Home | History | Annotate | Download | only in Analysis
      1 //===- StratifiedSets.h - Abstract stratified sets implementation. --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef LLVM_ADT_STRATIFIEDSETS_H
     11 #define LLVM_ADT_STRATIFIEDSETS_H
     12 
     13 #include "llvm/ADT/DenseMap.h"
     14 #include "llvm/ADT/Optional.h"
     15 #include "llvm/ADT/SmallPtrSet.h"
     16 #include "llvm/ADT/SmallSet.h"
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/Support/Compiler.h"
     19 #include <bitset>
     20 #include <cassert>
     21 #include <cmath>
     22 #include <limits>
     23 #include <type_traits>
     24 #include <utility>
     25 #include <vector>
     26 
     27 namespace llvm {
     28 // \brief An index into Stratified Sets.
     29 typedef unsigned StratifiedIndex;
     30 // NOTE: ^ This can't be a short -- bootstrapping clang has a case where
     31 // ~1M sets exist.
     32 
     33 // \brief Container of information related to a value in a StratifiedSet.
     34 struct StratifiedInfo {
     35   StratifiedIndex Index;
     36   // For field sensitivity, etc. we can tack attributes on to this struct.
     37 };
     38 
     39 // The number of attributes that StratifiedAttrs should contain. Attributes are
     40 // described below, and 32 was an arbitrary choice because it fits nicely in 32
     41 // bits (because we use a bitset for StratifiedAttrs).
     42 static const unsigned NumStratifiedAttrs = 32;
     43 
     44 // These are attributes that the users of StratifiedSets/StratifiedSetBuilders
     45 // may use for various purposes. These also have the special property of that
     46 // they are merged down. So, if set A is above set B, and one decides to set an
     47 // attribute in set A, then the attribute will automatically be set in set B.
     48 typedef std::bitset<NumStratifiedAttrs> StratifiedAttrs;
     49 
     50 // \brief A "link" between two StratifiedSets.
     51 struct StratifiedLink {
     52   // \brief This is a value used to signify "does not exist" where
     53   // the StratifiedIndex type is used. This is used instead of
     54   // Optional<StratifiedIndex> because Optional<StratifiedIndex> would
     55   // eat up a considerable amount of extra memory, after struct
     56   // padding/alignment is taken into account.
     57   static const StratifiedIndex SetSentinel;
     58 
     59   // \brief The index for the set "above" current
     60   StratifiedIndex Above;
     61 
     62   // \brief The link for the set "below" current
     63   StratifiedIndex Below;
     64 
     65   // \brief Attributes for these StratifiedSets.
     66   StratifiedAttrs Attrs;
     67 
     68   StratifiedLink() : Above(SetSentinel), Below(SetSentinel) {}
     69 
     70   bool hasBelow() const { return Below != SetSentinel; }
     71   bool hasAbove() const { return Above != SetSentinel; }
     72 
     73   void clearBelow() { Below = SetSentinel; }
     74   void clearAbove() { Above = SetSentinel; }
     75 };
     76 
     77 // \brief These are stratified sets, as described in "Fast algorithms for
     78 // Dyck-CFL-reachability with applications to Alias Analysis" by Zhang Q, Lyu M
     79 // R, Yuan H, and Su Z. -- in short, this is meant to represent different sets
     80 // of Value*s. If two Value*s are in the same set, or if both sets have
     81 // overlapping attributes, then the Value*s are said to alias.
     82 //
     83 // Sets may be related by position, meaning that one set may be considered as
     84 // above or below another. In CFL Alias Analysis, this gives us an indication
     85 // of how two variables are related; if the set of variable A is below a set
     86 // containing variable B, then at some point, a variable that has interacted
     87 // with B (or B itself) was either used in order to extract the variable A, or
     88 // was used as storage of variable A.
     89 //
     90 // Sets may also have attributes (as noted above). These attributes are
     91 // generally used for noting whether a variable in the set has interacted with
     92 // a variable whose origins we don't quite know (i.e. globals/arguments), or if
     93 // the variable may have had operations performed on it (modified in a function
     94 // call). All attributes that exist in a set A must exist in all sets marked as
     95 // below set A.
