1 /******************************************************************** 2 * COPYRIGHT: 3 * Copyright (c) 2005-2014, International Business Machines Corporation and 4 * others. All Rights Reserved. 5 ********************************************************************/ 6 /************************************************************************ 7 * Tests for the UText and UTextIterator text abstraction classses 8 * 9 ************************************************************************/ 10 11 #include <string.h> 12 #include <stdio.h> 13 #include <stdlib.h> 14 #include "unicode/utypes.h" 15 #include "unicode/utext.h" 16 #include "unicode/utf8.h" 17 #include "unicode/ustring.h" 18 #include "unicode/uchriter.h" 19 #include "utxttest.h" 20 21 static UBool gFailed = FALSE; 22 static int gTestNum = 0; 23 24 // Forward decl 25 UText *openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status); 26 27 #define TEST_ASSERT(x) \ 28 { if ((x)==FALSE) {errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__);\ 29 gFailed = TRUE;\ 30 }} 31 32 33 #define TEST_SUCCESS(status) \ 34 { if (U_FAILURE(status)) {errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \ 35 gTestNum, __FILE__, __LINE__, u_errorName(status)); \ 36 gFailed = TRUE;\ 37 }} 38 39 UTextTest::UTextTest() { 40 } 41 42 UTextTest::~UTextTest() { 43 } 44 45 46 void 47 UTextTest::runIndexedTest(int32_t index, UBool exec, 48 const char* &name, char* /*par*/) { 49 switch (index) { 50 case 0: name = "TextTest"; 51 if (exec) TextTest(); break; 52 case 1: name = "ErrorTest"; 53 if (exec) ErrorTest(); break; 54 case 2: name = "FreezeTest"; 55 if (exec) FreezeTest(); break; 56 case 3: name = "Ticket5560"; 57 if (exec) Ticket5560(); break; 58 case 4: name = "Ticket6847"; 59 if (exec) Ticket6847(); break; 60 case 5: name = "Ticket10562"; 61 if (exec) Ticket10562(); break; 62 case 6: name = "Ticket10983"; 63 if (exec) Ticket10983(); break; 64 default: name = ""; break; 65 } 66 } 67 68 // 69 // Quick and dirty random number generator. 70 // (don't use library so that results are portable. 71 static uint32_t m_seed = 1; 72 static uint32_t m_rand() 73 { 74 m_seed = m_seed * 1103515245 + 12345; 75 return (uint32_t)(m_seed/65536) % 32768; 76 } 77 78 79 // 80 // TextTest() 81 // 82 // Top Level function for UText testing. 83 // Specifies the strings to be tested, with the acutal testing itself 84 // being carried out in another function, TestString(). 85 // 86 void UTextTest::TextTest() { 87 int32_t i, j; 88 89 TestString("abcd\\U00010001xyz"); 90 TestString(""); 91 92 // Supplementary chars at start or end 93 TestString("\\U00010001"); 94 TestString("abc\\U00010001"); 95 TestString("\\U00010001abc"); 96 97 // Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries 98 UnicodeString s; 99 for (i=1; i<60; i++) { 100 s.truncate(0); 101 for (j=0; j<i; j++) { 102 if (j+0x30 == 0x5c) { 103 // backslash. Needs to be escaped 104 s.append((UChar)0x5c); 105 } 106 s.append(UChar(j+0x30)); 107 } 108 TestString(s); 109 } 110 111 // Test strings with odd-aligned supplementary chars, 112 // looking for glitches at buffer boundaries 113 for (i=1; i<60; i++) { 114 s.truncate(0); 115 s.append((UChar)0x41); 116 for (j=0; j<i; j++) { 117 s.append(UChar32(j+0x11000)); 118 } 119 TestString(s); 120 } 121 122 // String of chars of randomly varying size in utf-8 representation. 123 // Exercise the mapping, and the varying sized buffer. 124 // 125 s.truncate(0); 126 UChar32 c1 = 0; 127 UChar32 c2 = 0x100; 128 UChar32 c3 = 0xa000; 129 UChar32 c4 = 0x11000; 130 for (i=0; i<1000; i++) { 131 int len8 = m_rand()%4 + 1; 132 switch (len8) { 133 case 1: 134 c1 = (c1+1)%0x80; 135 // don't put 0 into string (0 terminated strings for some tests) 136 // don't put '\', will cause unescape() to fail. 137 if (c1==0x5c || c1==0) { 138 c1++; 139 } 140 s.append(c1); 141 break; 142 case 2: 143 s.append(c2++); 144 break; 145 case 3: 146 s.append(c3++); 147 break; 148 case 4: 149 s.append(c4++); 150 break; 151 } 152 } 153 TestString(s); 154 } 155 156 157 // 158 // TestString() Run a suite of UText tests on a string. 159 // The test string is unescaped before use. 160 // 161 void UTextTest::TestString(const UnicodeString &s) { 162 int32_t i; 163 int32_t j; 164 UChar32 c; 165 int32_t cpCount = 0; 166 UErrorCode status = U_ZERO_ERROR; 167 UText *ut = NULL; 168 int32_t saLen; 169 170 UnicodeString sa = s.unescape(); 171 saLen = sa.length(); 172 173 // 174 // Build up a mapping between code points and UTF-16 code unit indexes. 175 // 176 m *cpMap = new m[sa.length() + 1]; 177 j = 0; 178 for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) { 179 c = sa.char32At(i); 180 cpMap[j].nativeIdx = i; 181 cpMap[j].cp = c; 182 j++; 183 cpCount++; 184 } 185 cpMap[j].nativeIdx = i; // position following the last char in utf-16 string. 186 187 188 // UChar * test, null terminated 189 status = U_ZERO_ERROR; 190 UChar *buf = new UChar[saLen+1]; 191 sa.extract(buf, saLen+1, status); 192 TEST_SUCCESS(status); 193 ut = utext_openUChars(NULL, buf, -1, &status); 194 TEST_SUCCESS(status); 195 TestAccess(sa, ut, cpCount, cpMap); 196 utext_close(ut); 197 delete [] buf; 198 199 // UChar * test, with length 200 status = U_ZERO_ERROR; 201 buf = new UChar[saLen+1]; 202 sa.extract(buf, saLen+1, status); 203 TEST_SUCCESS(status); 204 ut = utext_openUChars(NULL, buf, saLen, &status); 205 TEST_SUCCESS(status); 206 TestAccess(sa, ut, cpCount, cpMap); 207 utext_close(ut); 208 delete [] buf; 209 210 211 // UnicodeString test 212 status = U_ZERO_ERROR; 213 ut = utext_openUnicodeString(NULL, &sa, &status); 214 TEST_SUCCESS(status); 215 TestAccess(sa, ut, cpCount, cpMap); 216 TestCMR(sa, ut, cpCount, cpMap, cpMap); 217 utext_close(ut); 218 219 220 // Const UnicodeString test 221 status = U_ZERO_ERROR; 222 ut = utext_openConstUnicodeString(NULL, &sa, &status); 223 