Home | History | Annotate | Download | only in IR
      1 //===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the declarations of classes that represent "derived
     11 // types".  These are things like "arrays of x" or "structure of x, y, z" or
     12 // "function returning x taking (y,z) as parameters", etc...
     13 //
     14 // The implementations of these classes live in the Type.cpp file.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #ifndef LLVM_IR_DERIVEDTYPES_H
     19 #define LLVM_IR_DERIVEDTYPES_H
     20 
     21 #include "llvm/IR/Type.h"
     22 #include "llvm/Support/Compiler.h"
     23 #include "llvm/Support/DataTypes.h"
     24 
     25 namespace llvm {
     26 
     27 class Value;
     28 class APInt;
     29 class LLVMContext;
     30 template<typename T> class ArrayRef;
     31 class StringRef;
     32 
     33 /// Class to represent integer types. Note that this class is also used to
     34 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
     35 /// Int64Ty.
     36 /// @brief Integer representation type
     37 class IntegerType : public Type {
     38   friend class LLVMContextImpl;
     39 
     40 protected:
     41   explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
     42     setSubclassData(NumBits);
     43   }
     44 
     45 public:
     46   /// This enum is just used to hold constants we need for IntegerType.
     47   enum {
     48     MIN_INT_BITS = 1,        ///< Minimum number of bits that can be specified
     49     MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
     50       ///< Note that bit width is stored in the Type classes SubclassData field
     51       ///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits.
     52   };
     53 
     54   /// This static method is the primary way of constructing an IntegerType.
     55   /// If an IntegerType with the same NumBits value was previously instantiated,
     56   /// that instance will be returned. Otherwise a new one will be created. Only
     57   /// one instance with a given NumBits value is ever created.
     58   /// @brief Get or create an IntegerType instance.
     59   static IntegerType *get(LLVMContext &C, unsigned NumBits);
     60 
     61   /// @brief Get the number of bits in this IntegerType
     62   unsigned getBitWidth() const { return getSubclassData(); }
     63 
     64   /// getBitMask - Return a bitmask with ones set for all of the bits
     65   /// that can be set by an unsigned version of this type.  This is 0xFF for
     66   /// i8, 0xFFFF for i16, etc.
     67   uint64_t getBitMask() const {
     68     return ~uint64_t(0UL) >> (64-getBitWidth());
     69   }
     70 
     71   /// getSignBit - Return a uint64_t with just the most significant bit set (the
     72   /// sign bit, if the value is treated as a signed number).
     73   uint64_t getSignBit() const {
     74     return 1ULL << (getBitWidth()-1);
     75   }
     76 
     77   /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
     78   /// @returns a bit mask with ones set for all the bits of this type.
     79   /// @brief Get a bit mask for this type.
     80   APInt getMask() const;
     81 
     82   /// This method determines if the width of this IntegerType is a power-of-2
     83   /// in terms of 8 bit bytes.
     84   /// @returns true if this is a power-of-2 byte width.
     85   /// @brief Is this a power-of-2 byte-width IntegerType ?
     86   bool isPowerOf2ByteWidth() const;
     87 
     88   /// Methods for support type inquiry through isa, cast, and dyn_cast.
     89   static inline bool classof(const Type *T) {
     90     return T->getTypeID() == IntegerTyID;
     91   }
     92 };
     93 
     94 /// FunctionType - Class to represent function types
     95 ///
     96 class FunctionType : public Type {
     97   FunctionType(const FunctionType &) = delete;
     98   const FunctionType &operator=(const FunctionType &) = delete;
     99   FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
    100 
    101 public:
    102   /// FunctionType::get - This static method is the primary way of constructing
    103   /// a FunctionType.
    104   ///
    105   static FunctionType *get(Type *Result,
    106                            ArrayRef<Type*> Params, bool isVarArg);
    107 
    108   /// FunctionType::get - Create a FunctionType taking no parameters.
    109   ///
    110   static FunctionType *get(Type *Result, bool isVarArg);
    111 
    112   /// isValidReturnType - Return true if the specified type is valid as a return
    113   /// type.
    114   static bool isValidReturnType(Type *RetTy);
    115 
    116   /// isValidArgumentType - Return true if the specified type is valid as an
    117   /// argument type.
    118   static bool isValidArgumentType(Type *ArgTy);
    119 
    120   bool isVarArg() const { return getSubclassData()!=0; }
    121   Type *getReturnType() const { return ContainedTys[0]; }
    122 
    123   typedef Type::subtype_iterator param_iterator;
    124   param_iterator param_begin() const { return ContainedTys + 1; }
    125   param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
    126   ArrayRef<Type *> params() const {
    127     return makeArrayRef(param_begin(), param_end());
    128   }
    129 
    130   /// Parameter type accessors.