     96 template <typename T> class StratifiedSets {
     97 public:
     98   StratifiedSets() {}
     99 
    100   StratifiedSets(DenseMap<T, StratifiedInfo> Map,
    101                  std::vector<StratifiedLink> Links)
    102       : Values(std::move(Map)), Links(std::move(Links)) {}
    103 
    104   StratifiedSets(StratifiedSets<T> &&Other) { *this = std::move(Other); }
    105 
    106   StratifiedSets &operator=(StratifiedSets<T> &&Other) {
    107     Values = std::move(Other.Values);
    108     Links = std::move(Other.Links);
    109     return *this;
    110   }
    111 
    112   Optional<StratifiedInfo> find(const T &Elem) const {
    113     auto Iter = Values.find(Elem);
    114     if (Iter == Values.end()) {
    115       return NoneType();
    116     }
    117     return Iter->second;
    118   }
    119 
    120   const StratifiedLink &getLink(StratifiedIndex Index) const {
    121     assert(inbounds(Index));
    122     return Links[Index];
    123   }
    124 
    125 private:
    126   DenseMap<T, StratifiedInfo> Values;
    127   std::vector<StratifiedLink> Links;
    128 
    129   bool inbounds(StratifiedIndex Idx) const { return Idx < Links.size(); }
    130 };
    131 
    132 // \brief Generic Builder class that produces StratifiedSets instances.
    133 //
    134 // The goal of this builder is to efficiently produce correct StratifiedSets
    135 // instances. To this end, we use a few tricks:
    136 //   > Set chains (A method for linking sets together)
    137 //   > Set remaps (A method for marking a set as an alias [irony?] of another)
    138 //
    139 // ==== Set chains ====
    140 // This builder has a notion of some value A being above, below, or with some
    141 // other value B:
    142 //   > The `A above B` relationship implies that there is a reference edge going
    143 //   from A to B. Namely, it notes that A can store anything in B's set.
    144 //   > The `A below B` relationship is the opposite of `A above B`. It implies
    145 //   that there's a dereference edge going from A to B.
    146 //   > The `A with B` relationship states that there's an assignment edge going
    147 //   from A to B, and that A and B should be treated as equals.
    148 //
    149 // As an example, take the following code snippet:
    150 //
    151 // %a = alloca i32, align 4
    152 // %ap = alloca i32*, align 8
    153 // %app = alloca i32**, align 8
    154 // store %a, %ap
    155 // store %ap, %app
    156 // %aw = getelementptr %ap, 0
    157 //
    158 // Given this, the follow relations exist:
    159 //   - %a below %ap & %ap above %a
    160 //   - %ap below %app & %app above %ap
    161 //   - %aw with %ap & %ap with %aw
    162 //
    163 // These relations produce the following sets:
    164 //   [{%a}, {%ap, %aw}, {%app}]
    165 //
    166 // ...Which states that the only MayAlias relationship in the above program is
    167 // between %ap and %aw.
    168 //
    169 // Life gets more complicated when we actually have logic in our programs. So,
    170 // we either must remove this logic from our programs, or make consessions for
    171 // it in our AA algorithms. In this case, we have decided to select the latter
    172 // option.
    173 //
    174 // First complication: Conditionals
    175 // Motivation:
    176 //  %ad = alloca int, align 4
    177 //  %a = alloca int*, align 8
    178 //  %b = alloca int*, align 8
    179 //  %bp = alloca int**, align 8
    180 //  %c = call i1 @SomeFunc()
    181 //  %k = select %c, %ad, %bp
    182 //  store %ad, %a
    183 //  store %b, %bp
    184 //
    185 // %k has 'with' edges to both %a and %b, which ordinarily would not be linked
    186 // together. So, we merge the set that contains %a with the set that contains
    187 // %b. We then recursively merge the set above %a with the set above %b, and
    188 // the set below  %a with the set below %b, etc. Ultimately, the sets for this
    189 // program would end up like: {%ad}, {%a, %b, %k}, {%bp}, where {%ad} is below
    190 // {%a, %b, %c} is below {%ad}.
