1 /* 2 ******************************************************************************* 3 * Copyright (C) 1996-2015, International Business Machines Corporation and * 4 * others. All Rights Reserved. * 5 ******************************************************************************* 6 */ 7 8 #include "unicode/utypes.h" 9 10 #if !UCONFIG_NO_FORMATTING 11 12 #include "itrbnf.h" 13 14 #include "unicode/umachine.h" 15 16 #include "unicode/tblcoll.h" 17 #include "unicode/coleitr.h" 18 #include "unicode/ures.h" 19 #include "unicode/ustring.h" 20 #include "unicode/decimfmt.h" 21 #include "unicode/udata.h" 22 #include "putilimp.h" 23 #include "testutil.h" 24 25 #include <string.h> 26 27 // import com.ibm.text.RuleBasedNumberFormat; 28 // import com.ibm.test.TestFmwk; 29 30 // import java.util.Locale; 31 // import java.text.NumberFormat; 32 33 // current macro not in icu1.8.1 34 #define TESTCASE(id,test) \ 35 case id: \ 36 name = #test; \ 37 if (exec) { \ 38 logln(#test "---"); \ 39 logln(); \ 40 test(); \ 41 } \ 42 break 43 44 void IntlTestRBNF::runIndexedTest(int32_t index, UBool exec, const char* &name, char* /*par*/) 45 { 46 if (exec) logln("TestSuite RuleBasedNumberFormat"); 47 switch (index) { 48 #if U_HAVE_RBNF 49 TESTCASE(0, TestEnglishSpellout); 50 TESTCASE(1, TestOrdinalAbbreviations); 51 TESTCASE(2, TestDurations); 52 TESTCASE(3, TestSpanishSpellout); 53 TESTCASE(4, TestFrenchSpellout); 54 TESTCASE(5, TestSwissFrenchSpellout); 55 TESTCASE(6, TestItalianSpellout); 56 TESTCASE(7, TestGermanSpellout); 57 TESTCASE(8, TestThaiSpellout); 58 TESTCASE(9, TestAPI); 59 TESTCASE(10, TestFractionalRuleSet); 60 TESTCASE(11, TestSwedishSpellout); 61 TESTCASE(12, TestBelgianFrenchSpellout); 62 TESTCASE(13, TestSmallValues); 63 TESTCASE(14, TestLocalizations); 64 TESTCASE(15, TestAllLocales); 65 TESTCASE(16, TestHebrewFraction); 66 TESTCASE(17, TestPortugueseSpellout); 67 TESTCASE(18, TestMultiplierSubstitution); 68 TESTCASE(19, TestSetDecimalFormatSymbols); 69 TESTCASE(20, TestPluralRules); 70 TESTCASE(21, TestMultiplePluralRules); 71 TESTCASE(22, TestInfinityNaN); 72 TESTCASE(23, TestVariableDecimalPoint); 73 #else 74 TESTCASE(0, TestRBNFDisabled); 75 #endif 76 default: 77 name = ""; 78 break; 79 } 80 } 81 82 #if U_HAVE_RBNF 83 84 void IntlTestRBNF::TestHebrewFraction() { 85 86 // this is the expected output for 123.45, with no '<' in it. 87 UChar text1[] = { 88 0x05de, 0x05d0, 0x05d4, 0x0020, 89 0x05e2, 0x05e9, 0x05e8, 0x05d9, 0x05dd, 0x0020, 90 0x05d5, 0x05e9, 0x05dc, 0x05d5, 0x05e9, 0x0020, 91 0x05e0, 0x05e7, 0x05d5, 0x05d3, 0x05d4, 0x0020, 92 0x05d0, 0x05e8, 0x05d1, 0x05e2, 0x0020, 93 0x05d7, 0x05de, 0x05e9, 0x0000, 94 }; 95 UChar text2[] = { 96 0x05DE, 0x05D0, 0x05D4, 0x0020, 97 0x05E2, 0x05E9, 0x05E8, 0x05D9, 0x05DD, 0x0020, 98 0x05D5, 0x05E9, 0x05DC, 0x05D5, 0x05E9, 0x0020, 99 0x05E0, 0x05E7, 0x05D5, 0x05D3, 0x05D4, 0x0020, 100 0x05D0, 0x05E4, 0x05E1, 0x0020, 101 0x05D0, 0x05E4, 0x05E1, 0x0020, 102 0x05D0, 0x05E8, 0x05D1, 0x05E2, 0x0020, 103 0x05D7, 0x05DE, 0x05E9, 0x0000, 104 }; 105 UErrorCode status = U_ZERO_ERROR; 106 RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, "he_IL", status); 107 if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) { 108 errcheckln(status, "Failed in constructing RuleBasedNumberFormat - %s", u_errorName(status)); 109 delete formatter; 110 return; 111 } 112 UnicodeString result; 113 Formattable parseResult; 114 ParsePosition pp(0); 115 { 116 