    131   Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
    132 
    133   /// getNumParams - Return the number of fixed parameters this function type
    134   /// requires.  This does not consider varargs.
    135   ///
    136   unsigned getNumParams() const { return NumContainedTys - 1; }
    137 
    138   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    139   static inline bool classof(const Type *T) {
    140     return T->getTypeID() == FunctionTyID;
    141   }
    142 };
    143 static_assert(AlignOf<FunctionType>::Alignment >= AlignOf<Type *>::Alignment,
    144               "Alignment sufficient for objects appended to FunctionType");
    145 
    146 /// CompositeType - Common super class of ArrayType, StructType, PointerType
    147 /// and VectorType.
    148 class CompositeType : public Type {
    149 protected:
    150   explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {}
    151 
    152 public:
    153   /// getTypeAtIndex - Given an index value into the type, return the type of
    154   /// the element.
    155   ///
    156   Type *getTypeAtIndex(const Value *V) const;
    157   Type *getTypeAtIndex(unsigned Idx) const;
    158   bool indexValid(const Value *V) const;
    159   bool indexValid(unsigned Idx) const;
    160 
    161   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    162   static inline bool classof(const Type *T) {
    163     return T->getTypeID() == ArrayTyID ||
    164            T->getTypeID() == StructTyID ||
    165            T->getTypeID() == PointerTyID ||
    166            T->getTypeID() == VectorTyID;
    167   }
    168 };
    169 
    170 /// StructType - Class to represent struct types.  There are two different kinds
    171 /// of struct types: Literal structs and Identified structs.
    172 ///
    173 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
    174 /// always have a body when created.  You can get one of these by using one of
    175 /// the StructType::get() forms.
    176 ///
    177 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
    178 /// uniqued.  The names for identified structs are managed at the LLVMContext
    179 /// level, so there can only be a single identified struct with a given name in
    180 /// a particular LLVMContext.  Identified structs may also optionally be opaque
    181 /// (have no body specified).  You get one of these by using one of the
    182 /// StructType::create() forms.
    183 ///
    184 /// Independent of what kind of struct you have, the body of a struct type are
    185 /// laid out in memory consequtively with the elements directly one after the
    186 /// other (if the struct is packed) or (if not packed) with padding between the
    187 /// elements as defined by DataLayout (which is required to match what the code
    188 /// generator for a target expects).
    189 ///
    190 class StructType : public CompositeType {
    191   StructType(const StructType &) = delete;
    192   const StructType &operator=(const StructType &) = delete;
    193   StructType(LLVMContext &C)
    194     : CompositeType(C, StructTyID), SymbolTableEntry(nullptr) {}
    195   enum {
    196     /// This is the contents of the SubClassData field.
    197     SCDB_HasBody = 1,
    198     SCDB_Packed = 2,
    199     SCDB_IsLiteral = 4,
    200     SCDB_IsSized = 8
    201   };
    202 
    203   /// SymbolTableEntry - For a named struct that actually has a name, this is a
    204   /// pointer to the symbol table entry (maintained by LLVMContext) for the
    205   /// struct.  This is null if the type is an literal struct or if it is
    206   /// a identified type that has an empty name.
    207   ///
    208   void *SymbolTableEntry;
    209 
    210 public:
    211   /// StructType::create - This creates an identified struct.
    212   static StructType *create(LLVMContext &Context, StringRef Name);
    213   static StructType *create(LLVMContext &Context);
    214 
    215   static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
    216                             bool isPacked = false);
    217   static StructType *create(ArrayRef<Type *> Elements);
    218   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
    219                             StringRef Name, bool isPacked = false);
    220   static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
    221   static StructType *create(StringRef Name, Type *elt1, ...) LLVM_END_WITH_NULL;
    222 
    223   /// StructType::get - This static method is the primary way to create a
    224   /// literal StructType.
    225   static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
    226                          bool isPacked = false);
    227 
    228   /// StructType::get - Create an empty structure type.
    229   ///
    230   static StructType *get(LLVMContext &Context, bool isPacked = false);
    231 
    232   /// StructType::get - This static method is a convenience method for creating
    233   /// structure types by specifying the elements as arguments.  Note that this
    234   /// method always returns a non-packed struct, and requires at least one
    235   /// element type.
    236   static StructType *get(Type *elt1, ...) LLVM_END_WITH_NULL;
    237 
    238   bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
    239 
    240   /// isLiteral - Return true if this type is uniqued by structural
    241   /// equivalence, false if it is a struct definition.