    191 //
    192 // Second complication: Arbitrary casts
    193 // Motivation:
    194 //  %ip = alloca int*, align 8
    195 //  %ipp = alloca int**, align 8
    196 //  %i = bitcast ipp to int
    197 //  store %ip, %ipp
    198 //  store %i, %ip
    199 //
    200 // This is impossible to construct with any of the rules above, because a set
    201 // containing both {%i, %ipp} is supposed to exist, the set with %i is supposed
    202 // to be below the set with %ip, and the set with %ip is supposed to be below
    203 // the set with %ipp. Because we don't allow circular relationships like this,
    204 // we merge all concerned sets into one. So, the above code would generate a
    205 // single StratifiedSet: {%ip, %ipp, %i}.
    206 //
    207 // ==== Set remaps ====
    208 // More of an implementation detail than anything -- when merging sets, we need
    209 // to update the numbers of all of the elements mapped to those sets. Rather
    210 // than doing this at each merge, we note in the BuilderLink structure that a
    211 // remap has occurred, and use this information so we can defer renumbering set
    212 // elements until build time.
    213 template <typename T> class StratifiedSetsBuilder {
    214   // \brief Represents a Stratified Set, with information about the Stratified
    215   // Set above it, the set below it, and whether the current set has been
    216   // remapped to another.
    217   struct BuilderLink {
    218     const StratifiedIndex Number;
    219 
    220     BuilderLink(StratifiedIndex N) : Number(N) {
    221       Remap = StratifiedLink::SetSentinel;
    222     }
    223 
    224     bool hasAbove() const {
    225       assert(!isRemapped());
    226       return Link.hasAbove();
    227     }
    228 
    229     bool hasBelow() const {
    230       assert(!isRemapped());
    231       return Link.hasBelow();
    232     }
    233 
    234     void setBelow(StratifiedIndex I) {
    235       assert(!isRemapped());
    236       Link.Below = I;
    237     }
    238 
    239     void setAbove(StratifiedIndex I) {
    240       assert(!isRemapped());
    241       Link.Above = I;
    242     }
    243 
    244     void clearBelow() {
    245       assert(!isRemapped());
    246       Link.clearBelow();
    247     }
    248 
    249     void clearAbove() {
    250       assert(!isRemapped());
    251       Link.clearAbove();
    252     }
    253 
    254     StratifiedIndex getBelow() const {
    255       assert(!isRemapped());
    256       assert(hasBelow());
    257       return Link.Below;
    258     }
    259 
    260     StratifiedIndex getAbove() const {
    261       assert(!isRemapped());
    262       assert(hasAbove());
    263       return Link.Above;
    264     }
    265 
    266     StratifiedAttrs &getAttrs() {
    267       assert(!isRemapped());
    268       return Link.Attrs;
    269     }
    270 
    271     void setAttr(unsigned index) {
    272       assert(!isRemapped());
    273       assert(index < NumStratifiedAttrs);
    274       Link.Attrs.set(index);
    275     }
    276 
    277     void setAttrs(const StratifiedAttrs &other) {
    278       assert(!isRemapped());
    279       Link.Attrs |= other;
    280     }
    281 
    282     bool isRemapped() const { return Remap != StratifiedLink::SetSentinel; }
    283 
    284     // \brief For initial remapping to another set
    285     void remapTo(StratifiedIndex Other) {
    286       assert(!isRemapped());
    287       Remap = Other;
    288     }
    289 
    290     StratifiedIndex getRemapIndex() const {
    291       assert(isRemapped());
    292       return Remap;
    293     }
    294 
    295     // \brief Should only be called when we're already remapped.
    296     void updateRemap(StratifiedIndex Other) {
    297       assert(isRemapped());
    298       Remap = Other;
    299     }
    300 
    301     // \brief Prefer the above functions to calling things directly on what's
    302     // returned from this -- they guard against unexpected calls when the
    303     // current BuilderLink is remapped.
