution only makes sense
   2567     if you need to solve many linear systems with the same left-hand side
   2568     (for example, src ). If all you need is to solve a single system
   2569     (possibly with multiple rhs immediately available), simply call solve
   2570     add pass DECOMP_SVD there. It does absolutely the same thing.
   2571       */
   2572     void backSubst( InputArray rhs, OutputArray dst ) const;
   2573 
   2574     /** @todo document */
   2575     template<typename _Tp, int m, int n, int nm> static
   2576     void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt );
   2577 
   2578     /** @todo document */
   2579     template<typename _Tp, int m, int n, int nm> static
   2580     void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w );
   2581 
   2582     /** @todo document */
   2583     template<typename _Tp, int m, int n, int nm, int nb> static
   2584     void backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u, const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs, Matx<_Tp, n, nb>& dst );
   2585 
   2586     Mat u, w, vt;
   2587 };
   2588 
   2589 /** @brief Random Number Generator
   2590 
   2591 Random number generator. It encapsulates the state (currently, a 64-bit
   2592 integer) and has methods to return scalar random values and to fill
   2593 arrays with random values. Currently it supports uniform and Gaussian
   2594 (normal) distributions. The generator uses Multiply-With-Carry
   2595 algorithm, introduced by G. Marsaglia (
   2596 <http://en.wikipedia.org/wiki/Multiply-with-carry> ).
   2597 Gaussian-distribution random numbers are generated using the Ziggurat
   2598 algorithm ( <http://en.wikipedia.org/wiki/Ziggurat_algorithm> ),
   2599 introduced by G. Marsaglia and W. W. Tsang.
   2600 */
   2601 class CV_EXPORTS RNG
   2602 {
   2603 public:
   2604     enum { UNIFORM = 0,
   2605            NORMAL  = 1
   2606          };
   2607 
   2608     /** @brief constructor
   2609 
   2610     These are the RNG constructors. The first form sets the state to some
   2611     pre-defined value, equal to 2\*\*32-1 in the current implementation. The
   2612     second form sets the state to the specified value. If you passed state=0
   2613     , the constructor uses the above default value instead to avoid the
   2614     singular random number sequence, consisting of all zeros.
   2615     */
   2616     RNG();
   2617     /** @overload
   2618     @param state 64-bit value used to initialize the RNG.
   2619     */
   2620     RNG(uint64 state);
   2621     /**The method updates the state using the MWC algorithm and returns the
   2622     next 32-bit random number.*/
   2623     unsigned next();
   2624 
   2625     /**Each of the methods updates the state using the MWC algorithm and
   2626     returns the next random number of the specified type. In case of integer
   2627     types, the returned number is from the available value range for the
   2628     specified type. In case of floating-point types, the returned value is
   2629     from [0,1) range.
   2630     */
   2631     operator uchar();
   2632     /** @overload */
   2633     operator schar();
   2634     /** @overload */
   2635     operator ushort();
   2636     /** @overload */
   2637     operator short();
   2638     /** @overload */
   2639     operator unsigned();
   2640     /** @overload */
   2641     operator int();
   2642     /** @overload */
   2643     operator float();
   2644     /** @overload */
   2645     operator double();
   2646 
   2647     /** @brief returns a random integer sampled uniformly from [0, N).
   2648 
   2649     The methods transform the state using the MWC algorithm and return the
   2650     next random number. The first form is equivalent to RNG::next . The
   2651     second form returns the random number modulo N , which means that the
   2652     result is in the range [0, N) .
   2653     */
   2654     unsigned operator ()();
   2655     /** @overload
   2656     @param N upper non-inclusive boundary of the returned random number.
   2657     */
   2658     unsigned operator ()(unsigned N);
   2659 
   2660     /** @brief returns uniformly distributed integer random number from [a,b) range
   2661 
   2662     The methods transform the state using the MWC algorithm and return the
   2663     next uniformly-distributed random number of the specified type, deduced
   2664     from the input parameter type, from the range [a, b) . There is a nuance
   2665     illustrated by the following sample:
   2666 
   2667     @code{.cpp}
   2668     RNG rng;
   2669 
   2670     // always produces 0
   2671     double a = rng.uniform(0, 1);
   2672 
   2673     // produces double from [0, 1)
   2674     double a1 = rng.uniform((double)0, (double)1);
   2675 
   2676     // produces float from [0, 1)
   2677     double b = rng.uniform(0.f, 1.f);
   2678 
   2679     // produces double from [0, 1)
   2680     double c = rng.uniform(0., 1.);
   2681 
   2682     // may cause compiler error because of ambiguity:
   2683     //  RNG::uniform(0, (int)0.999999)? or RNG::uniform((double)0, 0.99999)?
