Home | History | Annotate | Download | only in src
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the distribution.
     14 //
     15 // - Neither the name of Sun Microsystems or the names of contributors may
     16 // be used to endorse or promote products derived from this software without
     17 // specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // The original source code covered by the above license above has been
     32 // modified significantly by Google Inc.
     33 // Copyright 2012 the V8 project authors. All rights reserved.
     34 
     35 #ifndef V8_ASSEMBLER_H_
     36 #define V8_ASSEMBLER_H_
     37 
     38 #include "src/allocation.h"
     39 #include "src/builtins.h"
     40 #include "src/isolate.h"
     41 #include "src/log.h"
     42 #include "src/register-configuration.h"
     43 #include "src/runtime/runtime.h"
     44 
     45 namespace v8 {
     46 
     47 // Forward declarations.
     48 class ApiFunction;
     49 
     50 namespace internal {
     51 
     52 // Forward declarations.
     53 class StatsCounter;
     54 
     55 // -----------------------------------------------------------------------------
     56 // Platform independent assembler base class.
     57 
     58 enum class CodeObjectRequired { kNo, kYes };
     59 
     60 
     61 class AssemblerBase: public Malloced {
     62  public:
     63   AssemblerBase(Isolate* isolate, void* buffer, int buffer_size);
     64   virtual ~AssemblerBase();
     65 
     66   Isolate* isolate() const { return isolate_; }
     67   int jit_cookie() const { return jit_cookie_; }
     68 
     69   bool emit_debug_code() const { return emit_debug_code_; }
     70   void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
     71 
     72   bool serializer_enabled() const { return serializer_enabled_; }
     73   void enable_serializer() { serializer_enabled_ = true; }
     74 
     75   bool predictable_code_size() const { return predictable_code_size_; }
     76   void set_predictable_code_size(bool value) { predictable_code_size_ = value; }
     77 
     78   uint64_t enabled_cpu_features() const { return enabled_cpu_features_; }
     79   void set_enabled_cpu_features(uint64_t features) {
     80     enabled_cpu_features_ = features;
     81   }
     82   bool IsEnabled(CpuFeature f) {
     83     return (enabled_cpu_features_ & (static_cast<uint64_t>(1) << f)) != 0;
     84   }
     85 
     86   bool is_constant_pool_available() const {
     87     if (FLAG_enable_embedded_constant_pool) {
     88       return constant_pool_available_;
     89     } else {
     90       // Embedded constant pool not supported on this architecture.
     91       UNREACHABLE();
     92       return false;
     93     }
     94   }
     95 
     96   // Overwrite a host NaN with a quiet target NaN.  Used by mksnapshot for
     97   // cross-snapshotting.
     98   static void QuietNaN(HeapObject* nan) { }
     99 
    100   int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
    101 
    102   // This function is called when code generation is aborted, so that
    103   // the assembler could clean up internal data structures.
    104   virtual void AbortedCodeGeneration() { }
    105 
    106   // Debugging
    107   void Print();
    108 
    109   static const int kMinimalBufferSize = 4*KB;
    110 
    111   static void FlushICache(Isolate* isolate, void* start, size_t size);
    112 
    113  protected:
    114   // The buffer into which code and relocation info are generated. It could
    115   // either be owned by the assembler or be provided externally.
    116   byte* buffer_;
    117   int buffer_size_;
    118   bool own_buffer_;
    119 
    120   void set_constant_pool_available(bool available) {
    121     if (FLAG_enable_embedded_constant_pool) {
    122       constant_pool_available_ = available;
    123     } else {
    124       // Embedded constant pool not supported on this architecture.
    125       UNREACHABLE();
    126     }
    127   }
    128 
    129   // The program counter, which points into the buffer above and moves forward.
    130   byte* pc_;
    131 
    132  private:
    133   Isolate* isolate_;
    134   int jit_cookie_;
    135   uint64_t enabled_cpu_features_;
    136   bool emit_debug_code_;
    137   bool predictable_code_size_;
    138   bool serializer_enabled_;
    139 
    140   // Indicates whether the constant pool can be accessed, which is only possible
    141   // if the pp register points to the current code object's constant pool.
    142   bool constant_pool_available_;
    143 
    144   // Constant pool.
    145   friend class FrameAndConstantPoolScope;
    146   friend class ConstantPoolUnavailableScope;
    147 };
    148 
    149 
    150 // Avoids emitting debug code during the lifetime of this scope object.
    151 class DontEmitDebugCodeScope BASE_EMBEDDED {
    152  public:
    153   explicit DontEmitDebugCodeScope(AssemblerBase* assembler)
    154       : assembler_(assembler), old_value_(assembler->emit_debug_code()) {
    155     assembler_->set_emit_debug_code(false);
    156   }
    157   ~DontEmitDebugCodeScope() {
    158     assembler_->set_emit_debug_code(old_value_);
    159   }
    160  private:
    161   AssemblerBase* assembler_;
    162   bool old_value_;
    163 };
    164 
    165 
    166 // Avoids using instructions that vary in size in unpredictable ways between the
    167 // snapshot and the running VM.
    168 class PredictableCodeSizeScope {
    169  public:
    170   explicit PredictableCodeSizeScope(AssemblerBase* assembler);
    171   PredictableCodeSizeScope(AssemblerBase* assembler, int expected_size);
    172   ~PredictableCodeSizeScope();
    173   void ExpectSize(int expected_size) { expected_size_ = expected_size; }
    174 
    175  private:
    176   AssemblerBase* assembler_;
    177   int expected_size_;
    178   int start_offset_;
    179   bool old_value_;
    180 };
    181 
    182 
    183 // Enable a specified feature within a scope.
    184 class CpuFeatureScope BASE_EMBEDDED {
    185  public:
    186 #ifdef DEBUG
    187   CpuFeatureScope(AssemblerBase* assembler, CpuFeature f);
    188   ~CpuFeatureScope();
    189 
    190  private:
    191   AssemblerBase* assembler_;
    192   uint64_t old_enabled_;
    193 #else
    194   CpuFeatureScope(AssemblerBase* assembler, CpuFeature f) {}
    195 #endif
    196 };
    197 
    198 
    199 // CpuFeatures keeps track of which features are supported by the target CPU.
    200 // Supported features must be enabled by a CpuFeatureScope before use.
    201 // Example:
    202 //   if (assembler->IsSupported(SSE3)) {
    203 //     CpuFeatureScope fscope(assembler, SSE3);
    204 //     // Generate code containing SSE3 instructions.
    205 //   } else {
    206 //     // Generate alternative code.