TEST_SUCCESS(status); 224 TestAccess(sa, ut, cpCount, cpMap); 225 utext_close(ut); 226 227 228 // Replaceable test. (UnicodeString inherits Replaceable) 229 status = U_ZERO_ERROR; 230 ut = utext_openReplaceable(NULL, &sa, &status); 231 TEST_SUCCESS(status); 232 TestAccess(sa, ut, cpCount, cpMap); 233 TestCMR(sa, ut, cpCount, cpMap, cpMap); 234 utext_close(ut); 235 236 // Character Iterator Tests 237 status = U_ZERO_ERROR; 238 const UChar *cbuf = sa.getBuffer(); 239 CharacterIterator *ci = new UCharCharacterIterator(cbuf, saLen, status); 240 TEST_SUCCESS(status); 241 ut = utext_openCharacterIterator(NULL, ci, &status); 242 TEST_SUCCESS(status); 243 TestAccess(sa, ut, cpCount, cpMap); 244 utext_close(ut); 245 delete ci; 246 247 248 // Fragmented UnicodeString (Chunk size of one) 249 // 250 status = U_ZERO_ERROR; 251 ut = openFragmentedUnicodeString(NULL, &sa, &status); 252 TEST_SUCCESS(status); 253 TestAccess(sa, ut, cpCount, cpMap); 254 utext_close(ut); 255 256 // 257 // UTF-8 test 258 // 259 260 // Convert the test string from UnicodeString to (char *) in utf-8 format 261 int32_t u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8"); 262 char *u8String = new char[u8Len + 1]; 263 sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8"); 264 265 // Build up the map of code point indices in the utf-8 string 266 m * u8Map = new m[sa.length() + 1]; 267 i = 0; // native utf-8 index 268 for (j=0; j<cpCount ; j++) { // code point number 269 u8Map[j].nativeIdx = i; 270 U8_NEXT(u8String, i, u8Len, c) 271 u8Map[j].cp = c; 272 } 273 u8Map[cpCount].nativeIdx = u8Len; // position following the last char in utf-8 string. 274 275 // Do the test itself 276 status = U_ZERO_ERROR; 277 ut = utext_openUTF8(NULL, u8String, -1, &status); 278 TEST_SUCCESS(status); 279 TestAccess(sa, ut, cpCount, u8Map); 280 utext_close(ut); 281 282 283 284 delete []cpMap; 285 delete []u8Map; 286 delete []u8String; 287 } 288 289 // TestCMR test Copy, Move and Replace operations. 290 // us UnicodeString containing the test text. 291 // ut UText containing the same test text. 292 // cpCount number of code points in the test text. 293 // nativeMap Mapping from code points to native indexes for the UText. 294 // u16Map Mapping from code points to UTF-16 indexes, for use with the UnicodeString. 295 // 296 // This function runs a whole series of opertions on each incoming UText. 297 // The UText is deep-cloned prior to each operation, so that the original UText remains unchanged. 298 // 299 void UTextTest::TestCMR(const UnicodeString &us, UText *ut, int cpCount, m *nativeMap, m *u16Map) { 300 TEST_ASSERT(utext_isWritable(ut) == TRUE); 301 302 int srcLengthType; // Loop variables for selecting the postion and length 303 int srcPosType; // of the block to operate on within the source text. 304 int destPosType; 305 306 int srcIndex = 0; // Code Point indexes of the block to operate on for 307 int srcLength = 0; // a specific test. 308 309 int destIndex = 0; // Code point index of the destination for a copy/move test. 310 311 int32_t nativeStart = 0; // Native unit indexes for a test. 312 int32_t nativeLimit = 0; 313 int32_t nativeDest = 0; 314 315 int32_t u16Start = 0; // UTF-16 indexes for a test. 316 int32_t u16Limit = 0; // used when performing the same operation in a Unicode String 317 int32_t u16Dest = 0; 318 319 // Iterate over a whole series of source index, length and a target indexes. 320 // This is done with code point indexes; these will be later translated to native 321 // indexes using the cpMap. 322 for (srcLengthType=1; srcLengthType<=3; srcLengthType++) { 323 switch (srcLengthType) { 324 case 1: srcLength = 1; break; 325 case 2: srcLength = 5; break; 326 case 3: srcLength = cpCount / 3; 327 } 328 for (srcPosType=1; srcPosType<=5; srcPosType++) { 329 switch (srcPosType) { 330 case 1: srcIndex = 0; break; 331 case 2: srcIndex = 1; break; 332 case 3: srcIndex = cpCount - srcLength; break; 333 case 4: srcIndex = cpCount - srcLength - 1; break; 334 case 5: srcIndex = cpCount / 2; break; 335 } 336 if (srcIndex < 0 || srcIndex + srcLength > cpCount) { 337 // filter out bogus test cases - 338 // those with a source range that falls of an edge of the string. 339 continue; 340 } 341 342 // 343 // Copy and move tests. 344 // iterate over a variety of destination positions. 345 // 346 for (destPosType=1; destPosType<=4; destPosType++) { 347 switch (destPosType) { 348 case 1: destIndex = 0; break; 349 case 2: destIndex = 1; break; 350 case 3: destIndex = srcIndex - 1; break; 351 case 4: destIndex = srcIndex + srcLength + 1; break; 352 case 5: destIndex = cpCount-1; break; 353 case 6: destIndex = cpCount; break; 354 } 355 if (destIndex<0 || destIndex>cpCount) { 356 // filter out bogus test cases. 357 continue; 358 } 359 360 nativeStart = nativeMap[srcIndex].nativeIdx; 361 nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx; 362 nativeDest = nativeMap[destIndex].nativeIdx; 363 364 u16Start = u16Map[srcIndex].nativeIdx; 365 u16Limit = u16Map[srcIndex+srcLength].nativeIdx; 366 u16Dest = u16Map[destIndex].nativeIdx; 367 368 gFailed = FALSE; 369 TestCopyMove(us, ut, FALSE, 370 nativeStart, nativeLimit, nativeDest, 371 u16Start, u16Limit, u16Dest); 372 373 TestCopyMove(us, ut, TRUE, 374 nativeStart, nativeLimit, nativeDest, 375 u16Start, u16Limit, u16Dest); 376 377 if (gFailed) { 378 return; 379 } 380 } 381 382 // 383 // Replace tests. 384 // 385 UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text"); 386 for (int32_t replStrLen=0; replStrLen<20; replStrLen++) { 387 UnicodeString repStr(fullRepString, 0, replStrLen); 388 TestReplace(us, ut, 389 nativeStart, nativeLimit, 390 u16Start, u16Limit, 391 repStr); 392 if (gFailed) { 393 return; 394 } 395 } 396 397 } 398 } 399 400 } 401 402 // 403 // TestCopyMove run a single test case for utext_copy. 404 // Test cases are created in TestCMR and dispatched here for execution. 