   2684     double d = rng.uniform(0, 0.999999);
   2685     @endcode
   2686 
   2687     The compiler does not take into account the type of the variable to
   2688     which you assign the result of RNG::uniform . The only thing that
   2689     matters to the compiler is the type of a and b parameters. So, if you
   2690     want a floating-point random number, but the range boundaries are
   2691     integer numbers, either put dots in the end, if they are constants, or
   2692     use explicit type cast operators, as in the a1 initialization above.
   2693     @param a lower inclusive boundary of the returned random numbers.
   2694     @param b upper non-inclusive boundary of the returned random numbers.
   2695       */
   2696     int uniform(int a, int b);
   2697     /** @overload */
   2698     float uniform(float a, float b);
   2699     /** @overload */
   2700     double uniform(double a, double b);
   2701 
   2702     /** @brief Fills arrays with random numbers.
   2703 
   2704     @param mat 2D or N-dimensional matrix; currently matrices with more than
   2705     4 channels are not supported by the methods, use Mat::reshape as a
   2706     possible workaround.
   2707     @param distType distribution type, RNG::UNIFORM or RNG::NORMAL.
   2708     @param a first distribution parameter; in case of the uniform
   2709     distribution, this is an inclusive lower boundary, in case of the normal
   2710     distribution, this is a mean value.
   2711     @param b second distribution parameter; in case of the uniform
   2712     distribution, this is a non-inclusive upper boundary, in case of the
   2713     normal distribution, this is a standard deviation (diagonal of the
   2714     standard deviation matrix or the full standard deviation matrix).
   2715     @param saturateRange pre-saturation flag; for uniform distribution only;
   2716     if true, the method will first convert a and b to the acceptable value
   2717     range (according to the mat datatype) and then will generate uniformly
   2718     distributed random numbers within the range [saturate(a), saturate(b)),
   2719     if saturateRange=false, the method will generate uniformly distributed
   2720     random numbers in the original range [a, b) and then will saturate them,
   2721     it means, for example, that
   2722     <tt>theRNG().fill(mat_8u, RNG::UNIFORM, -DBL_MAX, DBL_MAX)</tt> will likely
   2723     produce array mostly filled with 0's and 255's, since the range (0, 255)
   2724     is significantly smaller than [-DBL_MAX, DBL_MAX).
   2725 
   2726     Each of the methods fills the matrix with the random values from the
   2727     specified distribution. As the new numbers are generated, the RNG state
   2728     is updated accordingly. In case of multiple-channel images, every
   2729     channel is filled independently, which means that RNG cannot generate
   2730     samples from the multi-dimensional Gaussian distribution with
   2731     non-diagonal covariance matrix directly. To do that, the method
   2732     generates samples from multi-dimensional standard Gaussian distribution
   2733     with zero mean and identity covariation matrix, and then transforms them
   2734     using transform to get samples from the specified Gaussian distribution.
   2735     */
   2736     void fill( InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange = false );
   2737 
   2738     /** @brief Returns the next random number sampled from the Gaussian distribution
   2739     @param sigma standard deviation of the distribution.
   2740 
   2741     The method transforms the state using the MWC algorithm and returns the
   2742     next random number from the Gaussian distribution N(0,sigma) . That is,
   2743     the mean value of the returned random numbers is zero and the standard
   2744     deviation is the specified sigma .
   2745     */
   2746     double gaussian(double sigma);
   2747 
   2748     uint64 state;
   2749 };
   2750 
   2751 /** @brief Mersenne Twister random number generator
   2752 
   2753 Inspired by http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c
   2754 @todo document
   2755  */
   2756 class CV_EXPORTS RNG_MT19937
   2757 {
   2758 public:
   2759     RNG_MT19937();
   2760     RNG_MT19937(unsigned s);
   2761     void seed(unsigned s);
   2762 
   2763     unsigned next();
   2764 
   2765     operator int();
   2766     operator unsigned();
   2767     operator float();
   2768     operator double();
   2769 
   2770     unsigned operator ()(unsigned N);
   2771     unsigned operator ()();
   2772 
   2773     /** @brief returns uniformly distributed integer random number from [a,b) range
   2774 
   2775 */
   2776     int uniform(int a, int b);
   2777     /** @brief returns uniformly distributed floating-point random number from [a,b) range
   2778 
   2779 */
   2780     float uniform(float a, float b);
   2781     /** @brief returns uniformly distributed double-precision floating-point random number from [a,b) range
   2782 
   2783 */
   2784     double uniform(double a, double b);
   2785 
   2786 private:
   2787     enum PeriodParameters {N = 624, M = 397};
   2788     unsigned state[N];
   2789     int mti;
   2790 };
   2791 
   2792 //! @} core_array
   2793 
   2794 //! @addtogroup core_cluster
   2795 //!  @{
   2796 
   2797 /** @example kmeans.cpp
   2798   An example on K-means clustering
   2799 */
   2800 
   2801 /** @brief Finds centers of clusters and groups input samples around the clusters.