    207 //   }
    208 class CpuFeatures : public AllStatic {
    209  public:
    210   static void Probe(bool cross_compile) {
    211     STATIC_ASSERT(NUMBER_OF_CPU_FEATURES <= kBitsPerInt);
    212     if (initialized_) return;
    213     initialized_ = true;
    214     ProbeImpl(cross_compile);
    215   }
    216 
    217   static unsigned SupportedFeatures() {
    218     Probe(false);
    219     return supported_;
    220   }
    221 
    222   static bool IsSupported(CpuFeature f) {
    223     return (supported_ & (1u << f)) != 0;
    224   }
    225 
    226   static inline bool SupportsCrankshaft();
    227 
    228   static inline unsigned icache_line_size() {
    229     DCHECK(icache_line_size_ != 0);
    230     return icache_line_size_;
    231   }
    232 
    233   static inline unsigned dcache_line_size() {
    234     DCHECK(dcache_line_size_ != 0);
    235     return dcache_line_size_;
    236   }
    237 
    238   static void PrintTarget();
    239   static void PrintFeatures();
    240 
    241  private:
    242   friend class ExternalReference;
    243   friend class AssemblerBase;
    244   // Flush instruction cache.
    245   static void FlushICache(void* start, size_t size);
    246 
    247   // Platform-dependent implementation.
    248   static void ProbeImpl(bool cross_compile);
    249 
    250   static unsigned supported_;
    251   static unsigned icache_line_size_;
    252   static unsigned dcache_line_size_;
    253   static bool initialized_;
    254   DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
    255 };
    256 
    257 
    258 // -----------------------------------------------------------------------------
    259 // Labels represent pc locations; they are typically jump or call targets.
    260 // After declaration, a label can be freely used to denote known or (yet)
    261 // unknown pc location. Assembler::bind() is used to bind a label to the
    262 // current pc. A label can be bound only once.
    263 
    264 class Label {
    265  public:
    266   enum Distance {
    267     kNear, kFar
    268   };
    269 
    270   INLINE(Label()) {
    271     Unuse();
    272     UnuseNear();
    273   }
    274 
    275   INLINE(~Label()) {
    276     DCHECK(!is_linked());
    277     DCHECK(!is_near_linked());
    278   }
    279 
    280   INLINE(void Unuse()) { pos_ = 0; }
    281   INLINE(void UnuseNear()) { near_link_pos_ = 0; }
    282 
    283   INLINE(bool is_bound() const) { return pos_ <  0; }
    284   INLINE(bool is_unused() const) { return pos_ == 0 && near_link_pos_ == 0; }
    285   INLINE(bool is_linked() const) { return pos_ >  0; }
    286   INLINE(bool is_near_linked() const) { return near_link_pos_ > 0; }
    287 
    288   // Returns the position of bound or linked labels. Cannot be used
    289   // for unused labels.
    290   int pos() const;
    291   int near_link_pos() const { return near_link_pos_ - 1; }
    292 
    293  private:
    294   // pos_ encodes both the binding state (via its sign)
    295   // and the binding position (via its value) of a label.
    296   //
    297   // pos_ <  0  bound label, pos() returns the jump target position
    298   // pos_ == 0  unused label
    299   // pos_ >  0  linked label, pos() returns the last reference position
    300   int pos_;
    301 
    302   // Behaves like |pos_| in the "> 0" case, but for near jumps to this label.
    303   int near_link_pos_;
    304 
    305   void bind_to(int pos)  {
    306     pos_ = -pos - 1;
    307     DCHECK(is_bound());
    308   }
    309   void link_to(int pos, Distance distance = kFar) {
    310     if (distance == kNear) {
    311       near_link_pos_ = pos + 1;
    312       DCHECK(is_near_linked());
    313     } else {
    314       pos_ = pos + 1;
    315       DCHECK(is_linked());
    316     }
    317   }
    318 
    319   friend class Assembler;
    320   friend class Displacement;
    321   friend class RegExpMacroAssemblerIrregexp;
    322 
    323 #if V8_TARGET_ARCH_ARM64
    324   // On ARM64, the Assembler keeps track of pointers to Labels to resolve
    325   // branches to distant targets. Copying labels would confuse the Assembler.
    326   DISALLOW_COPY_AND_ASSIGN(Label);  // NOLINT
    327 #endif
    328 };
    329 
    330 
    331 enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };
    332 
    333 enum ArgvMode { kArgvOnStack, kArgvInRegister };
    334 
    335 // Specifies whether to perform icache flush operations on RelocInfo updates.
    336 // If FLUSH_ICACHE_IF_NEEDED, the icache will always be flushed if an
    337 // instruction was modified. If SKIP_ICACHE_FLUSH the flush will always be
    338 // skipped (only use this if you will flush the icache manually before it is
    339 // executed).
    340 enum ICacheFlushMode { FLUSH_ICACHE_IF_NEEDED, SKIP_ICACHE_FLUSH };
    341 
    342 // -----------------------------------------------------------------------------
    343 // Relocation information
    344 
    345 
    346 // Relocation information consists of the address (pc) of the datum
    347 // to which the relocation information applies, the relocation mode
    348 // (rmode), and an optional data field. The relocation mode may be
    349 // "descriptive" and not indicate a need for relocation, but simply
    350 // describe a property of the datum. Such rmodes are useful for GC
    351 // and nice disassembly output.
    352 
    353 class RelocInfo {
    354  public:
    355   // The constant kNoPosition is used with the collecting of source positions
    356   // in the relocation information. Two types of source positions are collected
    357   // "position" (RelocMode position) and "statement position" (RelocMode
    358   // statement_position). The "position" is collected at places in the source
    359   // code which are of interest when making stack traces to pin-point the source
    360   // location of a stack frame as close as possible. The "statement position" is
    361   // collected at the beginning at each statement, and is used to indicate
    362   // possible break locations. kNoPosition is used to indicate an
    363   // invalid/uninitialized position value.
    364   static const int kNoPosition = -1;
    365 
    366   // This string is used to add padding comments to the reloc info in cases
    367   // where we are not sure to have enough space for patching in during
    368   // lazy deoptimization. This is the case if we have indirect calls for which
    369   // we do not normally record relocation info.
    370   static const char* const kFillerCommentString;
    371 
    372   // The minimum size of a comment is equal to two bytes for the extra tagged
    373   // pc and kPointerSize for the actual pointer to the comment.
    374   static const int kMinRelocCommentSize = 2 + kPointerSize;
    375 
    376   // The maximum size for a call instruction including pc-jump.
    377   static const int kMaxCallSize = 6;
    378 
    379   // The maximum pc delta that will use the short encoding.
    380   static const int kMaxSmallPCDelta;
    381 
    382   enum Mode {
    383     // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
    384     CODE_TARGET,  // Code target which is not any of the above.
    385     CODE_TARGET_WITH_ID,
    386     DEBUGGER_STATEMENT,  // Code target for the debugger statement.
    387     EMBEDDED_OBJECT,
    388     // To relocate pointers into the wasm memory embedded in wasm code
    389     WASM_MEMORY_REFERENCE,
    390     WASM_GLOBAL_REFERENCE,
    391     WASM_MEMORY_SIZE_REFERENCE,
    392     CELL,
    393 
    394     // Everything after runtime_entry (inclusive) is not GC'ed.
    395     RUNTIME_ENTRY,
    396     COMMENT,
    397     POSITION,            // See comment for kNoPosition above.
    398     STATEMENT_POSITION,  // See comment for kNoPosition above.
    399 
    400     // Additional code inserted for debug break slot.