    304     const StratifiedLink &getLink() const { return Link; }
    305 
    306   private:
    307     StratifiedLink Link;
    308     StratifiedIndex Remap;
    309   };
    310 
    311   // \brief This function performs all of the set unioning/value renumbering
    312   // that we've been putting off, and generates a vector<StratifiedLink> that
    313   // may be placed in a StratifiedSets instance.
    314   void finalizeSets(std::vector<StratifiedLink> &StratLinks) {
    315     DenseMap<StratifiedIndex, StratifiedIndex> Remaps;
    316     for (auto &Link : Links) {
    317       if (Link.isRemapped()) {
    318         continue;
    319       }
    320 
    321       StratifiedIndex Number = StratLinks.size();
    322       Remaps.insert(std::make_pair(Link.Number, Number));
    323       StratLinks.push_back(Link.getLink());
    324     }
    325 
    326     for (auto &Link : StratLinks) {
    327       if (Link.hasAbove()) {
    328         auto &Above = linksAt(Link.Above);
    329         auto Iter = Remaps.find(Above.Number);
    330         assert(Iter != Remaps.end());
    331         Link.Above = Iter->second;
    332       }
    333 
    334       if (Link.hasBelow()) {
    335         auto &Below = linksAt(Link.Below);
    336         auto Iter = Remaps.find(Below.Number);
    337         assert(Iter != Remaps.end());
    338         Link.Below = Iter->second;
    339       }
    340     }
    341 
    342     for (auto &Pair : Values) {
    343       auto &Info = Pair.second;
    344       auto &Link = linksAt(Info.Index);
    345       auto Iter = Remaps.find(Link.Number);
    346       assert(Iter != Remaps.end());
    347       Info.Index = Iter->second;
    348     }
    349   }
    350 
    351   // \brief There's a guarantee in StratifiedLink where all bits set in a
    352   // Link.externals will be set in all Link.externals "below" it.
    353   static void propagateAttrs(std::vector<StratifiedLink> &Links) {
    354     const auto getHighestParentAbove = [&Links](StratifiedIndex Idx) {
    355       const auto *Link = &Links[Idx];
    356       while (Link->hasAbove()) {
    357         Idx = Link->Above;
    358         Link = &Links[Idx];
    359       }
    360       return Idx;
    361     };
    362 
    363     SmallSet<StratifiedIndex, 16> Visited;
    364     for (unsigned I = 0, E = Links.size(); I < E; ++I) {
    365       auto CurrentIndex = getHighestParentAbove(I);
    366       if (!Visited.insert(CurrentIndex).second) {
    367         continue;
    368       }
    369 
    370       while (Links[CurrentIndex].hasBelow()) {
    371         auto &CurrentBits = Links[CurrentIndex].Attrs;
    372         auto NextIndex = Links[CurrentIndex].Below;
    373         auto &NextBits = Links[NextIndex].Attrs;
    374         NextBits |= CurrentBits;
    375         CurrentIndex = NextIndex;
    376       }
    377     }
    378   }
    379 
    380 public:
    381   // \brief Builds a StratifiedSet from the information we've been given since
    382   // either construction or the prior build() call.
    383   StratifiedSets<T> build() {
    384     std::vector<StratifiedLink> StratLinks;
    385     finalizeSets(StratLinks);
    386     propagateAttrs(StratLinks);
    387     Links.clear();
    388     return StratifiedSets<T>(std::move(Values), std::move(StratLinks));
    389   }
    390 
    391   std::size_t size() const { return Values.size(); }
    392   std::size_t numSets() const { return Links.size(); }
    393 
    394   bool has(const T &Elem) const { return get(Elem).hasValue(); }
    395 
    396   bool add(const T &Main) {
    397     if (get(Main).hasValue())
    398       return false;
    399 
    400     auto NewIndex = getNewUnlinkedIndex();
    401     return addAtMerging(Main, NewIndex);
    402   }
    403 
    404   // \brief Restructures the stratified sets as necessary to make "ToAdd" in a
    405   // set above "Main". There are some cases where this is not possible (see
    406   // above), so we merge them such that ToAdd and Main are in the same set.