    242   bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
    243 
    244   /// isOpaque - Return true if this is a type with an identity that has no body
    245   /// specified yet.  These prints as 'opaque' in .ll files.
    246   bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
    247 
    248   /// isSized - Return true if this is a sized type.
    249   bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
    250 
    251   /// hasName - Return true if this is a named struct that has a non-empty name.
    252   bool hasName() const { return SymbolTableEntry != nullptr; }
    253 
    254   /// getName - Return the name for this struct type if it has an identity.
    255   /// This may return an empty string for an unnamed struct type.  Do not call
    256   /// this on an literal type.
    257   StringRef getName() const;
    258 
    259   /// setName - Change the name of this type to the specified name, or to a name
    260   /// with a suffix if there is a collision.  Do not call this on an literal
    261   /// type.
    262   void setName(StringRef Name);
    263 
    264   /// setBody - Specify a body for an opaque identified type.
    265   void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
    266   void setBody(Type *elt1, ...) LLVM_END_WITH_NULL;
    267 
    268   /// isValidElementType - Return true if the specified type is valid as a
    269   /// element type.
    270   static bool isValidElementType(Type *ElemTy);
    271 
    272   // Iterator access to the elements.
    273   typedef Type::subtype_iterator element_iterator;
    274   element_iterator element_begin() const { return ContainedTys; }
    275   element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
    276   ArrayRef<Type *> const elements() const {
    277     return makeArrayRef(element_begin(), element_end());
    278   }
    279 
    280   /// isLayoutIdentical - Return true if this is layout identical to the
    281   /// specified struct.
    282   bool isLayoutIdentical(StructType *Other) const;
    283 
    284   /// Random access to the elements
    285   unsigned getNumElements() const { return NumContainedTys; }
    286   Type *getElementType(unsigned N) const {
    287     assert(N < NumContainedTys && "Element number out of range!");
    288     return ContainedTys[N];
    289   }
    290 
    291   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    292   static inline bool classof(const Type *T) {
    293     return T->getTypeID() == StructTyID;
    294   }
    295 };
    296 
    297 /// SequentialType - This is the superclass of the array, pointer and vector
    298 /// type classes.  All of these represent "arrays" in memory.  The array type
    299 /// represents a specifically sized array, pointer types are unsized/unknown
    300 /// size arrays, vector types represent specifically sized arrays that
    301 /// allow for use of SIMD instructions.  SequentialType holds the common
    302 /// features of all, which stem from the fact that all three lay their
    303 /// components out in memory identically.
    304 ///
    305 class SequentialType : public CompositeType {
    306   Type *ContainedType;               ///< Storage for the single contained type.
    307   SequentialType(const SequentialType &) = delete;
    308   const SequentialType &operator=(const SequentialType &) = delete;
    309 
    310 protected:
    311   SequentialType(TypeID TID, Type *ElType)
    312     : CompositeType(ElType->getContext(), TID), ContainedType(ElType) {
    313     ContainedTys = &ContainedType;
    314     NumContainedTys = 1;
    315   }
    316 
    317 public:
    318   Type *getElementType() const { return ContainedTys[0]; }
    319 
    320   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    321   static inline bool classof(const Type *T) {
    322     return T->getTypeID() == ArrayTyID ||
    323            T->getTypeID() == PointerTyID ||
    324            T->getTypeID() == VectorTyID;
    325   }
    326 };
    327 
    328 /// ArrayType - Class to represent array types.
    329 ///
    330 class ArrayType : public SequentialType {
    331   uint64_t NumElements;
    332 
    333   ArrayType(const ArrayType &) = delete;
    334   const ArrayType &operator=(const ArrayType &) = delete;
    335   ArrayType(Type *ElType, uint64_t NumEl);
    336 
    337 public:
    338   /// ArrayType::get - This static method is the primary way to construct an
    339   /// ArrayType
    340   ///
    341   static ArrayType *get(Type *ElementType, uint64_t NumElements);
    342 
    343   /// isValidElementType - Return true if the specified type is valid as a
    344   /// element type.
    345   static bool isValidElementType(Type *ElemTy);
    346 
    347   uint64_t getNumElements() const { return NumElements; }
    348 
    349   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    350   static inline bool classof(const Type *T) {
    351     return T->getTypeID() == ArrayTyID;
    352   }
    353 };
    354 
    355 /// VectorType - Class to represent vector types.
    356 ///
    357 class VectorType : public SequentialType {
    358   unsigned NumElements;
    359 
    360   VectorType(const VectorType &) = delete;
    361   const VectorType &operator=(const VectorType &) = delete;
    362   VectorType(Type *ElType, unsigned NumEl);
    363 
    364 public:
    365   /// VectorType::get - This static method is the primary way to construct an
    366   /// VectorType.