    401     DEBUG_BREAK_SLOT_AT_POSITION,
    402     DEBUG_BREAK_SLOT_AT_RETURN,
    403     DEBUG_BREAK_SLOT_AT_CALL,
    404     DEBUG_BREAK_SLOT_AT_TAIL_CALL,
    405 
    406     EXTERNAL_REFERENCE,  // The address of an external C++ function.
    407     INTERNAL_REFERENCE,  // An address inside the same function.
    408 
    409     // Encoded internal reference, used only on MIPS, MIPS64 and PPC.
    410     INTERNAL_REFERENCE_ENCODED,
    411 
    412     // Continuation points for a generator yield.
    413     GENERATOR_CONTINUATION,
    414 
    415     // Marks constant and veneer pools. Only used on ARM and ARM64.
    416     // They use a custom noncompact encoding.
    417     CONST_POOL,
    418     VENEER_POOL,
    419 
    420     DEOPT_REASON,  // Deoptimization reason index.
    421     DEOPT_ID,      // Deoptimization inlining id.
    422 
    423     // This is not an actual reloc mode, but used to encode a long pc jump that
    424     // cannot be encoded as part of another record.
    425     PC_JUMP,
    426 
    427     // Pseudo-types
    428     NUMBER_OF_MODES,
    429     NONE32,             // never recorded 32-bit value
    430     NONE64,             // never recorded 64-bit value
    431     CODE_AGE_SEQUENCE,  // Not stored in RelocInfo array, used explictly by
    432                         // code aging.
    433 
    434     FIRST_REAL_RELOC_MODE = CODE_TARGET,
    435     LAST_REAL_RELOC_MODE = VENEER_POOL,
    436     LAST_CODE_ENUM = DEBUGGER_STATEMENT,
    437     LAST_GCED_ENUM = WASM_MEMORY_SIZE_REFERENCE,
    438     FIRST_SHAREABLE_RELOC_MODE = CELL,
    439   };
    440 
    441   STATIC_ASSERT(NUMBER_OF_MODES <= kBitsPerInt);
    442 
    443   explicit RelocInfo(Isolate* isolate) : isolate_(isolate) {
    444     DCHECK_NOT_NULL(isolate);
    445   }
    446 
    447   RelocInfo(Isolate* isolate, byte* pc, Mode rmode, intptr_t data, Code* host)
    448       : isolate_(isolate), pc_(pc), rmode_(rmode), data_(data), host_(host) {
    449     DCHECK_NOT_NULL(isolate);
    450   }
    451 
    452   static inline bool IsRealRelocMode(Mode mode) {
    453     return mode >= FIRST_REAL_RELOC_MODE && mode <= LAST_REAL_RELOC_MODE;
    454   }
    455   static inline bool IsCodeTarget(Mode mode) {
    456     return mode <= LAST_CODE_ENUM;
    457   }
    458   static inline bool IsEmbeddedObject(Mode mode) {
    459     return mode == EMBEDDED_OBJECT;
    460   }
    461   static inline bool IsCell(Mode mode) { return mode == CELL; }
    462   static inline bool IsRuntimeEntry(Mode mode) {
    463     return mode == RUNTIME_ENTRY;
    464   }
    465   // Is the relocation mode affected by GC?
    466   static inline bool IsGCRelocMode(Mode mode) {
    467     return mode <= LAST_GCED_ENUM;
    468   }
    469   static inline bool IsComment(Mode mode) {
    470     return mode == COMMENT;
    471   }
    472   static inline bool IsConstPool(Mode mode) {
    473     return mode == CONST_POOL;
    474   }
    475   static inline bool IsVeneerPool(Mode mode) {
    476     return mode == VENEER_POOL;
    477   }
    478   static inline bool IsDeoptReason(Mode mode) {
    479     return mode == DEOPT_REASON;
    480   }
    481   static inline bool IsDeoptId(Mode mode) {
    482     return mode == DEOPT_ID;
    483   }
    484   static inline bool IsPosition(Mode mode) {
    485     return mode == POSITION || mode == STATEMENT_POSITION;
    486   }
    487   static inline bool IsStatementPosition(Mode mode) {
    488     return mode == STATEMENT_POSITION;
    489   }
    490   static inline bool IsExternalReference(Mode mode) {
    491     return mode == EXTERNAL_REFERENCE;
    492   }
    493   static inline bool IsInternalReference(Mode mode) {
    494     return mode == INTERNAL_REFERENCE;
    495   }
    496   static inline bool IsInternalReferenceEncoded(Mode mode) {
    497     return mode == INTERNAL_REFERENCE_ENCODED;
    498   }
    499   static inline bool IsDebugBreakSlot(Mode mode) {
    500     return IsDebugBreakSlotAtPosition(mode) || IsDebugBreakSlotAtReturn(mode) ||
    501            IsDebugBreakSlotAtCall(mode) || IsDebugBreakSlotAtTailCall(mode);
    502   }
    503   static inline bool IsDebugBreakSlotAtPosition(Mode mode) {
    504     return mode == DEBUG_BREAK_SLOT_AT_POSITION;
    505   }
    506   static inline bool IsDebugBreakSlotAtReturn(Mode mode) {
    507     return mode == DEBUG_BREAK_SLOT_AT_RETURN;
    508   }
    509   static inline bool IsDebugBreakSlotAtCall(Mode mode) {
    510     return mode == DEBUG_BREAK_SLOT_AT_CALL;
    511   }
    512   static inline bool IsDebugBreakSlotAtTailCall(Mode mode) {
    513     return mode == DEBUG_BREAK_SLOT_AT_TAIL_CALL;
    514   }
    515   static inline bool IsDebuggerStatement(Mode mode) {
    516     return mode == DEBUGGER_STATEMENT;
    517   }
    518   static inline bool IsNone(Mode mode) {
    519     return mode == NONE32 || mode == NONE64;
    520   }
    521   static inline bool IsCodeAgeSequence(Mode mode) {
    522     return mode == CODE_AGE_SEQUENCE;
    523   }
    524   static inline bool IsGeneratorContinuation(Mode mode) {
    525     return mode == GENERATOR_CONTINUATION;
    526   }
    527   static inline bool IsWasmMemoryReference(Mode mode) {
    528     return mode == WASM_MEMORY_REFERENCE;
    529   }
    530   static inline bool IsWasmMemorySizeReference(Mode mode) {
    531     return mode == WASM_MEMORY_SIZE_REFERENCE;
    532   }
    533   static inline bool IsWasmGlobalReference(Mode mode) {
    534     return mode == WASM_GLOBAL_REFERENCE;
    535   }
    536   static inline int ModeMask(Mode mode) { return 1 << mode; }
    537 
    538   // Accessors
    539   Isolate* isolate() const { return isolate_; }
    540   byte* pc() const { return pc_; }
    541   void set_pc(byte* pc) { pc_ = pc; }
    542   Mode rmode() const {  return rmode_; }
    543   intptr_t data() const { return data_; }
    544   Code* host() const { return host_; }
    545   void set_host(Code* host) { host_ = host; }
    546 
    547   // Apply a relocation by delta bytes. When the code object is moved, PC
    548   // relative addresses have to be updated as well as absolute addresses
    549   // inside the code (internal references).