   2802 
   2803 The function kmeans implements a k-means algorithm that finds the centers of cluster_count clusters
   2804 and groups the input samples around the clusters. As an output, \f$\texttt{labels}_i\f$ contains a
   2805 0-based cluster index for the sample stored in the \f$i^{th}\f$ row of the samples matrix.
   2806 
   2807 @note
   2808 -   (Python) An example on K-means clustering can be found at
   2809     opencv_source_code/samples/python2/kmeans.py
   2810 @param data Data for clustering. An array of N-Dimensional points with float coordinates is needed.
   2811 Examples of this array can be:
   2812 -   Mat points(count, 2, CV_32F);
   2813 -   Mat points(count, 1, CV_32FC2);
   2814 -   Mat points(1, count, CV_32FC2);
   2815 -   std::vector\<cv::Point2f\> points(sampleCount);
   2816 @param K Number of clusters to split the set by.
   2817 @param bestLabels Input/output integer array that stores the cluster indices for every sample.
   2818 @param criteria The algorithm termination criteria, that is, the maximum number of iterations and/or
   2819 the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster
   2820 centers moves by less than criteria.epsilon on some iteration, the algorithm stops.
   2821 @param attempts Flag to specify the number of times the algorithm is executed using different
   2822 initial labellings. The algorithm returns the labels that yield the best compactness (see the last
   2823 function parameter).
   2824 @param flags Flag that can take values of cv::KmeansFlags
   2825 @param centers Output matrix of the cluster centers, one row per each cluster center.
   2826 @return The function returns the compactness measure that is computed as
   2827 \f[\sum _i  \| \texttt{samples} _i -  \texttt{centers} _{ \texttt{labels} _i} \| ^2\f]
   2828 after every attempt. The best (minimum) value is chosen and the corresponding labels and the
   2829 compactness value are returned by the function. Basically, you can use only the core of the
   2830 function, set the number of attempts to 1, initialize labels each time using a custom algorithm,
   2831 pass them with the ( flags = KMEANS_USE_INITIAL_LABELS ) flag, and then choose the best
   2832 (most-compact) clustering.
   2833 */
   2834 CV_EXPORTS_W double kmeans( InputArray data, int K, InputOutputArray bestLabels,
   2835                             TermCriteria criteria, int attempts,
   2836                             int flags, OutputArray centers = noArray() );
   2837 
   2838 //! @} core_cluster
   2839 
   2840 //! @addtogroup core_basic
   2841 //! @{
   2842 
   2843 /////////////////////////////// Formatted output of cv::Mat ///////////////////////////
   2844 
   2845 /** @todo document */
   2846 class CV_EXPORTS Formatted
   2847 {
   2848 public:
   2849     virtual const char* next() = 0;
   2850     virtual void reset() = 0;
   2851     virtual ~Formatted();
   2852 };
   2853 
   2854 /** @todo document */
   2855 class CV_EXPORTS Formatter
   2856 {
   2857 public:
   2858     enum { FMT_DEFAULT = 0,
   2859            FMT_MATLAB  = 1,
   2860            FMT_CSV     = 2,
   2861            FMT_PYTHON  = 3,
   2862            FMT_NUMPY   = 4,
   2863            FMT_C       = 5
   2864          };
   2865 
   2866     virtual ~Formatter();
   2867 
   2868     virtual Ptr<Formatted> format(const Mat& mtx) const = 0;
   2869 
   2870     virtual void set32fPrecision(int p = 8) = 0;
   2871     virtual void set64fPrecision(int p = 16) = 0;
   2872     virtual void setMultiline(bool ml = true) = 0;
   2873 
   2874     static Ptr<Formatter> get(int fmt = FMT_DEFAULT);
   2875 
   2876 };
   2877 
   2878 //////////////////////////////////////// Algorithm ////////////////////////////////////
   2879 
   2880 class CV_EXPORTS Algorithm;
   2881 
   2882 template<typename _Tp> struct ParamType {};
   2883 
   2884 
   2885 /** @brief This is a base class for all more or less complex algorithms in OpenCV
   2886 
   2887 especially for classes of algorithms, for which there can be multiple implementations. The examples
   2888 are stereo correspondence (for which there are algorithms like block matching, semi-global block
   2889 matching, graph-cut etc.), background subtraction (which can be done using mixture-of-gaussians
   2890 models, codebook-based algorithm etc.), optical flow (block matching, Lucas-Kanade, Horn-Schunck
   2891 etc.).