405 // 406 void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move, 407 int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest, 408 int32_t u16Start, int32_t u16Limit, int32_t u16Dest) 409 { 410 UErrorCode status = U_ZERO_ERROR; 411 UText *targetUT = NULL; 412 gTestNum++; 413 gFailed = FALSE; 414 415 // 416 // clone the UText. The test will be run in the cloned copy 417 // so that we don't alter the original. 418 // 419 targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status); 420 TEST_SUCCESS(status); 421 UnicodeString targetUS(us); // And copy the reference string. 422 423 // do the test operation first in the reference 424 targetUS.copy(u16Start, u16Limit, u16Dest); 425 if (move) { 426 // delete out the source range. 427 if (u16Limit < u16Dest) { 428 targetUS.removeBetween(u16Start, u16Limit); 429 } else { 430 int32_t amtCopied = u16Limit - u16Start; 431 targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied); 432 } 433 } 434 435 // Do the same operation in the UText under test 436 utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status); 437 if (nativeDest > nativeStart && nativeDest < nativeLimit) { 438 TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR); 439 } else { 440 TEST_SUCCESS(status); 441 442 // Compare the results of the two parallel tests 443 int32_t usi = 0; // UnicodeString postion, utf-16 index. 444 int64_t uti = 0; // UText position, native index. 445 int32_t cpi; // char32 position (code point index) 446 UChar32 usc; // code point from Unicode String 447 UChar32 utc; // code point from UText 448 utext_setNativeIndex(targetUT, 0); 449 for (cpi=0; ; cpi++) { 450 usc = targetUS.char32At(usi); 451 utc = utext_next32(targetUT); 452 if (utc < 0) { 453 break; 454 } 455 TEST_ASSERT(uti == usi); 456 TEST_ASSERT(utc == usc); 457 usi = targetUS.moveIndex32(usi, 1); 458 uti = utext_getNativeIndex(targetUT); 459 if (gFailed) { 460 goto cleanupAndReturn; 461 } 462 } 463 int64_t expectedNativeLength = utext_nativeLength(ut); 464 if (move == FALSE) { 465 expectedNativeLength += nativeLimit - nativeStart; 466 } 467 uti = utext_getNativeIndex(targetUT); 468 TEST_ASSERT(uti == expectedNativeLength); 469 } 470 471 cleanupAndReturn: 472 utext_close(targetUT); 473 } 474 475 476 // 477 // TestReplace Test a single Replace operation. 478 // 479 void UTextTest::TestReplace( 480 const UnicodeString &us, // reference UnicodeString in which to do the replace 481 UText *ut, // UnicodeText object under test. 482 int32_t nativeStart, // Range to be replaced, in UText native units. 483 int32_t nativeLimit, 484 int32_t u16Start, // Range to be replaced, in UTF-16 units 485 int32_t u16Limit, // for use in the reference UnicodeString. 486 const UnicodeString &repStr) // The replacement string 487 { 488 UErrorCode status = U_ZERO_ERROR; 489 UText *targetUT = NULL; 490 gTestNum++; 491 gFailed = FALSE; 492 493 // 494 // clone the target UText. The test will be run in the cloned copy 495 // so that we don't alter the original. 496 // 497 targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status); 498 TEST_SUCCESS(status); 499 UnicodeString targetUS(us); // And copy the reference string. 500 501 // 502 // Do the replace operation in the Unicode String, to 503 // produce a reference result. 504 // 505 targetUS.replace(u16Start, u16Limit-u16Start, repStr); 506 507 // 508 // Do the replace on the UText under test 509 // 510 const UChar *rs = repStr.getBuffer(); 511 int32_t rsLen = repStr.length(); 512 int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status); 513 int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart); 514 TEST_ASSERT(actualDelta == expectedDelta); 515 516 // 517 // Compare the results 518 // 519 int32_t usi = 0; // UnicodeString postion, utf-16 index. 520 int64_t uti = 0; // UText position, native index. 521 int32_t cpi; // char32 position (code point index) 522 UChar32 usc; // code point from Unicode String 523 UChar32 utc; // code point from UText 524 int64_t expectedNativeLength = 0; 525 utext_setNativeIndex(targetUT, 0); 526 for (cpi=0; ; cpi++) { 527 usc = targetUS.char32At(usi); 528 utc = utext_next32(targetUT); 529 if (utc < 0) { 530 break; 531 } 532 TEST_ASSERT(uti == usi); 533 TEST_ASSERT(utc == usc); 534 usi = targetUS.moveIndex32(usi, 1); 535 uti = utext_getNativeIndex(targetUT); 536 if (gFailed) { 537 goto cleanupAndReturn; 538 } 539 } 540 expectedNativeLength = utext_nativeLength(ut) + expectedDelta; 541 uti = utext_getNativeIndex(targetUT); 542 TEST_ASSERT(uti == expectedNativeLength); 543 544 cleanupAndReturn: 545 utext_close(targetUT); 546 } 547 548 // 549 // TestAccess Test the read only access functions on a UText, including cloning. 550 // The text is accessed in a variety of ways, and compared with 551 // the reference UnicodeString. 552 // 553 void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { 554 // Run the standard tests on the caller-supplied UText. 555 TestAccessNoClone(us, ut, cpCount, cpMap); 556 557 // Re-run tests on a shallow clone. 558 utext_setNativeIndex(ut, 0); 559 UErrorCode status = U_ZERO_ERROR; 560 UText *shallowClone = utext_clone(NULL, ut, FALSE /*deep*/, FALSE /*readOnly*/, &status); 561 TEST_SUCCESS(status); 562 TestAccessNoClone(us, shallowClone, cpCount, cpMap); 563 564 // 565 // Rerun again on a deep clone. 566 // Note that text providers are not required to provide deep cloning, 567 // so unsupported errors are ignored. 568 // 569 status = U_ZERO_ERROR; 570 utext_setNativeIndex(shallowClone, 0); 571 UText *deepClone = utext_clone(NULL, shallowClone, TRUE, FALSE, &status); 572 utext_close(shallowClone); 573 if (status != U_UNSUPPORTED_ERROR) { 574 TEST_SUCCESS(status); 575 TestAccessNoClone(us, deepClone, cpCount, cpMap); 576 } 577 utext_close(deepClone); 578 } 579 580 581 // 582 // TestAccessNoClone() Test the read only access functions on a UText. 