    407   bool addAbove(const T &Main, const T &ToAdd) {
    408     assert(has(Main));
    409     auto Index = *indexOf(Main);
    410     if (!linksAt(Index).hasAbove())
    411       addLinkAbove(Index);
    412 
    413     auto Above = linksAt(Index).getAbove();
    414     return addAtMerging(ToAdd, Above);
    415   }
    416 
    417   // \brief Restructures the stratified sets as necessary to make "ToAdd" in a
    418   // set below "Main". There are some cases where this is not possible (see
    419   // above), so we merge them such that ToAdd and Main are in the same set.
    420   bool addBelow(const T &Main, const T &ToAdd) {
    421     assert(has(Main));
    422     auto Index = *indexOf(Main);
    423     if (!linksAt(Index).hasBelow())
    424       addLinkBelow(Index);
    425 
    426     auto Below = linksAt(Index).getBelow();
    427     return addAtMerging(ToAdd, Below);
    428   }
    429 
    430   bool addWith(const T &Main, const T &ToAdd) {
    431     assert(has(Main));
    432     auto MainIndex = *indexOf(Main);
    433     return addAtMerging(ToAdd, MainIndex);
    434   }
    435 
    436   void noteAttribute(const T &Main, unsigned AttrNum) {
    437     assert(has(Main));
    438     assert(AttrNum < StratifiedLink::SetSentinel);
    439     auto *Info = *get(Main);
    440     auto &Link = linksAt(Info->Index);
    441     Link.setAttr(AttrNum);
    442   }
    443 
    444   void noteAttributes(const T &Main, const StratifiedAttrs &NewAttrs) {
    445     assert(has(Main));
    446     auto *Info = *get(Main);
    447     auto &Link = linksAt(Info->Index);
    448     Link.setAttrs(NewAttrs);
    449   }
    450 
    451   StratifiedAttrs getAttributes(const T &Main) {
    452     assert(has(Main));
    453     auto *Info = *get(Main);
    454     auto *Link = &linksAt(Info->Index);
    455     auto Attrs = Link->getAttrs();
    456     while (Link->hasAbove()) {
    457       Link = &linksAt(Link->getAbove());
    458       Attrs |= Link->getAttrs();
    459     }
    460 
    461     return Attrs;
    462   }
    463 
    464   bool getAttribute(const T &Main, unsigned AttrNum) {
    465     assert(AttrNum < StratifiedLink::SetSentinel);
    466     auto Attrs = getAttributes(Main);
    467     return Attrs[AttrNum];
    468   }
    469 
    470   // \brief Gets the attributes that have been applied to the set that Main
    471   // belongs to. It ignores attributes in any sets above the one that Main
    472   // resides in.
    473   StratifiedAttrs getRawAttributes(const T &Main) {
    474     assert(has(Main));
    475     auto *Info = *get(Main);
    476     auto &Link = linksAt(Info->Index);
    477     return Link.getAttrs();
    478   }
    479 
    480   // \brief Gets an attribute from the attributes that have been applied to the
    481   // set that Main belongs to. It ignores attributes in any sets above the one
    482   // that Main resides in.
    483   bool getRawAttribute(const T &Main, unsigned AttrNum) {
    484     assert(AttrNum < StratifiedLink::SetSentinel);
    485     auto Attrs = getRawAttributes(Main);
    486     return Attrs[AttrNum];
    487   }
    488 
    489 private:
    490   DenseMap<T, StratifiedInfo> Values;
    491   std::vector<BuilderLink> Links;
    492 
    493   // \brief Adds the given element at the given index, merging sets if
    494   // necessary.