   2892 
   2893 Here is example of SIFT use in your application via Algorithm interface:
   2894 @code
   2895     #include "opencv2/opencv.hpp"
   2896     #include "opencv2/xfeatures2d.hpp"
   2897     using namespace cv::xfeatures2d;
   2898 
   2899     Ptr<Feature2D> sift = SIFT::create();
   2900     FileStorage fs("sift_params.xml", FileStorage::READ);
   2901     if( fs.isOpened() ) // if we have file with parameters, read them
   2902     {
   2903         sift->read(fs["sift_params"]);
   2904         fs.release();
   2905     }
   2906     else // else modify the parameters and store them; user can later edit the file to use different parameters
   2907     {
   2908         sift->setContrastThreshold(0.01f); // lower the contrast threshold, compared to the default value
   2909         {
   2910             WriteStructContext ws(fs, "sift_params", CV_NODE_MAP);
   2911             sift->write(fs);
   2912         }
   2913     }
   2914     Mat image = imread("myimage.png", 0), descriptors;
   2915     vector<KeyPoint> keypoints;
   2916     sift->detectAndCompute(image, noArray(), keypoints, descriptors);
   2917 @endcode
   2918  */
   2919 class CV_EXPORTS_W Algorithm
   2920 {
   2921 public:
   2922     Algorithm();
   2923     virtual ~Algorithm();
   2924 
   2925     /** @brief Clears the algorithm state
   2926     */
   2927     CV_WRAP virtual void clear() {}
   2928 
   2929     /** @brief Stores algorithm parameters in a file storage
   2930     */
   2931     virtual void write(FileStorage& fs) const { (void)fs; }
   2932 
   2933     /** @brief Reads algorithm parameters from a file storage
   2934     */
   2935     virtual void read(const FileNode& fn) { (void)fn; }
   2936 
   2937     /** @brief Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read
   2938      */
   2939     virtual bool empty() const { return false; }
   2940 
   2941     /** @brief Reads algorithm from the file node
   2942 
   2943      This is static template method of Algorithm. It's usage is following (in the case of SVM):
   2944      @code
   2945      Ptr<SVM> svm = Algorithm::read<SVM>(fn);
   2946      @endcode
   2947      In order to make this method work, the derived class must overwrite Algorithm::read(const
   2948      FileNode& fn) and also have static create() method without parameters
   2949      (or with all the optional parameters)
   2950      */
   2951     template<typename _Tp> static Ptr<_Tp> read(const FileNode& fn)
   2952     {
   2953         Ptr<_Tp> obj = _Tp::create();
   2954         obj->read(fn);
   2955         return !obj->empty() ? obj : Ptr<_Tp>();
   2956     }
   2957 
   2958     /** @brief Loads algorithm from the file
   2959 
   2960      @param filename Name of the file to read.
   2961      @param objname The optional name of the node to read (if empty, the first top-level node will be used)
   2962 
   2963      This is static template method of Algorithm. It's usage is following (in the case of SVM):
   2964      @code
   2965      Ptr<SVM> svm = Algorithm::load<SVM>("my_svm_model.xml");
   2966      @endcode
   2967      In order to make this method work, the derived class must overwrite Algorithm::read(const
   2968      FileNode& fn).
   2969      */
   2970     template<typename _Tp> static Ptr<_Tp> load(const String& filename, const String& objname=String())
   2971     {
   2972         FileStorage fs(filename, FileStorage::READ);
   2973         FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname];
   2974         Ptr<_Tp> obj = _Tp::create();
   2975         obj->read(fn);
   2976         return !obj->empty() ? obj : Ptr<_Tp>();
   2977     }
   2978 
   2979     /** @brief Loads algorithm from a String
   2980 
   2981      @param strModel The string variable containing the model you want to load.