583 // The text is accessed in a variety of ways, and compared with 584 // the reference UnicodeString. 585 // 586 void UTextTest::TestAccessNoClone(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) { 587 UErrorCode status = U_ZERO_ERROR; 588 gTestNum++; 589 590 // 591 // Check the length from the UText 592 // 593 int64_t expectedLen = cpMap[cpCount].nativeIdx; 594 int64_t utlen = utext_nativeLength(ut); 595 TEST_ASSERT(expectedLen == utlen); 596 597 // 598 // Iterate forwards, verify that we get the correct code points 599 // at the correct native offsets. 600 // 601 int i = 0; 602 int64_t index; 603 int64_t expectedIndex = 0; 604 int64_t foundIndex = 0; 605 UChar32 expectedC; 606 UChar32 foundC; 607 int64_t len; 608 609 for (i=0; i<cpCount; i++) { 610 expectedIndex = cpMap[i].nativeIdx; 611 foundIndex = utext_getNativeIndex(ut); 612 TEST_ASSERT(expectedIndex == foundIndex); 613 expectedC = cpMap[i].cp; 614 foundC = utext_next32(ut); 615 TEST_ASSERT(expectedC == foundC); 616 foundIndex = utext_getPreviousNativeIndex(ut); 617 TEST_ASSERT(expectedIndex == foundIndex); 618 if (gFailed) { 619 return; 620 } 621 } 622 foundC = utext_next32(ut); 623 TEST_ASSERT(foundC == U_SENTINEL); 624 625 // Repeat above, using macros 626 utext_setNativeIndex(ut, 0); 627 for (i=0; i<cpCount; i++) { 628 expectedIndex = cpMap[i].nativeIdx; 629 foundIndex = UTEXT_GETNATIVEINDEX(ut); 630 TEST_ASSERT(expectedIndex == foundIndex); 631 expectedC = cpMap[i].cp; 632 foundC = UTEXT_NEXT32(ut); 633 TEST_ASSERT(expectedC == foundC); 634 if (gFailed) { 635 return; 636 } 637 } 638 foundC = UTEXT_NEXT32(ut); 639 TEST_ASSERT(foundC == U_SENTINEL); 640 641 // 642 // Forward iteration (above) should have left index at the 643 // end of the input, which should == length(). 644 // 645 len = utext_nativeLength(ut); 646 foundIndex = utext_getNativeIndex(ut); 647 TEST_ASSERT(len == foundIndex); 648 649 // 650 // Iterate backwards over entire test string 651 // 652 len = utext_getNativeIndex(ut); 653 utext_setNativeIndex(ut, len); 654 for (i=cpCount-1; i>=0; i--) { 655 expectedC = cpMap[i].cp; 656 expectedIndex = cpMap[i].nativeIdx; 657 int64_t prevIndex = utext_getPreviousNativeIndex(ut); 658 foundC = utext_previous32(ut); 659 foundIndex = utext_getNativeIndex(ut); 660 TEST_ASSERT(expectedIndex == foundIndex); 661 TEST_ASSERT(expectedC == foundC); 662 TEST_ASSERT(prevIndex == foundIndex); 663 if (gFailed) { 664 return; 665 } 666 } 667 668 // 669 // Backwards iteration, above, should have left our iterator 670 // position at zero, and continued backwards iterationshould fail. 671 // 672 foundIndex = utext_getNativeIndex(ut); 673 TEST_ASSERT(foundIndex == 0); 674 foundIndex = utext_getPreviousNativeIndex(ut); 675 TEST_ASSERT(foundIndex == 0); 676 677 678 foundC = utext_previous32(ut); 679 TEST_ASSERT(foundC == U_SENTINEL); 680 foundIndex = utext_getNativeIndex(ut); 681 TEST_ASSERT(foundIndex == 0); 682 foundIndex = utext_getPreviousNativeIndex(ut); 683 TEST_ASSERT(foundIndex == 0); 684 685 686 // And again, with the macros 687 utext_setNativeIndex(ut, len); 688 for (i=cpCount-1; i>=0; i--) { 689 expectedC = cpMap[i].cp; 690 expectedIndex = cpMap[i].nativeIdx; 691 foundC = UTEXT_PREVIOUS32(ut); 692 foundIndex = UTEXT_GETNATIVEINDEX(ut); 693 TEST_ASSERT(expectedIndex == foundIndex); 694 TEST_ASSERT(expectedC == foundC); 695 if (gFailed) { 696 return; 697 } 698 } 699 700 // 701 // Backwards iteration, above, should have left our iterator 702 // position at zero, and continued backwards iterationshould fail. 703 // 704 foundIndex = UTEXT_GETNATIVEINDEX(ut); 705 TEST_ASSERT(foundIndex == 0); 706 707 foundC = UTEXT_PREVIOUS32(ut); 708 TEST_ASSERT(foundC == U_SENTINEL); 709 foundIndex = UTEXT_GETNATIVEINDEX(ut); 710 TEST_ASSERT(foundIndex == 0); 711 if (gFailed) { 712 return; 713 } 714 715 // 716 // next32From(), prevous32From(), Iterate in a somewhat random order. 717 // 718 int cpIndex = 0; 719 for (i=0; i<cpCount; i++) { 720 cpIndex = (cpIndex + 9973) % cpCount; 721 index = cpMap[cpIndex].nativeIdx; 722 expectedC = cpMap[cpIndex].cp; 723 foundC = utext_next32From(ut, index); 724 TEST_ASSERT(expectedC == foundC); 725 if (gFailed) { 726 return; 727 } 728 } 729 730 cpIndex = 0; 731 for (i=0; i<cpCount; i++) { 732 cpIndex = (cpIndex + 9973) % cpCount; 733 index = cpMap[cpIndex+1].nativeIdx; 734 expectedC = cpMap[cpIndex].cp; 735 foundC = utext_previous32From(ut, index); 736 TEST_ASSERT(expectedC == foundC); 737 if (gFailed) { 738 return; 739 } 740 } 741 742 743 // 744 // moveIndex(int32_t delta); 745 // 746 747 // Walk through frontwards, incrementing by one 748 utext_setNativeIndex(ut, 0); 749 for (i=1; i<=cpCount; i++) { 750 utext_moveIndex32(ut, 1); 751 index = utext_getNativeIndex(ut); 752 expectedIndex = cpMap[i].nativeIdx; 753 TEST_ASSERT(expectedIndex == index); 754 index = UTEXT_GETNATIVEINDEX(ut); 755 TEST_ASSERT(expectedIndex == index); 756 } 757 758 // Walk through frontwards, incrementing by two 759 utext_setNativeIndex(ut, 0); 760 for (i=2; i<cpCount; i+=2) { 761 utext_moveIndex32(ut, 2); 762 index = utext_getNativeIndex(ut); 763 expectedIndex = cpMap[i].nativeIdx; 764 TEST_ASSERT(expectedIndex == index); 765 index = UTEXT_GETNATIVEINDEX(ut); 766 TEST_ASSERT(expectedIndex == index); 767 } 768 769 // walk through the string backwards, decrementing by one. 770 i = cpMap[cpCount].nativeIdx; 771 utext_setNativeIndex(ut, i); 772 for (i=cpCount; i>=0; i--) { 773 expectedIndex = cpMap[i].nativeIdx; 774 index = utext_getNativeIndex(ut); 775 TEST_ASSERT(expectedIndex == index); 776 index = UTEXT_GETNATIVEINDEX(ut); 777 TEST_ASSERT(expectedIndex == index); 778 utext_moveIndex32(ut, -1); 779 } 780 781 782 // walk through backwards, decrementing by three 783 i = cpMap[cpCount].nativeIdx; 784 utext_setNativeIndex(ut, i); 