    550   // Do not forget to flush the icache afterwards!
    551   INLINE(void apply(intptr_t delta));
    552 
    553   // Is the pointer this relocation info refers to coded like a plain pointer
    554   // or is it strange in some way (e.g. relative or patched into a series of
    555   // instructions).
    556   bool IsCodedSpecially();
    557 
    558   // If true, the pointer this relocation info refers to is an entry in the
    559   // constant pool, otherwise the pointer is embedded in the instruction stream.
    560   bool IsInConstantPool();
    561 
    562   Address wasm_memory_reference();
    563   Address wasm_global_reference();
    564   uint32_t wasm_memory_size_reference();
    565   void update_wasm_memory_reference(
    566       Address old_base, Address new_base, uint32_t old_size, uint32_t new_size,
    567       ICacheFlushMode icache_flush_mode = SKIP_ICACHE_FLUSH);
    568   void update_wasm_global_reference(
    569       Address old_base, Address new_base,
    570       ICacheFlushMode icache_flush_mode = SKIP_ICACHE_FLUSH);
    571 
    572   // this relocation applies to;
    573   // can only be called if IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
    574   INLINE(Address target_address());
    575   INLINE(void set_target_address(
    576       Address target,
    577       WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
    578       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
    579   INLINE(Object* target_object());
    580   INLINE(Handle<Object> target_object_handle(Assembler* origin));
    581   INLINE(void set_target_object(
    582       Object* target,
    583       WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
    584       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
    585   INLINE(Address target_runtime_entry(Assembler* origin));
    586   INLINE(void set_target_runtime_entry(
    587       Address target,
    588       WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
    589       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
    590   INLINE(Cell* target_cell());
    591   INLINE(Handle<Cell> target_cell_handle());
    592   INLINE(void set_target_cell(
    593       Cell* cell, WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER,
    594       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
    595   INLINE(Handle<Object> code_age_stub_handle(Assembler* origin));
    596   INLINE(Code* code_age_stub());
    597   INLINE(void set_code_age_stub(
    598       Code* stub, ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
    599 
    600   // Returns the address of the constant pool entry where the target address
    601   // is held.  This should only be called if IsInConstantPool returns true.
    602   INLINE(Address constant_pool_entry_address());
    603 
    604   // Read the address of the word containing the target_address in an
    605   // instruction stream.  What this means exactly is architecture-independent.
    606   // The only architecture-independent user of this function is the serializer.
    607   // The serializer uses it to find out how many raw bytes of instruction to
    608   // output before the next target.  Architecture-independent code shouldn't
    609   // dereference the pointer it gets back from this.
    610   INLINE(Address target_address_address());
    611 
    612   // This indicates how much space a target takes up when deserializing a code
    613   // stream.  For most architectures this is just the size of a pointer.  For
    614   // an instruction like movw/movt where the target bits are mixed into the
    615   // instruction bits the size of the target will be zero, indicating that the
    616   // serializer should not step forwards in memory after a target is resolved
    617   // and written.  In this case the target_address_address function above
    618   // should return the end of the instructions to be patched, allowing the
    619   // deserializer to deserialize the instructions as raw bytes and put them in
    620   // place, ready to be patched with the target.
    621   INLINE(int target_address_size());
    622 
    623   // Read the reference in the instruction this relocation
    624   // applies to; can only be called if rmode_ is EXTERNAL_REFERENCE.
    625   INLINE(Address target_external_reference());
    626 
    627   // Read the reference in the instruction this relocation
    628   // applies to; can only be called if rmode_ is INTERNAL_REFERENCE.
    629   INLINE(Address target_internal_reference());
    630 
    631   // Return the reference address this relocation applies to;
    632   // can only be called if rmode_ is INTERNAL_REFERENCE.
    633   INLINE(Address target_internal_reference_address());
    634 
    635   // Read/modify the address of a call instruction. This is used to relocate
    636   // the break points where straight-line code is patched with a call
    637   // instruction.
    638   INLINE(Address debug_call_address());
    639   INLINE(void set_debug_call_address(Address target));
    640 
    641   // Wipe out a relocation to a fixed value, used for making snapshots
    642   // reproducible.
    643   INLINE(void WipeOut());
    644 
    645   template<typename StaticVisitor> inline void Visit(Heap* heap);
    646 
    647   template <typename ObjectVisitor>
    648   inline void Visit(Isolate* isolate, ObjectVisitor* v);
    649 
    650   // Check whether this debug break slot has been patched with a call to the
    651   // debugger.
    652   bool IsPatchedDebugBreakSlotSequence();
    653 
    654 #ifdef DEBUG
    655   // Check whether the given code contains relocation information that
    656   // either is position-relative or movable by the garbage collector.
    657   static bool RequiresRelocation(const CodeDesc& desc);
    658 #endif
    659 
    660 #ifdef ENABLE_DISASSEMBLER
    661   // Printing
    662   static const char* RelocModeName(Mode rmode);
    663   void Print(Isolate* isolate, std::ostream& os);  // NOLINT
    664 #endif  // ENABLE_DISASSEMBLER
    665 #ifdef VERIFY_HEAP
    666   void Verify(Isolate* isolate);
    667 #endif
    668 
    669   static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
    670   static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
    671   static const int kDataMask =
    672       (1 << CODE_TARGET_WITH_ID) | kPositionMask | (1 << COMMENT);
    673   static const int kDebugBreakSlotMask = 1 << DEBUG_BREAK_SLOT_AT_POSITION |
    674                                          1 << DEBUG_BREAK_SLOT_AT_RETURN |
    675                                          1 << DEBUG_BREAK_SLOT_AT_CALL;
    676   static const int kApplyMask;  // Modes affected by apply.  Depends on arch.
    677 
    678  private:
    679   void unchecked_update_wasm_memory_reference(Address address,
    680                                               ICacheFlushMode flush_mode);
    681   void unchecked_update_wasm_memory_size(uint32_t size,
    682                                          ICacheFlushMode flush_mode);
    683 
    684   Isolate* isolate_;
    685   // On ARM, note that pc_ is the address of the constant pool entry
    686   // to be relocated and not the address of the instruction
    687   // referencing the constant pool entry (except when rmode_ ==
    688   // comment).
    689   byte* pc_;
    690   Mode rmode_;
    691   intptr_t data_;
    692   Code* host_;
    693   friend class RelocIterator;
    694 };
    695 
    696 
    697 // RelocInfoWriter serializes a stream of relocation info. It writes towards
    698 // lower addresses.