UnicodeString expected(text1); 117 formatter->format(123.45, result); 118 if (result != expected) { 119 errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'"); 120 } else { 121 // formatter->parse(result, parseResult, pp); 122 // if (parseResult.getDouble() != 123.45) { 123 // errln("expected 123.45 but got: %g", parseResult.getDouble()); 124 // } 125 } 126 } 127 { 128 UnicodeString expected(text2); 129 result.remove(); 130 formatter->format(123.0045, result); 131 if (result != expected) { 132 errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\nbut got: '" + TestUtility::hex(result) + "'"); 133 } else { 134 pp.setIndex(0); 135 // formatter->parse(result, parseResult, pp); 136 // if (parseResult.getDouble() != 123.0045) { 137 // errln("expected 123.0045 but got: %g", parseResult.getDouble()); 138 // } 139 } 140 } 141 delete formatter; 142 } 143 144 void 145 IntlTestRBNF::TestAPI() { 146 // This test goes through the APIs that were not tested before. 147 // These tests are too small to have separate test classes/functions 148 149 UErrorCode status = U_ZERO_ERROR; 150 RuleBasedNumberFormat* formatter 151 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status); 152 if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) { 153 dataerrln("Unable to create formatter. - %s", u_errorName(status)); 154 delete formatter; 155 return; 156 } 157 158 logln("RBNF API test starting"); 159 // test clone 160 { 161 logln("Testing Clone"); 162 RuleBasedNumberFormat* rbnfClone = (RuleBasedNumberFormat *)formatter->clone(); 163 if(rbnfClone != NULL) { 164 if(!(*rbnfClone == *formatter)) { 165 errln("Clone should be semantically equivalent to the original!"); 166 } 167 delete rbnfClone; 168 } else { 169 errln("Cloning failed!"); 170 } 171 } 172 173 // test assignment 174 { 175 logln("Testing assignment operator"); 176 RuleBasedNumberFormat assignResult(URBNF_SPELLOUT, Locale("es", "ES", ""), status); 177 assignResult = *formatter; 178 if(!(assignResult == *formatter)) { 179 errln("Assignment result should be semantically equivalent to the original!"); 180 } 181 } 182 183 // test rule constructor 184 { 185 logln("Testing rule constructor"); 186 LocalUResourceBundlePointer en(ures_open(U_ICUDATA_NAME U_TREE_SEPARATOR_STRING "rbnf", "en", &status)); 187 if(U_FAILURE(status)) { 188 errln("Unable to access resource bundle with data!"); 189 } else { 190 int32_t ruleLen = 0; 191 int32_t len = 0; 192 LocalUResourceBundlePointer rbnfRules(ures_getByKey(en.getAlias(), "RBNFRules", NULL, &status)); 193 LocalUResourceBundlePointer ruleSets(ures_getByKey(rbnfRules.getAlias(), "SpelloutRules", NULL, &status)); 194 UnicodeString desc; 195 while (ures_hasNext(ruleSets.getAlias())) { 196 const UChar* currentString = ures_getNextString(ruleSets.getAlias(), &len, NULL, &status); 197 ruleLen += len; 198 desc.append(currentString); 199 } 200 201 const UChar *spelloutRules = desc.getTerminatedBuffer(); 202 203 if(U_FAILURE(status) || ruleLen == 0 || spelloutRules == NULL) { 204 errln("Unable to access the rules string!"); 205 } else { 206 UParseError perror; 207 RuleBasedNumberFormat ruleCtorResult(spelloutRules, Locale::getUS(), perror, status); 208 if(!(ruleCtorResult == *formatter)) { 209 errln("Formatter constructed from the original rules should be semantically equivalent to the original!"); 210 } 211 212 // Jitterbug 4452, for coverage 213 RuleBasedNumberFormat nf(spelloutRules, (UnicodeString)"", Locale::getUS(), perror, status); 214 if(!