785 for (i=cpCount; i>=0; i-=3) { 786 expectedIndex = cpMap[i].nativeIdx; 787 index = utext_getNativeIndex(ut); 788 TEST_ASSERT(expectedIndex == index); 789 index = UTEXT_GETNATIVEINDEX(ut); 790 TEST_ASSERT(expectedIndex == index); 791 utext_moveIndex32(ut, -3); 792 } 793 794 795 // 796 // Extract 797 // 798 int bufSize = us.length() + 10; 799 UChar *buf = new UChar[bufSize]; 800 status = U_ZERO_ERROR; 801 expectedLen = us.length(); 802 len = utext_extract(ut, 0, utlen, buf, bufSize, &status); 803 TEST_SUCCESS(status); 804 TEST_ASSERT(len == expectedLen); 805 int compareResult = us.compare(buf, -1); 806 TEST_ASSERT(compareResult == 0); 807 808 status = U_ZERO_ERROR; 809 len = utext_extract(ut, 0, utlen, NULL, 0, &status); 810 if (utlen == 0) { 811 TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); 812 } else { 813 TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); 814 } 815 TEST_ASSERT(len == expectedLen); 816 817 status = U_ZERO_ERROR; 818 u_memset(buf, 0x5555, bufSize); 819 len = utext_extract(ut, 0, utlen, buf, 1, &status); 820 if (us.length() == 0) { 821 TEST_SUCCESS(status); 822 TEST_ASSERT(buf[0] == 0); 823 } else { 824 // Buf len == 1, extracting a single 16 bit value. 825 // If the data char is supplementary, it doesn't matter whether the buffer remains unchanged, 826 // or whether the lead surrogate of the pair is extracted. 827 // It's a buffer overflow error in either case. 828 TEST_ASSERT(buf[0] == us.charAt(0) || 829 (buf[0] == 0x5555 && U_IS_SUPPLEMENTARY(us.char32At(0)))); 830 TEST_ASSERT(buf[1] == 0x5555); 831 if (us.length() == 1) { 832 TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING); 833 } else { 834 TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR); 835 } 836 } 837 838 delete []buf; 839 } 840 841 // 842 // ErrorTest() Check various error and edge cases. 843 // 844 void UTextTest::ErrorTest() 845 { 846 // Close of an unitialized UText. Shouldn't blow up. 847 { 848 UText ut; 849 memset(&ut, 0, sizeof(UText)); 850 utext_close(&ut); 851 utext_close(NULL); 852 } 853 854 // Double-close of a UText. Shouldn't blow up. UText should still be usable. 855 { 856 UErrorCode status = U_ZERO_ERROR; 857 UText ut = UTEXT_INITIALIZER; 858 UnicodeString s("Hello, World"); 859 UText *ut2 = utext_openUnicodeString(&ut, &s, &status); 860 TEST_SUCCESS(status); 861 TEST_ASSERT(ut2 == &ut); 862 863 UText *ut3 = utext_close(&ut); 864 TEST_ASSERT(ut3 == &ut); 865 866 UText *ut4 = utext_close(&ut); 867 TEST_ASSERT(ut4 == &ut); 868 869 utext_openUnicodeString(&ut, &s, &status); 870 TEST_SUCCESS(status); 871 utext_close(&ut); 872 } 873 874 // Re-use of a UText, chaining through each of the types of UText 875 // (If it doesn't blow up, and doesn't leak, it's probably working fine) 876 { 877 UErrorCode status = U_ZERO_ERROR; 878 UText ut = UTEXT_INITIALIZER; 879 UText *utp; 880 UnicodeString s1("Hello, World"); 881 UChar s2[] = {(UChar)0x41, (UChar)0x42, (UChar)0}; 882 const char *s3 = "\x66\x67\x68"; 883 884 utp = utext_openUnicodeString(&ut, &s1, &status); 885 TEST_SUCCESS(status); 886 TEST_ASSERT(utp == &ut); 887 888 utp = utext_openConstUnicodeString(&ut, &s1, &status); 889 TEST_SUCCESS(status); 890 TEST_ASSERT(utp == &ut); 891 892 utp = utext_openUTF8(&ut, s3, -1, &status); 893 TEST_SUCCESS(status); 894 TEST_ASSERT(utp == &ut); 895 896 utp = utext_openUChars(&ut, s2, -1, &status); 897 TEST_SUCCESS(status); 898 TEST_ASSERT(utp == &ut); 899 900 utp = utext_close(&ut); 901 TEST_ASSERT(utp == &ut); 902 903 utp = utext_openUnicodeString(&ut, &s1, &status); 904 TEST_SUCCESS(status); 905 TEST_ASSERT(utp == &ut); 906 } 907 908 // Invalid parameters on open 909 // 910 { 911 UErrorCode status = U_ZERO_ERROR; 912 UText ut = UTEXT_INITIALIZER; 913 914 utext_openUChars(&ut, NULL, 5, &status); 915 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); 916 917 status = U_ZERO_ERROR; 918 utext_openUChars(&ut, NULL, -1, &status); 919 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); 920 921 status = U_ZERO_ERROR; 922 utext_openUTF8(&ut, NULL, 4, &status); 923 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); 924 925 status = U_ZERO_ERROR; 926 utext_openUTF8(&ut, NULL, -1, &status); 927 TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR); 928 } 929 930 // 931 // UTF-8 with malformed sequences. 932 // These should come through as the Unicode replacement char, \ufffd 933 // 934 { 935 UErrorCode status = U_ZERO_ERROR; 936 UText *ut = NULL; 937 const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43"; 938 UChar32 c; 939 940 ut = utext_openUTF8(NULL, badUTF8, -1, &status); 941 TEST_SUCCESS(status); 942 c = utext_char32At(ut, 1); 943 TEST_ASSERT(c == 0xfffd); 944 c = utext_char32At(ut, 3); 945 TEST_ASSERT(c == 0xfffd); 946 c = utext_char32At(ut, 5); 947 TEST_ASSERT(c == 0xfffd); 948 c = utext_char32At(ut, 6); 949 TEST_ASSERT(c == 0x43); 950 951 UChar buf[10]; 952 int n = utext_extract(ut, 0, 9, buf, 10, &status); 953 TEST_SUCCESS(status); 954 TEST_ASSERT(n==5); 955 TEST_ASSERT(buf[1] == 0xfffd); 956 TEST_ASSERT(buf[3] == 0xfffd); 957 TEST_ASSERT(buf[2] == 0x42); 958 utext_close(ut); 959 } 960 961 962 // 963 // isLengthExpensive - does it make the exptected transitions after 964 // getting the length of a nul terminated string? 965 // 966 { 967 UErrorCode status = U_ZERO_ERROR; 968 UnicodeString sa("Hello, this is a string"); 969 UBool isExpensive; 970 971 UChar sb[100]; 972 memset(sb, 0x20, sizeof(sb)); 973 sb[99] = 0; 974 975 UText *uta = utext_openUnicodeString(NULL, &sa, &status); 976 TEST_SUCCESS(status); 977 isExpensive = utext_isLengthExpensive(uta); 978 TEST_ASSERT(isExpensive == FALSE); 979 utext_close(uta); 980 981 UText *utb = utext_openUChars(NULL, sb, -1, &status); 982 TEST_SUCCESS(status); 983 isExpensive = utext_isLengthExpensive(utb); 984 TEST_ASSERT(isExpensive == TRUE); 985 int64_t len = utext_nativeLength(utb); 986 TEST_ASSERT(len == 99); 987 isExpensive = utext_isLengthExpensive(utb); 988 TEST_ASSERT(isExpensive == FALSE); 989 utext_close(utb); 990 } 991 992 // 993 // Index to positions not on code point boundaries. 