    699 class RelocInfoWriter BASE_EMBEDDED {
    700  public:
    701   RelocInfoWriter()
    702       : pos_(NULL),
    703         last_pc_(NULL),
    704         last_id_(0),
    705         last_position_(0),
    706         last_mode_(RelocInfo::NUMBER_OF_MODES),
    707         next_position_candidate_pos_delta_(0),
    708         next_position_candidate_pc_delta_(0),
    709         next_position_candidate_flushed_(true) {}
    710   RelocInfoWriter(byte* pos, byte* pc)
    711       : pos_(pos),
    712         last_pc_(pc),
    713         last_id_(0),
    714         last_position_(0),
    715         last_mode_(RelocInfo::NUMBER_OF_MODES),
    716         next_position_candidate_pos_delta_(0),
    717         next_position_candidate_pc_delta_(0),
    718         next_position_candidate_flushed_(true) {}
    719 
    720   byte* pos() const { return pos_; }
    721   byte* last_pc() const { return last_pc_; }
    722 
    723   void Write(const RelocInfo* rinfo);
    724 
    725   // Update the state of the stream after reloc info buffer
    726   // and/or code is moved while the stream is active.
    727   void Reposition(byte* pos, byte* pc) {
    728     pos_ = pos;
    729     last_pc_ = pc;
    730   }
    731 
    732   void Finish() { FlushPosition(); }
    733 
    734   // Max size (bytes) of a written RelocInfo. Longest encoding is
    735   // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, data_delta.
    736   // On ia32 and arm this is 1 + 4 + 1 + 1 + 4 = 11.
    737   // On x64 this is 1 + 4 + 1 + 1 + 8 == 15;
    738   // Here we use the maximum of the two.
    739   static const int kMaxSize = 15;
    740 
    741  private:
    742   inline uint32_t WriteLongPCJump(uint32_t pc_delta);
    743 
    744   inline void WriteShortTaggedPC(uint32_t pc_delta, int tag);
    745   inline void WriteShortTaggedData(intptr_t data_delta, int tag);
    746 
    747   inline void WriteMode(RelocInfo::Mode rmode);
    748   inline void WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode);
    749   inline void WriteIntData(int data_delta);
    750   inline void WriteData(intptr_t data_delta);
    751   inline void WritePosition(int pc_delta, int pos_delta, RelocInfo::Mode rmode);
    752 
    753   void FlushPosition();
    754 
    755   byte* pos_;
    756   byte* last_pc_;
    757   int last_id_;
    758   int last_position_;
    759   RelocInfo::Mode last_mode_;
    760   int next_position_candidate_pos_delta_;
    761   uint32_t next_position_candidate_pc_delta_;
    762   bool next_position_candidate_flushed_;
    763 
    764   DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
    765 };
    766 
    767 
    768 // A RelocIterator iterates over relocation information.
    769 // Typical use:
    770 //
    771 //   for (RelocIterator it(code); !it.done(); it.next()) {
    772 //     // do something with it.rinfo() here
    773 //   }
    774 //
    775 // A mask can be specified to skip unwanted modes.
    776 class RelocIterator: public Malloced {
    777  public:
    778   // Create a new iterator positioned at
    779   // the beginning of the reloc info.
    780   // Relocation information with mode k is included in the
    781   // iteration iff bit k of mode_mask is set.
    782   explicit RelocIterator(Code* code, int mode_mask = -1);
    783   explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);
    784 
    785   // Iteration
    786   bool done() const { return done_; }
    787   void next();
    788 
    789   // Return pointer valid until next next().
    790   RelocInfo* rinfo() {
    791     DCHECK(!done());
    792     return &rinfo_;
    793   }
    794 
    795  private:
    796   // Advance* moves the position before/after reading.
    797   // *Read* reads from current byte(s) into rinfo_.
    798   // *Get* just reads and returns info on current byte.
    799   void Advance(int bytes = 1) { pos_ -= bytes; }
    800   int AdvanceGetTag();
    801   RelocInfo::Mode GetMode();
    802 
    803   void AdvanceReadLongPCJump();
    804 
    805   int GetShortDataTypeTag();
    806   void ReadShortTaggedPC();
    807   void ReadShortTaggedId();
    808   void ReadShortTaggedPosition();
    809   void ReadShortTaggedData();
    810 
    811   void AdvanceReadPC();
    812   void AdvanceReadId();
    813   void AdvanceReadInt();
    814   void AdvanceReadPosition();
    815   void AdvanceReadData();
    816 
    817   // If the given mode is wanted, set it in rinfo_ and return true.
    818   // Else return false. Used for efficiently skipping unwanted modes.
    819   bool SetMode(RelocInfo::Mode mode) {
    820     return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
    821   }
    822 
    823   byte* pos_;
    824   byte* end_;
    825   byte* code_age_sequence_;
    826   RelocInfo rinfo_;
    827   bool done_;
    828   int mode_mask_;
    829   int last_id_;
    830   int last_position_;
    831   DISALLOW_COPY_AND_ASSIGN(RelocIterator);
    832 };
    833 
    834 
    835 //------------------------------------------------------------------------------
    836 // External function
    837 
    838 //----------------------------------------------------------------------------
    839 class SCTableReference;
    840 class Debug_Address;
    841 
    842 
    843 // An ExternalReference represents a C++ address used in the generated
    844 // code. All references to C++ functions and variables must be encapsulated in
    845 // an ExternalReference instance. This is done in order to track the origin of
    846 // all external references in the code so that they can be bound to the correct
    847 // addresses when deserializing a heap.
    848 class ExternalReference BASE_EMBEDDED {
    849  public:
    850   // Used in the simulator to support different native api calls.
    851   enum Type {
    852     // Builtin call.
    853     // Object* f(v8::internal::Arguments).
    854     BUILTIN_CALL,  // default
    855 
    856     // Builtin call returning object pair.
    857     // ObjectPair f(v8::internal::Arguments).
    858     BUILTIN_CALL_PAIR,
    859 
    860     // Builtin call that returns .
    861     // ObjectTriple f(v8::internal::Arguments).
    862     BUILTIN_CALL_TRIPLE,
    863 
    864     // Builtin that takes float arguments and returns an int.
    865     // int f(double, double).
    866     BUILTIN_COMPARE_CALL,
    867 
    868     // Builtin call that returns floating point.
    869     // double f(double, double).
    870     BUILTIN_FP_FP_CALL,
    871 
    872     // Builtin call that returns floating point.
    873     // double f(double).
    874     BUILTIN_FP_CALL,
    875 
    876     // Builtin call that returns floating point.
    877     // double f(double, int).
    878     BUILTIN_FP_INT_CALL,
    879 
    880     // Direct call to API function callback.
    881     // void f(v8::FunctionCallbackInfo&)
    882     DIRECT_API_CALL,
    883 
    884     // Call to function callback via InvokeFunctionCallback.
    885     // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback)
    886     PROFILING_API_CALL,
    887 
    888     // Direct call to accessor getter callback.
    889     // void f(Local<Name> property, PropertyCallbackInfo& info)
    890     DIRECT_GETTER_CALL,
    891 
    892     // Call to accessor getter callback via InvokeAccessorGetterCallback.