    367   ///
    368   static VectorType *get(Type *ElementType, unsigned NumElements);
    369 
    370   /// VectorType::getInteger - This static method gets a VectorType with the
    371   /// same number of elements as the input type, and the element type is an
    372   /// integer type of the same width as the input element type.
    373   ///
    374   static VectorType *getInteger(VectorType *VTy) {
    375     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
    376     assert(EltBits && "Element size must be of a non-zero size");
    377     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
    378     return VectorType::get(EltTy, VTy->getNumElements());
    379   }
    380 
    381   /// VectorType::getExtendedElementVectorType - This static method is like
    382   /// getInteger except that the element types are twice as wide as the
    383   /// elements in the input type.
    384   ///
    385   static VectorType *getExtendedElementVectorType(VectorType *VTy) {
    386     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
    387     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
    388     return VectorType::get(EltTy, VTy->getNumElements());
    389   }
    390 
    391   /// VectorType::getTruncatedElementVectorType - This static method is like
    392   /// getInteger except that the element types are half as wide as the
    393   /// elements in the input type.
    394   ///
    395   static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
    396     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
    397     assert((EltBits & 1) == 0 &&
    398            "Cannot truncate vector element with odd bit-width");
    399     Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
    400     return VectorType::get(EltTy, VTy->getNumElements());
    401   }
    402 
    403   /// VectorType::getHalfElementsVectorType - This static method returns
    404   /// a VectorType with half as many elements as the input type and the
    405   /// same element type.
    406   ///
    407   static VectorType *getHalfElementsVectorType(VectorType *VTy) {
    408     unsigned NumElts = VTy->getNumElements();
    409     assert ((NumElts & 1) == 0 &&
    410             "Cannot halve vector with odd number of elements.");
    411     return VectorType::get(VTy->getElementType(), NumElts/2);
    412   }
    413 
    414   /// VectorType::getDoubleElementsVectorType - This static method returns
    415   /// a VectorType with twice  as many elements as the input type and the
    416   /// same element type.
    417   ///
    418   static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
    419     unsigned NumElts = VTy->getNumElements();
    420     return VectorType::get(VTy->getElementType(), NumElts*2);
    421   }
    422 
    423   /// isValidElementType - Return true if the specified type is valid as a
    424   /// element type.
    425   static bool isValidElementType(Type *ElemTy);
    426 
    427   /// @brief Return the number of elements in the Vector type.
    428   unsigned getNumElements() const { return NumElements; }
    429 
    430   /// @brief Return the number of bits in the Vector type.
    431   /// Returns zero when the vector is a vector of pointers.
    432   unsigned getBitWidth() const {
    433     return NumElements * getElementType()->getPrimitiveSizeInBits();
    434   }
    435 
    436   /// Methods for support type inquiry through isa, cast, and dyn_cast.
    437   static inline bool classof(const Type *T) {
    438     return T->getTypeID() == VectorTyID;
    439   }
    440 };
    441 
    442 /// PointerType - Class to represent pointers.
    443 ///
    444 class PointerType : public SequentialType {
    445   PointerType(const PointerType &) = delete;
    446   const PointerType &operator=(const PointerType &) = delete;
    447   explicit PointerType(Type *ElType, unsigned AddrSpace);
    448 
    449 public:
    450   /// PointerType::get - This constructs a pointer to an object of the specified
    451   /// type in a numbered address space.
    452   static PointerType *get(Type *ElementType, unsigned AddressSpace);
    453 
    454   /// PointerType::getUnqual - This constructs a pointer to an object of the
    455   /// specified type in the generic address space (address space zero).
    456   static PointerType *getUnqual(Type *ElementType) {
    457     return PointerType::get(ElementType, 0);
    458   }
    459 
    460   /// isValidElementType - Return true if the specified type is valid as a
    461   /// element type.
    462   static bool isValidElementType(Type *ElemTy);
    463 
    464   /// Return true if we can load or store from a pointer to this type.
    465   static bool isLoadableOrStorableType(Type *ElemTy);
    466 
    467   /// @brief Return the address space of the Pointer type.
    468   inline unsigned getAddressSpace() const { return getSubclassData(); }
    469 
    470   /// Implement support type inquiry through isa, cast, and dyn_cast.
    471   static inline bool classof(const Type *T) {
    472     return T->getTypeID() == PointerTyID;
    473   }
    474 };
    475 
    476 } // End llvm namespace
    477 
    478 #endif
    479