994 // 995 { 996 const char *u8str = "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86"; 997 int32_t startMap[] = { 0, 0, 2, 2, 2, 5, 5, 5, 5, 9, 9}; 998 int32_t nextMap[] = { 2, 2, 5, 5, 5, 9, 9, 9, 9, 9, 9}; 999 int32_t prevMap[] = { 0, 0, 0, 0, 0, 2, 2, 2, 2, 5, 5}; 1000 UChar32 c32Map[] = {0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146, 0x044146, 0x044146, -1, -1}; 1001 UChar32 pr32Map[] = { -1, -1, 0x201, 0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146}; 1002 1003 // extractLen is the size, in UChars, of what will be extracted between index and index+1. 1004 // is zero when both index positions lie within the same code point. 1005 int32_t exLen[] = { 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0}; 1006 1007 1008 UErrorCode status = U_ZERO_ERROR; 1009 UText *ut = utext_openUTF8(NULL, u8str, -1, &status); 1010 TEST_SUCCESS(status); 1011 1012 // Check setIndex 1013 int32_t i; 1014 int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t); 1015 for (i=0; i<startMapLimit; i++) { 1016 utext_setNativeIndex(ut, i); 1017 int64_t cpIndex = utext_getNativeIndex(ut); 1018 TEST_ASSERT(cpIndex == startMap[i]); 1019 cpIndex = UTEXT_GETNATIVEINDEX(ut); 1020 TEST_ASSERT(cpIndex == startMap[i]); 1021 } 1022 1023 // Check char32At 1024 for (i=0; i<startMapLimit; i++) { 1025 UChar32 c32 = utext_char32At(ut, i); 1026 TEST_ASSERT(c32 == c32Map[i]); 1027 int64_t cpIndex = utext_getNativeIndex(ut); 1028 TEST_ASSERT(cpIndex == startMap[i]); 1029 } 1030 1031 // Check utext_next32From 1032 for (i=0; i<startMapLimit; i++) { 1033 UChar32 c32 = utext_next32From(ut, i); 1034 TEST_ASSERT(c32 == c32Map[i]); 1035 int64_t cpIndex = utext_getNativeIndex(ut); 1036 TEST_ASSERT(cpIndex == nextMap[i]); 1037 } 1038 1039 // check utext_previous32From 1040 for (i=0; i<startMapLimit; i++) { 1041 gTestNum++; 1042 UChar32 c32 = utext_previous32From(ut, i); 1043 TEST_ASSERT(c32 == pr32Map[i]); 1044 int64_t cpIndex = utext_getNativeIndex(ut); 1045 TEST_ASSERT(cpIndex == prevMap[i]); 1046 } 1047 1048 // check Extract 1049 // Extract from i to i+1, which may be zero or one code points, 1050 // depending on whether the indices straddle a cp boundary. 1051 for (i=0; i<startMapLimit; i++) { 1052 UChar buf[3]; 1053 status = U_ZERO_ERROR; 1054 int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); 1055 TEST_SUCCESS(status); 1056 TEST_ASSERT(extractedLen == exLen[i]); 1057 if (extractedLen > 0) { 1058 UChar32 c32; 1059 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ 1060 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); 1061 TEST_ASSERT(c32 == c32Map[i]); 1062 } 1063 } 1064 1065 utext_close(ut); 1066 } 1067 1068 1069 { // Similar test, with utf16 instead of utf8 1070 // TODO: merge the common parts of these tests. 1071 1072 UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); 1073 int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; 1074 int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; 1075 int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; 1076 UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; 1077 UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; 1078 int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; 1079 1080 u16str = u16str.unescape(); 1081 UErrorCode status = U_ZERO_ERROR; 1082 UText *ut = utext_openUnicodeString(NULL, &u16str, &status); 1083 TEST_SUCCESS(status); 1084 1085 int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t); 1086 int i; 1087 for (i=0; i<startMapLimit; i++) { 1088 utext_setNativeIndex(ut, i); 1089 int64_t cpIndex = utext_getNativeIndex(ut); 1090 TEST_ASSERT(cpIndex == startMap[i]); 1091 } 1092 1093 // Check char32At 1094 for (i=0; i<startMapLimit; i++) { 1095 UChar32 c32 = utext_char32At(ut, i); 1096 TEST_ASSERT(c32 == c32Map[i]); 1097 int64_t cpIndex = utext_getNativeIndex(ut); 1098 TEST_ASSERT(cpIndex == startMap[i]); 1099 } 1100 1101 // Check utext_next32From 1102 for (i=0; i<startMapLimit; i++) { 1103 UChar32 c32 = utext_next32From(ut, i); 1104 TEST_ASSERT(c32 == c32Map[i]); 1105 int64_t cpIndex = utext_getNativeIndex(ut); 1106 TEST_ASSERT(cpIndex == nextMap[i]); 1107 } 1108 1109 // check utext_previous32From 1110 for (i=0; i<startMapLimit; i++) { 1111 UChar32 c32 = utext_previous32From(ut, i); 1112 TEST_ASSERT(c32 == pr32Map[i]); 1113 int64_t cpIndex = utext_getNativeIndex(ut); 1114 TEST_ASSERT(cpIndex == prevMap[i]); 1115 } 1116 1117 // check Extract 1118 // Extract from i to i+1, which may be zero or one code points, 1119 // depending on whether the indices straddle a cp boundary. 1120 for (i=0; i<startMapLimit; i++) { 1121 UChar buf[3]; 1122 status = U_ZERO_ERROR; 1123 int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); 1124 TEST_SUCCESS(status); 1125 TEST_ASSERT(extractedLen == exLen[i]); 1126 if (extractedLen > 0) { 1127 UChar32 c32; 1128 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ 1129 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); 1130 TEST_ASSERT(c32 == c32Map[i]); 1131 } 1132 } 1133 1134 utext_close(ut); 1135 } 1136 1137 { // Similar test, with UText over Replaceable 1138 // TODO: merge the common parts of these tests. 