    893     // void f(Local<Name> property, PropertyCallbackInfo& info,
    894     //     AccessorNameGetterCallback callback)
    895     PROFILING_GETTER_CALL
    896   };
    897 
    898   static void SetUp();
    899 
    900   typedef void* ExternalReferenceRedirector(Isolate* isolate, void* original,
    901                                             Type type);
    902 
    903   ExternalReference() : address_(NULL) {}
    904 
    905   ExternalReference(Builtins::CFunctionId id, Isolate* isolate);
    906 
    907   ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate);
    908 
    909   ExternalReference(Builtins::Name name, Isolate* isolate);
    910 
    911   ExternalReference(Runtime::FunctionId id, Isolate* isolate);
    912 
    913   ExternalReference(const Runtime::Function* f, Isolate* isolate);
    914 
    915   explicit ExternalReference(StatsCounter* counter);
    916 
    917   ExternalReference(Isolate::AddressId id, Isolate* isolate);
    918 
    919   explicit ExternalReference(const SCTableReference& table_ref);
    920 
    921   // Isolate as an external reference.
    922   static ExternalReference isolate_address(Isolate* isolate);
    923 
    924   // One-of-a-kind references. These references are not part of a general
    925   // pattern. This means that they have to be added to the
    926   // ExternalReferenceTable in serialize.cc manually.
    927 
    928   static ExternalReference interpreter_dispatch_table_address(Isolate* isolate);
    929   static ExternalReference interpreter_dispatch_counters(Isolate* isolate);
    930 
    931   static ExternalReference incremental_marking_record_write_function(
    932       Isolate* isolate);
    933   static ExternalReference incremental_marking_record_write_code_entry_function(
    934       Isolate* isolate);
    935   static ExternalReference store_buffer_overflow_function(
    936       Isolate* isolate);
    937   static ExternalReference delete_handle_scope_extensions(Isolate* isolate);
    938 
    939   static ExternalReference get_date_field_function(Isolate* isolate);
    940   static ExternalReference date_cache_stamp(Isolate* isolate);
    941 
    942   static ExternalReference get_make_code_young_function(Isolate* isolate);
    943   static ExternalReference get_mark_code_as_executed_function(Isolate* isolate);
    944 
    945   // Deoptimization support.
    946   static ExternalReference new_deoptimizer_function(Isolate* isolate);
    947   static ExternalReference compute_output_frames_function(Isolate* isolate);
    948 
    949   static ExternalReference wasm_f32_trunc(Isolate* isolate);
    950   static ExternalReference wasm_f32_floor(Isolate* isolate);
    951   static ExternalReference wasm_f32_ceil(Isolate* isolate);
    952   static ExternalReference wasm_f32_nearest_int(Isolate* isolate);
    953   static ExternalReference wasm_f64_trunc(Isolate* isolate);
    954   static ExternalReference wasm_f64_floor(Isolate* isolate);
    955   static ExternalReference wasm_f64_ceil(Isolate* isolate);
    956   static ExternalReference wasm_f64_nearest_int(Isolate* isolate);
    957   static ExternalReference wasm_int64_to_float32(Isolate* isolate);
    958   static ExternalReference wasm_uint64_to_float32(Isolate* isolate);
    959   static ExternalReference wasm_int64_to_float64(Isolate* isolate);
    960   static ExternalReference wasm_uint64_to_float64(Isolate* isolate);
    961   static ExternalReference wasm_float32_to_int64(Isolate* isolate);
    962   static ExternalReference wasm_float32_to_uint64(Isolate* isolate);
    963   static ExternalReference wasm_float64_to_int64(Isolate* isolate);
    964   static ExternalReference wasm_float64_to_uint64(Isolate* isolate);
    965   static ExternalReference wasm_int64_div(Isolate* isolate);
    966   static ExternalReference wasm_int64_mod(Isolate* isolate);
    967   static ExternalReference wasm_uint64_div(Isolate* isolate);
    968   static ExternalReference wasm_uint64_mod(Isolate* isolate);
    969   static ExternalReference wasm_word32_ctz(Isolate* isolate);
    970   static ExternalReference wasm_word64_ctz(Isolate* isolate);
    971   static ExternalReference wasm_word32_popcnt(Isolate* isolate);
    972   static ExternalReference wasm_word64_popcnt(Isolate* isolate);
    973 
    974   static ExternalReference f64_acos_wrapper_function(Isolate* isolate);
    975   static ExternalReference f64_asin_wrapper_function(Isolate* isolate);
    976   static ExternalReference f64_pow_wrapper_function(Isolate* isolate);
    977   static ExternalReference f64_mod_wrapper_function(Isolate* isolate);
    978 
    979   // Log support.
    980   static ExternalReference log_enter_external_function(Isolate* isolate);
    981   static ExternalReference log_leave_external_function(Isolate* isolate);
    982 
    983   // Static data in the keyed lookup cache.
    984   static ExternalReference keyed_lookup_cache_keys(Isolate* isolate);
    985   static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate);
    986 
    987   // Static variable Heap::roots_array_start()
    988   static ExternalReference roots_array_start(Isolate* isolate);
    989 
    990   // Static variable Heap::allocation_sites_list_address()
    991   static ExternalReference allocation_sites_list_address(Isolate* isolate);
    992 
    993   // Static variable StackGuard::address_of_jslimit()
    994   static ExternalReference address_of_stack_limit(Isolate* isolate);
    995 
    996   // Static variable StackGuard::address_of_real_jslimit()
    997   static ExternalReference address_of_real_stack_limit(Isolate* isolate);
    998 
    999   // Static variable RegExpStack::limit_address()
   1000   static ExternalReference address_of_regexp_stack_limit(Isolate* isolate);
   1001 
   1002   // Static variables for RegExp.
   1003   static ExternalReference address_of_static_offsets_vector(Isolate* isolate);
   1004   static ExternalReference address_of_regexp_stack_memory_address(
   1005       Isolate* isolate);
   1006   static ExternalReference address_of_regexp_stack_memory_size(
   1007       Isolate* isolate);
   1008 
   1009   // Write barrier.
   1010   static ExternalReference store_buffer_top(Isolate* isolate);
   1011 
   1012   // Used for fast allocation in generated code.
   1013   static ExternalReference new_space_allocation_top_address(Isolate* isolate);
   1014   static ExternalReference new_space_allocation_limit_address(Isolate* isolate);
   1015   static ExternalReference old_space_allocation_top_address(Isolate* isolate);
   1016   static ExternalReference old_space_allocation_limit_address(Isolate* isolate);
   1017 
   1018   static ExternalReference mod_two_doubles_operation(Isolate* isolate);
   1019   static ExternalReference power_double_double_function(Isolate* isolate);
   1020   static ExternalReference power_double_int_function(Isolate* isolate);
   1021 
   1022   static ExternalReference handle_scope_next_address(Isolate* isolate);
   1023   static ExternalReference handle_scope_limit_address(Isolate* isolate);
   1024   static ExternalReference handle_scope_level_address(Isolate* isolate);
   1025 
   1026   static ExternalReference scheduled_exception_address(Isolate* isolate);
   1027   static ExternalReference address_of_pending_message_obj(Isolate* isolate);
   1028 
   1029   // Static variables containing common double constants.