    495   bool addAtMerging(const T &ToAdd, StratifiedIndex Index) {
    496     StratifiedInfo Info = {Index};
    497     auto Pair = Values.insert(std::make_pair(ToAdd, Info));
    498     if (Pair.second)
    499       return true;
    500 
    501     auto &Iter = Pair.first;
    502     auto &IterSet = linksAt(Iter->second.Index);
    503     auto &ReqSet = linksAt(Index);
    504 
    505     // Failed to add where we wanted to. Merge the sets.
    506     if (&IterSet != &ReqSet)
    507       merge(IterSet.Number, ReqSet.Number);
    508 
    509     return false;
    510   }
    511 
    512   // \brief Gets the BuilderLink at the given index, taking set remapping into
    513   // account.
    514   BuilderLink &linksAt(StratifiedIndex Index) {
    515     auto *Start = &Links[Index];
    516     if (!Start->isRemapped())
    517       return *Start;
    518 
    519     auto *Current = Start;
    520     while (Current->isRemapped())
    521       Current = &Links[Current->getRemapIndex()];
    522 
    523     auto NewRemap = Current->Number;
    524 
    525     // Run through everything that has yet to be updated, and update them to
    526     // remap to NewRemap
    527     Current = Start;
    528     while (Current->isRemapped()) {
    529       auto *Next = &Links[Current->getRemapIndex()];
    530       Current->updateRemap(NewRemap);
    531       Current = Next;
    532     }
    533 
    534     return *Current;
    535   }
    536 
    537   // \brief Merges two sets into one another. Assumes that these sets are not
    538   // already one in the same
    539   void merge(StratifiedIndex Idx1, StratifiedIndex Idx2) {
    540     assert(inbounds(Idx1) && inbounds(Idx2));
    541     assert(&linksAt(Idx1) != &linksAt(Idx2) &&
    542            "Merging a set into itself is not allowed");
    543 
    544     // CASE 1: If the set at `Idx1` is above or below `Idx2`, we need to merge
    545     // both the
    546     // given sets, and all sets between them, into one.
    547     if (tryMergeUpwards(Idx1, Idx2))
    548       return;
    549 
    550     if (tryMergeUpwards(Idx2, Idx1))
    551       return;
    552 
    553     // CASE 2: The set at `Idx1` is not in the same chain as the set at `Idx2`.
    554     // We therefore need to merge the two chains together.
    555     mergeDirect(Idx1, Idx2);
    556   }
    557 
    558   // \brief Merges two sets assuming that the set at `Idx1` is unreachable from
    559   // traversing above or below the set at `Idx2`.
    560   void mergeDirect(StratifiedIndex Idx1, StratifiedIndex Idx2) {
    561     assert(inbounds(Idx1) && inbounds(Idx2));
    562 
    563     auto *LinksInto = &linksAt(Idx1);
    564     auto *LinksFrom = &linksAt(Idx2);
    565     // Merging everything above LinksInto then proceeding to merge everything
    566     // below LinksInto becomes problematic, so we go as far "up" as possible!
    567     while (LinksInto->hasAbove() && LinksFrom->hasAbove()) {
    568       LinksInto = &linksAt(LinksInto->getAbove());
    569       LinksFrom = &linksAt(LinksFrom->getAbove());
    570     }
    571 
    572     if (LinksFrom->hasAbove()) {
    573       LinksInto->setAbove(LinksFrom->getAbove());
    574       auto &NewAbove = linksAt(LinksInto->getAbove());
    575       NewAbove.setBelow(LinksInto->Number);
    576     }
    577 
    578     // Merging strategy:
    579     //  > If neither has links below, stop.
    580     //  > If only `LinksInto` has links below, stop.
    581     //  > If only `LinksFrom` has links below, reset `LinksInto.Below` to
    582     //  match `LinksFrom.Below`
    583     //  > If both have links above, deal with those next.