1139 1140 UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV); 1141 int32_t startMap[] ={ 0, 1, 1, 3, 4, 4, 6, 6}; 1142 int32_t nextMap[] = { 1, 3, 3, 4, 6, 6, 6, 6}; 1143 int32_t prevMap[] = { 0, 0, 0, 1, 3, 3, 4, 4}; 1144 UChar32 c32Map[] = {0x1000, 0x11000, 0x11000, 0x2000, 0x22000, 0x22000, -1, -1}; 1145 UChar32 pr32Map[] = { -1, 0x1000, 0x1000, 0x11000, 0x2000, 0x2000, 0x22000, 0x22000}; 1146 int32_t exLen[] = { 1, 0, 2, 1, 0, 2, 0, 0,}; 1147 1148 u16str = u16str.unescape(); 1149 UErrorCode status = U_ZERO_ERROR; 1150 UText *ut = utext_openReplaceable(NULL, &u16str, &status); 1151 TEST_SUCCESS(status); 1152 1153 int32_t startMapLimit = sizeof(startMap) / sizeof(int32_t); 1154 int i; 1155 for (i=0; i<startMapLimit; i++) { 1156 utext_setNativeIndex(ut, i); 1157 int64_t cpIndex = utext_getNativeIndex(ut); 1158 TEST_ASSERT(cpIndex == startMap[i]); 1159 } 1160 1161 // Check char32At 1162 for (i=0; i<startMapLimit; i++) { 1163 UChar32 c32 = utext_char32At(ut, i); 1164 TEST_ASSERT(c32 == c32Map[i]); 1165 int64_t cpIndex = utext_getNativeIndex(ut); 1166 TEST_ASSERT(cpIndex == startMap[i]); 1167 } 1168 1169 // Check utext_next32From 1170 for (i=0; i<startMapLimit; i++) { 1171 UChar32 c32 = utext_next32From(ut, i); 1172 TEST_ASSERT(c32 == c32Map[i]); 1173 int64_t cpIndex = utext_getNativeIndex(ut); 1174 TEST_ASSERT(cpIndex == nextMap[i]); 1175 } 1176 1177 // check utext_previous32From 1178 for (i=0; i<startMapLimit; i++) { 1179 UChar32 c32 = utext_previous32From(ut, i); 1180 TEST_ASSERT(c32 == pr32Map[i]); 1181 int64_t cpIndex = utext_getNativeIndex(ut); 1182 TEST_ASSERT(cpIndex == prevMap[i]); 1183 } 1184 1185 // check Extract 1186 // Extract from i to i+1, which may be zero or one code points, 1187 // depending on whether the indices straddle a cp boundary. 1188 for (i=0; i<startMapLimit; i++) { 1189 UChar buf[3]; 1190 status = U_ZERO_ERROR; 1191 int32_t extractedLen = utext_extract(ut, i, i+1, buf, 3, &status); 1192 TEST_SUCCESS(status); 1193 TEST_ASSERT(extractedLen == exLen[i]); 1194 if (extractedLen > 0) { 1195 UChar32 c32; 1196 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */ 1197 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32); 1198 TEST_ASSERT(c32 == c32Map[i]); 1199 } 1200 } 1201 1202 utext_close(ut); 1203 } 1204 } 1205 1206 1207 void UTextTest::FreezeTest() { 1208 // Check isWritable() and freeze() behavior. 1209 // 1210 1211 UnicodeString ustr("Hello, World."); 1212 const char u8str[] = {char(0x31), (char)0x32, (char)0x33, 0}; 1213 const UChar u16str[] = {(UChar)0x31, (UChar)0x32, (UChar)0x44, 0}; 1214 1215 UErrorCode status = U_ZERO_ERROR; 1216 UText *ut = NULL; 1217 UText *ut2 = NULL; 1218 1219 ut = utext_openUTF8(ut, u8str, -1, &status); 1220 TEST_SUCCESS(status); 1221 UBool writable = utext_isWritable(ut); 1222 TEST_ASSERT(writable == FALSE); 1223 utext_copy(ut, 1, 2, 0, TRUE, &status); 1224 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1225 1226 status = U_ZERO_ERROR; 1227 ut = utext_openUChars(ut, u16str, -1, &status); 1228 TEST_SUCCESS(status); 1229 writable = utext_isWritable(ut); 1230 TEST_ASSERT(writable == FALSE); 1231 utext_copy(ut, 1, 2, 0, TRUE, &status); 1232 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1233 1234 status = U_ZERO_ERROR; 1235 ut = utext_openUnicodeString(ut, &ustr, &status); 1236 TEST_SUCCESS(status); 1237 writable = utext_isWritable(ut); 1238 TEST_ASSERT(writable == TRUE); 1239 utext_freeze(ut); 1240 writable = utext_isWritable(ut); 1241 TEST_ASSERT(writable == FALSE); 1242 utext_copy(ut, 1, 2, 0, TRUE, &status); 1243 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1244 1245 status = U_ZERO_ERROR; 1246 ut = utext_openUnicodeString(ut, &ustr, &status); 1247 TEST_SUCCESS(status); 1248 ut2 = utext_clone(ut2, ut, FALSE, FALSE, &status); // clone with readonly = false 1249 TEST_SUCCESS(status); 1250 writable = utext_isWritable(ut2); 1251 TEST_ASSERT(writable == TRUE); 1252 ut2 = utext_clone(ut2, ut, FALSE, TRUE, &status); // clone with readonly = true 1253 TEST_SUCCESS(status); 1254 writable = utext_isWritable(ut2); 1255 TEST_ASSERT(writable == FALSE); 1256 utext_copy(ut2, 1, 2, 0, TRUE, &status); 1257 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1258 1259 status = U_ZERO_ERROR; 1260 ut = utext_openConstUnicodeString(ut, (const UnicodeString *)&ustr, &status); 1261 TEST_SUCCESS(status); 1262 writable = utext_isWritable(ut); 1263 TEST_ASSERT(writable == FALSE); 1264 utext_copy(ut, 1, 2, 0, TRUE, &status); 1265 TEST_ASSERT(status == U_NO_WRITE_PERMISSION); 1266 1267 // Deep Clone of a frozen UText should re-enable writing in the copy. 1268 status = U_ZERO_ERROR; 1269 ut = utext_openUnicodeString(ut, &ustr, &status); 1270 TEST_SUCCESS(status); 1271 utext_freeze(ut); 1272 ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone 1273 TEST_SUCCESS(status); 1274 writable = utext_isWritable(ut2); 1275 TEST_ASSERT(writable == TRUE); 1276 1277 1278 // Deep clone of a frozen UText, where the base type is intrinsically non-writable, 1279 // should NOT enable writing in the copy. 1280 status = U_ZERO_ERROR; 1281 ut = utext_openUChars(ut, u16str, -1, &status); 1282 TEST_SUCCESS(status); 1283 utext_freeze(ut); 1284 ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status); // deep clone 1285 TEST_SUCCESS(status); 1286 writable = utext_isWritable(ut2); 1287 TEST_ASSERT(writable == FALSE); 1288 1289 // cleanup 1290 utext_close(ut); 1291 utext_close(ut2); 1292 } 1293 1294 1295 // 1296 // Fragmented UText 1297 // A UText type that works with a chunk size of 1. 1298 // Intended to test for edge cases. 1299 // Input comes from a UnicodeString. 1300 // 1301 // ut.b the character. Put into both halves. 1302 // 1303 1304 U_CDECL_BEGIN 1305 static UBool U_CALLCONV 1306 fragTextAccess(UText *ut, int64_t index, UBool forward) { 1307 const UnicodeString *us = (const UnicodeString *)ut->context; 1308 UChar c; 1309 int32_t length = us->length(); 1310 if (forward && index>=0 && index<length) { 1311 c = us->charAt((int32_t)index); 1312 ut->b = c | c<<16; 1313 ut->chunkOffset = 0; 1314 ut->chunkLength = 1; 1315 ut->chunkNativeStart = index; 1316 ut->chunkNativeLimit = index+1; 1317 return true; 1318 } 1319 if (!forward && index>0 && index <=length) { 1320 c = us->charAt((int32_t)index-1); 1321 ut->b = c | c<<16; 1322 ut->chunkOffset = 1; 1323 ut->chunkLength = 1; 1324 ut->chunkNativeStart = index-1; 1325 ut->chunkNativeLimit = index; 1326 return true; 1327 } 1328 ut->b = 0; 1329 ut->chunkOffset = 0; 1330 ut->chunkLength = 0; 1331 if (index <= 0) { 1332 ut->chunkNativeStart = 0; 1333 ut->chunkNativeLimit = 0; 1334 } else { 1335 ut->chunkNativeStart = length; 1336 ut->chunkNativeLimit = length; 1337 } 1338 return false; 1339 } 1340 1341 // Function table to be used with this fragmented text provider. 