   1030   static ExternalReference address_of_min_int();
   1031   static ExternalReference address_of_one_half();
   1032   static ExternalReference address_of_minus_one_half();
   1033   static ExternalReference address_of_negative_infinity();
   1034   static ExternalReference address_of_the_hole_nan();
   1035   static ExternalReference address_of_uint32_bias();
   1036 
   1037   // IEEE 754 functions.
   1038   static ExternalReference ieee754_atan_function(Isolate* isolate);
   1039   static ExternalReference ieee754_atan2_function(Isolate* isolate);
   1040   static ExternalReference ieee754_atanh_function(Isolate* isolate);
   1041   static ExternalReference ieee754_cbrt_function(Isolate* isolate);
   1042   static ExternalReference ieee754_cos_function(Isolate* isolate);
   1043   static ExternalReference ieee754_exp_function(Isolate* isolate);
   1044   static ExternalReference ieee754_expm1_function(Isolate* isolate);
   1045   static ExternalReference ieee754_log_function(Isolate* isolate);
   1046   static ExternalReference ieee754_log1p_function(Isolate* isolate);
   1047   static ExternalReference ieee754_log10_function(Isolate* isolate);
   1048   static ExternalReference ieee754_log2_function(Isolate* isolate);
   1049   static ExternalReference ieee754_sin_function(Isolate* isolate);
   1050   static ExternalReference ieee754_tan_function(Isolate* isolate);
   1051 
   1052   static ExternalReference page_flags(Page* page);
   1053 
   1054   static ExternalReference ForDeoptEntry(Address entry);
   1055 
   1056   static ExternalReference cpu_features();
   1057 
   1058   static ExternalReference is_tail_call_elimination_enabled_address(
   1059       Isolate* isolate);
   1060 
   1061   static ExternalReference debug_is_active_address(Isolate* isolate);
   1062   static ExternalReference debug_after_break_target_address(Isolate* isolate);
   1063 
   1064   static ExternalReference is_profiling_address(Isolate* isolate);
   1065   static ExternalReference invoke_function_callback(Isolate* isolate);
   1066   static ExternalReference invoke_accessor_getter_callback(Isolate* isolate);
   1067 
   1068   static ExternalReference virtual_handler_register(Isolate* isolate);
   1069   static ExternalReference virtual_slot_register(Isolate* isolate);
   1070 
   1071   static ExternalReference runtime_function_table_address(Isolate* isolate);
   1072 
   1073   Address address() const { return reinterpret_cast<Address>(address_); }
   1074 
   1075   // Used to read out the last step action of the debugger.
   1076   static ExternalReference debug_last_step_action_address(Isolate* isolate);
   1077 
   1078   // Used to check for suspended generator, used for stepping across await call.
   1079   static ExternalReference debug_suspended_generator_address(Isolate* isolate);
   1080 
   1081 #ifndef V8_INTERPRETED_REGEXP
   1082   // C functions called from RegExp generated code.
   1083 
   1084   // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
   1085   static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate);
   1086 
   1087   // Function RegExpMacroAssembler*::CheckStackGuardState()
   1088   static ExternalReference re_check_stack_guard_state(Isolate* isolate);
   1089 
   1090   // Function NativeRegExpMacroAssembler::GrowStack()
   1091   static ExternalReference re_grow_stack(Isolate* isolate);
   1092 
   1093   // byte NativeRegExpMacroAssembler::word_character_bitmap
   1094   static ExternalReference re_word_character_map();
   1095 
   1096 #endif
   1097 
   1098   // This lets you register a function that rewrites all external references.
   1099   // Used by the ARM simulator to catch calls to external references.
   1100   static void set_redirector(Isolate* isolate,
   1101                              ExternalReferenceRedirector* redirector) {
   1102     // We can't stack them.
   1103     DCHECK(isolate->external_reference_redirector() == NULL);
   1104     isolate->set_external_reference_redirector(
   1105         reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector));
   1106   }
   1107 
   1108   static ExternalReference stress_deopt_count(Isolate* isolate);
   1109 
   1110   static ExternalReference fixed_typed_array_base_data_offset();
   1111 
   1112  private:
   1113   explicit ExternalReference(void* address)
   1114       : address_(address) {}
   1115 
   1116   static void* Redirect(Isolate* isolate,
   1117                         Address address_arg,
   1118                         Type type = ExternalReference::BUILTIN_CALL) {
   1119     ExternalReferenceRedirector* redirector =
   1120         reinterpret_cast<ExternalReferenceRedirector*>(
   1121             isolate->external_reference_redirector());
   1122     void* address = reinterpret_cast<void*>(address_arg);
   1123     void* answer =
   1124         (redirector == NULL) ? address : (*redirector)(isolate, address, type);
   1125     return answer;
   1126   }
   1127 
   1128   void* address_;
   1129 };
   1130 
   1131 bool operator==(ExternalReference, ExternalReference);
   1132 bool operator!=(ExternalReference, ExternalReference);
   1133 
   1134 size_t hash_value(ExternalReference);
   1135 
   1136 std::ostream& operator<<(std::ostream&, ExternalReference);
   1137 
   1138 
   1139 // -----------------------------------------------------------------------------
   1140 // Position recording support
   1141 
   1142 class AssemblerPositionsRecorder : public PositionsRecorder {
   1143  public:
   1144   explicit AssemblerPositionsRecorder(Assembler* assembler)
   1145       : assembler_(assembler),
   1146         current_position_(RelocInfo::kNoPosition),
   1147         written_position_(RelocInfo::kNoPosition),
   1148         current_statement_position_(RelocInfo::kNoPosition),
   1149         written_statement_position_(RelocInfo::kNoPosition) {}
   1150 
   1151   // Set current position to pos.
   1152   void RecordPosition(int pos);
   1153 
   1154   // Set current statement position to pos.
   1155   void RecordStatementPosition(int pos);
   1156 
   1157  private:
   1158   // Write recorded positions to relocation information.
   1159   void WriteRecordedPositions();
   1160 
   1161   Assembler* assembler_;
   1162 
   1163   int current_position_;
   1164   int written_position_;
   1165 
   1166   int current_statement_position_;
   1167   int written_statement_position_;
   1168 
   1169   DISALLOW_COPY_AND_ASSIGN(AssemblerPositionsRecorder);
   1170 };
   1171 
   1172 
   1173 // -----------------------------------------------------------------------------
   1174 // Utility functions
   1175 
   1176 inline int NumberOfBitsSet(uint32_t x) {
   1177   unsigned int num_bits_set;
   1178   for (num_bits_set = 0; x; x >>= 1) {
   1179     num_bits_set += x & 1;
   1180   }
   1181   return num_bits_set;
   1182 }
   1183 
   1184 // Computes pow(x, y) with the special cases in the spec for Math.pow.