    584     while (LinksInto->hasBelow() && LinksFrom->hasBelow()) {
    585       auto &FromAttrs = LinksFrom->getAttrs();
    586       LinksInto->setAttrs(FromAttrs);
    587 
    588       // Remap needs to happen after getBelow(), but before
    589       // assignment of LinksFrom
    590       auto *NewLinksFrom = &linksAt(LinksFrom->getBelow());
    591       LinksFrom->remapTo(LinksInto->Number);
    592       LinksFrom = NewLinksFrom;
    593       LinksInto = &linksAt(LinksInto->getBelow());
    594     }
    595 
    596     if (LinksFrom->hasBelow()) {
    597       LinksInto->setBelow(LinksFrom->getBelow());
    598       auto &NewBelow = linksAt(LinksInto->getBelow());
    599       NewBelow.setAbove(LinksInto->Number);
    600     }
    601 
    602     LinksFrom->remapTo(LinksInto->Number);
    603   }
    604 
    605   // \brief Checks to see if lowerIndex is at a level lower than upperIndex.
    606   // If so, it will merge lowerIndex with upperIndex (and all of the sets
    607   // between) and return true. Otherwise, it will return false.
    608   bool tryMergeUpwards(StratifiedIndex LowerIndex, StratifiedIndex UpperIndex) {
    609     assert(inbounds(LowerIndex) && inbounds(UpperIndex));
    610     auto *Lower = &linksAt(LowerIndex);
    611     auto *Upper = &linksAt(UpperIndex);
    612     if (Lower == Upper)
    613       return true;
    614 
    615     SmallVector<BuilderLink *, 8> Found;
    616     auto *Current = Lower;
    617     auto Attrs = Current->getAttrs();
    618     while (Current->hasAbove() && Current != Upper) {
    619       Found.push_back(Current);
    620       Attrs |= Current->getAttrs();
    621       Current = &linksAt(Current->getAbove());
    622     }
    623 
    624     if (Current != Upper)
    625       return false;
    626 
    627     Upper->setAttrs(Attrs);
    628 
    629     if (Lower->hasBelow()) {
    630       auto NewBelowIndex = Lower->getBelow();
    631       Upper->setBelow(NewBelowIndex);
    632       auto &NewBelow = linksAt(NewBelowIndex);
    633       NewBelow.setAbove(UpperIndex);
    634     } else {
    635       Upper->clearBelow();
    636     }
    637 
    638     for (const auto &Ptr : Found)
    639       Ptr->remapTo(Upper->Number);
    640 
    641     return true;
    642   }
    643 
    644   Optional<const StratifiedInfo *> get(const T &Val) const {
    645     auto Result = Values.find(Val);
    646     if (Result == Values.end())
    647       return NoneType();
    648     return &Result->second;
    649   }
    650 
    651   Optional<StratifiedInfo *> get(const T &Val) {
    652     auto Result = Values.find(Val);
    653     if (Result == Values.end())
    654       return NoneType();
    655     return &Result->second;
    656   }
    657 
    658   Optional<StratifiedIndex> indexOf(const T &Val) {
    659     auto MaybeVal = get(Val);
    660     if (!MaybeVal.hasValue())
    661       return NoneType();
    662     auto *Info = *MaybeVal;
    663     auto &Link = linksAt(Info->Index);
    664     return Link.Number;
    665   }
    666 
    667   StratifiedIndex addLinkBelow(StratifiedIndex Set) {
    668     auto At = addLinks();
    669     Links[Set].setBelow(At);
    670     Links[At].setAbove(Set);
    671     return At;
    672   }
    673 
    674   StratifiedIndex addLinkAbove(StratifiedIndex Set) {
    675     auto At = addLinks();
    676     Links[At].setBelow(Set);
    677     Links[Set].setAbove(At);
    678     return At;
    679   }
    680 
    681   StratifiedIndex getNewUnlinkedIndex() { return addLinks(); }
    682 
    683   StratifiedIndex addLinks() {
    684     auto Link = Links.size();
    685     Links.push_back(BuilderLink(Link));
    686     return Link;
    687   }
    688 
    689   bool inbounds(StratifiedIndex N) const { return N < Links.size(); }
    690 };
    691 }
    692 #endif // LLVM_ADT_STRATIFIEDSETS_H
    693