(nf == *formatter)) { 215 errln("Formatter constructed from the original rules should be semantically equivalent to the original!"); 216 } 217 } 218 } 219 } 220 221 // test getRules 222 { 223 logln("Testing getRules function"); 224 UnicodeString rules = formatter->getRules(); 225 UParseError perror; 226 RuleBasedNumberFormat fromRulesResult(rules, Locale::getUS(), perror, status); 227 228 if(!(fromRulesResult == *formatter)) { 229 errln("Formatter constructed from rules obtained by getRules should be semantically equivalent to the original!"); 230 } 231 } 232 233 234 { 235 logln("Testing copy constructor"); 236 RuleBasedNumberFormat copyCtorResult(*formatter); 237 if(!(copyCtorResult == *formatter)) { 238 errln("Copy constructor result result should be semantically equivalent to the original!"); 239 } 240 } 241 242 #if !UCONFIG_NO_COLLATION 243 // test ruleset names 244 { 245 logln("Testing getNumberOfRuleSetNames, getRuleSetName and format using rule set names"); 246 int32_t noOfRuleSetNames = formatter->getNumberOfRuleSetNames(); 247 if(noOfRuleSetNames == 0) { 248 errln("Number of rule set names should be more than zero"); 249 } 250 UnicodeString ruleSetName; 251 int32_t i = 0; 252 int32_t intFormatNum = 34567; 253 double doubleFormatNum = 893411.234; 254 logln("number of rule set names is %i", noOfRuleSetNames); 255 for(i = 0; i < noOfRuleSetNames; i++) { 256 FieldPosition pos1, pos2; 257 UnicodeString intFormatResult, doubleFormatResult; 258 Formattable intParseResult, doubleParseResult; 259 260 ruleSetName = formatter->getRuleSetName(i); 261 log("Rule set name %i is ", i); 262 log(ruleSetName); 263 logln(". Format results are: "); 264 intFormatResult = formatter->format(intFormatNum, ruleSetName, intFormatResult, pos1, status); 265 doubleFormatResult = formatter->format(doubleFormatNum, ruleSetName, doubleFormatResult, pos2, status); 266 if(U_FAILURE(status)) { 267 errln("Format using a rule set failed"); 268 break; 269 } 270 logln(intFormatResult); 271 logln(doubleFormatResult); 272 formatter->setLenient(TRUE); 273 formatter->parse(intFormatResult, intParseResult, status); 274 formatter->parse(doubleFormatResult, doubleParseResult, status); 275 276 logln("Parse results for lenient = TRUE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble()); 277 278 formatter->setLenient(FALSE); 279 formatter->parse(intFormatResult, intParseResult, status); 280 formatter->parse(doubleFormatResult, doubleParseResult, status); 281 282 logln("Parse results for lenient = FALSE, %i, %f", intParseResult.getLong(), doubleParseResult.getDouble()); 283 284 if(U_FAILURE(status)) { 285 errln("Error during parsing"); 286 } 287 288 intFormatResult = formatter->format(intFormatNum, "BLABLA", intFormatResult, pos1, status); 289 if(U_SUCCESS(status)) { 290 errln("Using invalid rule set name should have failed"); 291 break; 292 } 293 status = U_ZERO_ERROR; 294 doubleFormatResult = formatter->format(doubleFormatNum, "TRUC", doubleFormatResult, pos2, status); 295 if(U_SUCCESS(status)) { 296 errln("Using invalid rule set name should have failed"); 297 break; 298 } 299 status = U_ZERO_ERROR; 300 } 301 status = U_ZERO_ERROR; 302 } 303 #endif 304 305 // test API 306 UnicodeString expected("four point five",""); 307 logln("Testing format(double)"); 308 UnicodeString result; 309 formatter->format(4.5,result); 310 if(result != expected) { 311 errln("Formatted 4.5, expected " + expected + " got " + result); 312 } else { 313 logln("Formatted 4.5, expected " + expected + " got " + result); 314 } 315 result.remove(); 316 expected = "four"; 317 formatter->format((int32_t)4,result); 318 if(result != expected) { 319 errln("Formatted 4, expected " + expected + " got " + result); 320 } else { 321 logln("Formatted 4, expected " + expected + " got " + result); 322 } 323 324 result.remove(); 325 FieldPosition pos; 326 formatter->format((int64_t)4, result, pos, status = U_ZERO_ERROR); 327 if(result != expected) { 328 errln("Formatted 4 int64_t, expected " + expected + " got " + result); 329 } else { 330 logln("Formatted 4 int64_t, expected " + expected + " got " + result); 331 } 332 333 //Jitterbug 4452, for coverage 334 result.remove(); 335 FieldPosition pos2; 336 formatter->format((int64_t)4, formatter->getRuleSetName(0), result, pos2, status = U_ZERO_ERROR); 337 if(result != expected) { 338 errln("Formatted 4 int64_t, expected " + expected + " got " + result); 339 } else { 340 logln("Formatted 4 int64_t, expected " + expected + " got " + result); 341 } 342 343 // clean up 344 logln("Cleaning up"); 345 delete formatter; 346 } 347 348 /** 349 * Perform a simple spot check on the parsing going into an infinite loop for alternate rules. 350 */ 351 void IntlTestRBNF::TestMultiplePluralRules() { 352 // This is trying to model the feminine form, but don't worry about the details too much. 353 // We're trying to test the plural rules where there are different prefixes. 354 UnicodeString rules("%spellout-cardinal-feminine-genitive:" 355 "0: zero;" 356 "1: ono;" 357 "2: two;" 358 "1000: << $(cardinal,one{thousand}few{thousanF}other{thousanO})$[ >>];" 359 "%spellout-cardinal-feminine:" 360 "x.x: [<< $(cardinal,one{singleton}other{plurality})$ ]>%%fractions>;" 361 "0: zero;" 362 "1: one;" 363 "2: two;" 364 "1000: << $(cardinal,one{thousand}few{thousanF}other{thousanO})$[ >>];" 365 "%%fractions:" 366 "10: <%spellout-cardinal-feminine< $(cardinal,one{oneth}other{tenth})$;" 367 "100: <%spellout-cardinal-feminine< $(cardinal,one{1hundredth}other{hundredth})$;"); 368 UErrorCode status = U_ZERO_ERROR; 369 UParseError pError; 370 RuleBasedNumberFormat formatter(rules, Locale("ru"), pError, status); 371 Formattable result; 372 UnicodeString resultStr; 373 FieldPosition pos; 374 375 if (U_FAILURE(status)) { 376 dataerrln("Unable to create formatter - %s", u_errorName(status)); 377 return; 378 } 379 380 formatter.parse(formatter.format(1000.0, resultStr, pos, status), result, status); 381 if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("one thousand")) { 382 errln("RuleBasedNumberFormat did not return the correct value. Got: %d", result.getLong()); 383 errln(resultStr); 384 } 385 resultStr.remove(); 386 formatter.parse(formatter.format(1000.0, UnicodeString("%spellout-cardinal-feminine-genitive"), resultStr, pos, status), result, status); 387 if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("ono thousand")) { 388 errln("RuleBasedNumberFormat(cardinal-feminine-genitive) did not return the correct value. Got: %d", result.getLong()); 389 errln(resultStr); 390 } 391 resultStr.remove(); 392 formatter.parse(formatter.format(1000.0, UnicodeString("%spellout-cardinal-feminine"), resultStr, pos, status), result, status); 393 if (1000 != result.getLong() || resultStr != UNICODE_STRING_SIMPLE("one thousand")) { 394 errln("RuleBasedNumberFormat(spellout-cardinal-feminine) did