   1185 double power_helper(Isolate* isolate, double x, double y);
   1186 double power_double_int(double x, int y);
   1187 double power_double_double(double x, double y);
   1188 
   1189 // Helper class for generating code or data associated with the code
   1190 // right after a call instruction. As an example this can be used to
   1191 // generate safepoint data after calls for crankshaft.
   1192 class CallWrapper {
   1193  public:
   1194   CallWrapper() { }
   1195   virtual ~CallWrapper() { }
   1196   // Called just before emitting a call. Argument is the size of the generated
   1197   // call code.
   1198   virtual void BeforeCall(int call_size) const = 0;
   1199   // Called just after emitting a call, i.e., at the return site for the call.
   1200   virtual void AfterCall() const = 0;
   1201   // Return whether call needs to check for debug stepping.
   1202   virtual bool NeedsDebugStepCheck() const { return false; }
   1203 };
   1204 
   1205 
   1206 class NullCallWrapper : public CallWrapper {
   1207  public:
   1208   NullCallWrapper() { }
   1209   virtual ~NullCallWrapper() { }
   1210   virtual void BeforeCall(int call_size) const { }
   1211   virtual void AfterCall() const { }
   1212 };
   1213 
   1214 
   1215 class CheckDebugStepCallWrapper : public CallWrapper {
   1216  public:
   1217   CheckDebugStepCallWrapper() {}
   1218   virtual ~CheckDebugStepCallWrapper() {}
   1219   virtual void BeforeCall(int call_size) const {}
   1220   virtual void AfterCall() const {}
   1221   virtual bool NeedsDebugStepCheck() const { return true; }
   1222 };
   1223 
   1224 
   1225 // -----------------------------------------------------------------------------
   1226 // Constant pool support
   1227 
   1228 class ConstantPoolEntry {
   1229  public:
   1230   ConstantPoolEntry() {}
   1231   ConstantPoolEntry(int position, intptr_t value, bool sharing_ok)
   1232       : position_(position),
   1233         merged_index_(sharing_ok ? SHARING_ALLOWED : SHARING_PROHIBITED),
   1234         value_(value) {}
   1235   ConstantPoolEntry(int position, double value)
   1236       : position_(position), merged_index_(SHARING_ALLOWED), value64_(value) {}
   1237 
   1238   int position() const { return position_; }
   1239   bool sharing_ok() const { return merged_index_ != SHARING_PROHIBITED; }
   1240   bool is_merged() const { return merged_index_ >= 0; }
   1241   int merged_index(void) const {
   1242     DCHECK(is_merged());
   1243     return merged_index_;
   1244   }
   1245   void set_merged_index(int index) {
   1246     merged_index_ = index;
   1247     DCHECK(is_merged());
   1248   }
   1249   int offset(void) const {
   1250     DCHECK(merged_index_ >= 0);
   1251     return merged_index_;
   1252   }
   1253   void set_offset(int offset) {
   1254     DCHECK(offset >= 0);
   1255     merged_index_ = offset;
   1256   }
   1257   intptr_t value() const { return value_; }
   1258   uint64_t value64() const { return bit_cast<uint64_t>(value64_); }
   1259 
   1260   enum Type { INTPTR, DOUBLE, NUMBER_OF_TYPES };
   1261 
   1262   static int size(Type type) {
   1263     return (type == INTPTR) ? kPointerSize : kDoubleSize;
   1264   }
   1265 
   1266   enum Access { REGULAR, OVERFLOWED };
   1267 
   1268  private:
   1269   int position_;
   1270   int merged_index_;
   1271   union {
   1272     intptr_t value_;
   1273     double value64_;
   1274   };
   1275   enum { SHARING_PROHIBITED = -2, SHARING_ALLOWED = -1 };
   1276 };
   1277 
   1278 
   1279 // -----------------------------------------------------------------------------
   1280 // Embedded constant pool support
   1281 
   1282 class ConstantPoolBuilder BASE_EMBEDDED {
   1283  public:
   1284   ConstantPoolBuilder(int ptr_reach_bits, int double_reach_bits);
   1285 
   1286   // Add pointer-sized constant to the embedded constant pool
   1287   ConstantPoolEntry::Access AddEntry(int position, intptr_t value,
   1288                                      bool sharing_ok) {
   1289     ConstantPoolEntry entry(position, value, sharing_ok);
   1290     return AddEntry(entry, ConstantPoolEntry::INTPTR);
   1291   }
   1292 
   1293   // Add double constant to the embedded constant pool
   1294   ConstantPoolEntry::Access AddEntry(int position, double value) {
   1295     ConstantPoolEntry entry(position, value);
   1296     return AddEntry(entry, ConstantPoolEntry::DOUBLE);
   1297   }
   1298 
   1299   // Previews the access type required for the next new entry to be added.
   1300   ConstantPoolEntry::Access NextAccess(ConstantPoolEntry::Type type) const;
   1301 
   1302   bool IsEmpty() {
   1303     return info_[ConstantPoolEntry::INTPTR].entries.empty() &&
   1304            info_[ConstantPoolEntry::INTPTR].shared_entries.empty() &&
   1305            info_[ConstantPoolEntry::DOUBLE].entries.empty() &&
   1306            info_[ConstantPoolEntry::DOUBLE].shared_entries.empty();
   1307   }
   1308 
   1309   // Emit the constant pool.  Invoke only after all entries have been
   1310   // added and all instructions have been emitted.
   1311   // Returns position of the emitted pool (zero implies no constant pool).
   1312   int Emit(Assembler* assm);
   1313 
   1314   // Returns the label associated with the start of the constant pool.
   1315   // Linking to this label in the function prologue may provide an
   1316   // efficient means of constant pool pointer register initialization
   1317   // on some architectures.
   1318   inline Label* EmittedPosition() { return &emitted_label_; }
   1319 
   1320  private:
   1321   ConstantPoolEntry::Access AddEntry(ConstantPoolEntry& entry,
   1322                                      ConstantPoolEntry::Type type);
   1323   void EmitSharedEntries(Assembler* assm, ConstantPoolEntry::Type type);
   1324   void EmitGroup(Assembler* assm, ConstantPoolEntry::Access access,
   1325                  ConstantPoolEntry::Type type);
   1326 
   1327   struct PerTypeEntryInfo {
   1328     PerTypeEntryInfo() : regular_count(0), overflow_start(-1) {}
   1329     bool overflow() const {
   1330       return (overflow_start >= 0 &&
   1331               overflow_start < static_cast<int>(entries.size()));
   1332     }
   1333     int regular_reach_bits;
   1334     int regular_count;
   1335     int overflow_start;
   1336     std::vector<ConstantPoolEntry> entries;
   1337     std::vector<ConstantPoolEntry> shared_entries;
   1338   };
   1339 
   1340   Label emitted_label_;  // Records pc_offset of emitted pool
   1341   PerTypeEntryInfo info_[ConstantPoolEntry::NUMBER_OF_TYPES];
   1342 };
   1343 
   1344 }  // namespace internal
   1345 }  // namespace v8
   1346 #endif  // V8_ASSEMBLER_H_
   1347