1342 // Initialized in the open function. 1343 static UTextFuncs fragmentFuncs; 1344 1345 // Clone function for fragmented text provider. 1346 // Didn't really want to provide this, but it's easier to provide it than to keep it 1347 // out of the tests. 1348 // 1349 UText * 1350 cloneFragmentedUnicodeString(UText *dest, const UText *src, UBool deep, UErrorCode *status) { 1351 if (U_FAILURE(*status)) { 1352 return NULL; 1353 } 1354 if (deep) { 1355 *status = U_UNSUPPORTED_ERROR; 1356 return NULL; 1357 } 1358 dest = utext_openUnicodeString(dest, (UnicodeString *)src->context, status); 1359 utext_setNativeIndex(dest, utext_getNativeIndex(src)); 1360 return dest; 1361 } 1362 1363 U_CDECL_END 1364 1365 // Open function for the fragmented text provider. 1366 UText * 1367 openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { 1368 ut = utext_openUnicodeString(ut, s, status); 1369 if (U_FAILURE(*status)) { 1370 return ut; 1371 } 1372 1373 // Copy of the function table from the stock UnicodeString UText, 1374 // and replace the entry for the access function. 1375 memcpy(&fragmentFuncs, ut->pFuncs, sizeof(fragmentFuncs)); 1376 fragmentFuncs.access = fragTextAccess; 1377 fragmentFuncs.clone = cloneFragmentedUnicodeString; 1378 ut->pFuncs = &fragmentFuncs; 1379 1380 ut->chunkContents = (UChar *)&ut->b; 1381 ut->pFuncs->access(ut, 0, TRUE); 1382 return ut; 1383 } 1384 1385 // Regression test for Ticket 5560 1386 // Clone fails to update chunkContentPointer in the cloned copy. 1387 // This is only an issue for UText types that work in a local buffer, 1388 // (UTF-8 wrapper, for example) 1389 // 1390 // The test: 1391 // 1. Create an inital UText 1392 // 2. Deep clone it. Contents should match original. 1393 // 3. Reset original to something different. 1394 // 4. Check that clone contents did not change. 1395 // 1396 void UTextTest::Ticket5560() { 1397 /* The following two strings are in UTF-8 even on EBCDIC platforms. */ 1398 static const char s1[] = {0x41,0x42,0x43,0x44,0x45,0x46,0}; /* "ABCDEF" */ 1399 static const char s2[] = {0x31,0x32,0x33,0x34,0x35,0x36,0}; /* "123456" */ 1400 UErrorCode status = U_ZERO_ERROR; 1401 1402 UText ut1 = UTEXT_INITIALIZER; 1403 UText ut2 = UTEXT_INITIALIZER; 1404 1405 utext_openUTF8(&ut1, s1, -1, &status); 1406 UChar c = utext_next32(&ut1); 1407 TEST_ASSERT(c == 0x41); // c == 'A' 1408 1409 utext_clone(&ut2, &ut1, TRUE, FALSE, &status); 1410 TEST_SUCCESS(status); 1411 c = utext_next32(&ut2); 1412 TEST_ASSERT(c == 0x42); // c == 'B' 1413 c = utext_next32(&ut1); 1414 TEST_ASSERT(c == 0x42); // c == 'B' 1415 1416 utext_openUTF8(&ut1, s2, -1, &status); 1417 c = utext_next32(&ut1); 1418 TEST_ASSERT(c == 0x31); // c == '1' 1419 c = utext_next32(&ut2); 1420 TEST_ASSERT(c == 0x43); // c == 'C' 1421 1422 utext_close(&ut1); 1423 utext_close(&ut2); 1424 } 1425 1426 1427 // Test for Ticket 6847 1428 // 1429 void UTextTest::Ticket6847() { 1430 const int STRLEN = 90; 1431 UChar s[STRLEN+1]; 1432 u_memset(s, 0x41, STRLEN); 1433 s[STRLEN] = 0; 1434 1435 UErrorCode status = U_ZERO_ERROR; 1436 UText *ut = utext_openUChars(NULL, s, -1, &status); 1437 1438 utext_setNativeIndex(ut, 0); 1439 int32_t count = 0; 1440 UChar32 c = 0; 1441 int64_t nativeIndex = UTEXT_GETNATIVEINDEX(ut); 1442 TEST_ASSERT(nativeIndex == 0); 1443 while ((c = utext_next32(ut)) != U_SENTINEL) { 1444 TEST_ASSERT(c == 0x41); 1445 TEST_ASSERT(count < STRLEN); 1446 if (count >= STRLEN) { 1447 break; 1448 } 1449 count++; 1450 nativeIndex = UTEXT_GETNATIVEINDEX(ut); 1451 TEST_ASSERT(nativeIndex == count); 1452 } 1453 TEST_ASSERT(count == STRLEN); 1454 nativeIndex = UTEXT_GETNATIVEINDEX(ut); 1455 TEST_ASSERT(nativeIndex == STRLEN); 1456 utext_close(ut); 1457 } 1458 1459 1460 void UTextTest::Ticket10562() { 1461 // Note: failures show as a heap error when the test is run under valgrind. 1462 UErrorCode status = U_ZERO_ERROR; 1463 1464 const char *utf8_string = "\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41"; 1465 UText *utf8Text = utext_openUTF8(NULL, utf8_string, -1, &status); 1466 TEST_SUCCESS(status); 1467 UText *deepClone = utext_clone(NULL, utf8Text, TRUE, FALSE, &status); 1468 TEST_SUCCESS(status); 1469 UText *shallowClone = utext_clone(NULL, deepClone, FALSE, FALSE, &status); 1470 TEST_SUCCESS(status); 1471 utext_close(shallowClone); 1472 utext_close(deepClone); 1473 utext_close(utf8Text); 1474 1475 status = U_ZERO_ERROR; 1476 UnicodeString usString("Hello, World."); 1477 UText *usText = utext_openUnicodeString(NULL, &usString, &status); 1478 TEST_SUCCESS(status); 1479 UText *usDeepClone = utext_clone(NULL, usText, TRUE, FALSE, &status); 1480 TEST_SUCCESS(status); 1481 UText *usShallowClone = utext_clone(NULL, usDeepClone, FALSE, FALSE, &status); 1482 TEST_SUCCESS(status); 1483 utext_close(usShallowClone); 1484 utext_close(usDeepClone); 1485 utext_close(usText); 1486 } 1487 1488 1489 void UTextTest::Ticket10983() { 1490 // Note: failure shows as a seg fault when the defect is present. 1491 1492 UErrorCode status = U_ZERO_ERROR; 1493 UnicodeString s("Hello, World"); 1494 UText *ut = utext_openConstUnicodeString(NULL, &s, &status); 1495 TEST_SUCCESS(status); 1496 1497 status = U_INVALID_STATE_ERROR; 1498 UText *cloned = utext_clone(NULL, ut, TRUE, TRUE, &status); 1499 TEST_ASSERT(cloned == NULL); 1500 TEST_ASSERT(status == U_INVALID_STATE_ERROR); 1501 1502 utext_close(ut); 1503 } 1504