   2982      @param objname The optional name of the node to read (if empty, the first top-level node will be used)
   2983 
   2984      This is static template method of Algorithm. It's usage is following (in the case of SVM):
   2985      @code
   2986      Ptr<SVM> svm = Algorithm::loadFromString<SVM>(myStringModel);
   2987      @endcode
   2988      */
   2989     template<typename _Tp> static Ptr<_Tp> loadFromString(const String& strModel, const String& objname=String())
   2990     {
   2991         FileStorage fs(strModel, FileStorage::READ + FileStorage::MEMORY);
   2992         FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname];
   2993         Ptr<_Tp> obj = _Tp::create();
   2994         obj->read(fn);
   2995         return !obj->empty() ? obj : Ptr<_Tp>();
   2996     }
   2997 
   2998     /** Saves the algorithm to a file.
   2999      In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs). */
   3000     CV_WRAP virtual void save(const String& filename) const;
   3001 
   3002     /** Returns the algorithm string identifier.
   3003      This string is used as top level xml/yml node tag when the object is saved to a file or string. */
   3004     CV_WRAP virtual String getDefaultName() const;
   3005 };
   3006 
   3007 struct Param {
   3008     enum { INT=0, BOOLEAN=1, REAL=2, STRING=3, MAT=4, MAT_VECTOR=5, ALGORITHM=6, FLOAT=7,
   3009            UNSIGNED_INT=8, UINT64=9, UCHAR=11 };
   3010 };
   3011 
   3012 
   3013 
   3014 template<> struct ParamType<bool>
   3015 {
   3016     typedef bool const_param_type;
   3017     typedef bool member_type;
   3018 
   3019     enum { type = Param::BOOLEAN };
   3020 };
   3021 
   3022 template<> struct ParamType<int>
   3023 {
   3024     typedef int const_param_type;
   3025     typedef int member_type;
   3026 
   3027     enum { type = Param::INT };
   3028 };
   3029 
   3030 template<> struct ParamType<double>
   3031 {
   3032     typedef double const_param_type;
   3033     typedef double member_type;
   3034 
   3035     enum { type = Param::REAL };
   3036 };
   3037 
   3038 template<> struct ParamType<String>
   3039 {
   3040     typedef const String& const_param_type;
   3041     typedef String member_type;
   3042 
   3043     enum { type = Param::STRING };
   3044 };
   3045 
   3046 template<> struct ParamType<Mat>
   3047 {
   3048     typedef const Mat& const_param_type;
   3049     typedef Mat member_type;
   3050 
   3051     enum { type = Param::MAT };
   3052 };
   3053 
   3054 template<> struct ParamType<std::vector<Mat> >
   3055 {
   3056     typedef const std::vector<Mat>& const_param_type;
   3057     typedef std::vector<Mat> member_type;
   3058 
   3059     enum { type = Param::MAT_VECTOR };
   3060 };
   3061 
   3062 template<> struct ParamType<Algorithm>
   3063 {
   3064     typedef const Ptr<Algorithm>& const_param_type;
   3065     typedef Ptr<Algorithm> member_type;
   3066 
   3067     enum { type = Param::ALGORITHM };
   3068 };
   3069 
   3070 template<> struct ParamType<float>
   3071 {
   3072     typedef float const_param_type;
   3073     typedef float member_type;
   3074 
   3075     enum { type = Param::FLOAT };
   3076 };
   3077 
   3078 template<> struct ParamType<unsigned>
   3079 {
   3080     typedef unsigned const_param_type;
   3081     typedef unsigned member_type;
   3082 
   3083     enum { type = Param::UNSIGNED_INT };
   3084 };
   3085 
   3086 template<> struct ParamType<uint64>
   3087 {
   3088     typedef uint64 const_param_type;
   3089     typedef uint64 member_type;
   3090 
   3091     enum { type = Param::UINT64 };
   3092 };
   3093 
   3094 template<> struct ParamType<uchar>
   3095 {
   3096     typedef uchar const_param_type;
   3097     typedef uchar member_type;
   3098 
   3099     enum { type = Param::UCHAR };
   3100 };
   3101 
   3102 //! @} core_basic
   3103 
   3104 } //namespace cv
   3105 
   3106 #include "opencv2/core/operations.hpp"
   3107 #include "opencv2/core/cvstd.inl.hpp"
   3108 #include "opencv2/core/utility.hpp"
   3109 #include "opencv2/core/optim.hpp"
   3110 
   3111 #endif /*__OPENCV_CORE_HPP__*/
   3112