not return the correct value. Got: %d", result.getLong()); 395 errln(resultStr); 396 } 397 static const char* const testData[][2] = { 398 { "0", "zero" }, 399 { "1", "one" }, 400 { "2", "two" }, 401 { "0.1", "one oneth" }, 402 { "0.2", "two tenth" }, 403 { "1.1", "one singleton one oneth" }, 404 { "1.2", "one singleton two tenth" }, 405 { "2.1", "two plurality one oneth" }, 406 { "2.2", "two plurality two tenth" }, 407 { "0.01", "one 1hundredth" }, 408 { "0.02", "two hundredth" }, 409 { NULL, NULL } 410 }; 411 doTest(&formatter, testData, TRUE); 412 } 413 414 void IntlTestRBNF::TestFractionalRuleSet() 415 { 416 UnicodeString fracRules( 417 "%main:\n" 418 // this rule formats the number if it's 1 or more. It formats 419 // the integral part using a DecimalFormat ("#,##0" puts 420 // thousands separators in the right places) and the fractional 421 // part using %%frac. If there is no fractional part, it 422 // just shows the integral part. 423 " x.0: <#,##0<[ >%%frac>];\n" 424 // this rule formats the number if it's between 0 and 1. It 425 // shows only the fractional part (0.5 shows up as "1/2," not 426 // "0 1/2") 427 " 0.x: >%%frac>;\n" 428 // the fraction rule set. This works the same way as the one in the 429 // preceding example: We multiply the fractional part of the number 430 // being formatted by each rule's base value and use the rule that 431 // produces the result closest to 0 (or the first rule that produces 0). 432 // Since we only provide rules for the numbers from 2 to 10, we know 433 // we'll get a fraction with a denominator between 2 and 10. 434 // "<0<" causes the numerator of the fraction to be formatted 435 // using numerals 436 "%%frac:\n" 437 " 2: 1/2;\n" 438 " 3: <0</3;\n" 439 " 4: <0</4;\n" 440 " 5: <0</5;\n" 441 " 6: <0</6;\n" 442 " 7: <0</7;\n" 443 " 8: <0</8;\n" 444 " 9: <0</9;\n" 445 " 10: <0</10;\n"); 446 447 // mondo hack 448 int len = fracRules.length(); 449 int change = 2; 450 for (int i = 0; i < len; ++i) { 451 UChar ch = fracRules.charAt(i); 452 if (ch == '\n') { 453 change = 2; // change ok 454 } else if (ch == ':') { 455 change = 1; // change, but once we hit a non-space char, don't change 456 } else if (ch == ' ') { 457 if (change != 0) { 458 fracRules.setCharAt(i, (UChar)0x200e); 459 } 460 } else { 461 if (change == 1) { 462 change = 0; 463 } 464 } 465 } 466 467 UErrorCode status = U_ZERO_ERROR; 468 UParseError perror; 469 RuleBasedNumberFormat formatter(fracRules, Locale::getEnglish(), perror, status); 470 if (U_FAILURE(status)) { 471 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 472 } else { 473 static const char* const testData[][2] = { 474 { "0", "0" }, 475 { ".1", "1/10" }, 476 { ".11", "1/9" }, 477 { ".125", "1/8" }, 478 { ".1428", "1/7" }, 479 { ".1667", "1/6" }, 480 { ".2", "1/5" }, 481 { ".25", "1/4" }, 482 { ".333", "1/3" }, 483 { ".5", "1/2" }, 484 { "1.1", "1 1/10" }, 485 { "2.11", "2 1/9" }, 486 { "3.125", "3 1/8" }, 487 { "4.1428", "4 1/7" }, 488 { "5.1667", "5 1/6" }, 489 { "6.2", "6 1/5" }, 490 { "7.25", "7 1/4" }, 491 { "8.333", "8 1/3" }, 492 { "9.5", "9 1/2" }, 493 { ".2222", "2/9" }, 494 { ".4444", "4/9" }, 495 { ".5555", "5/9" }, 496 { "1.2856", "1 2/7" }, 497 { NULL, NULL } 498 }; 499 doTest(&formatter, testData, FALSE); // exact values aren't parsable from fractions 500 } 501 } 502 503 #if 0 504 #define LLAssert(a) \ 505 if (!(a)) errln("FAIL: " #a) 506 507 void IntlTestRBNF::TestLLongConstructors() 508 { 509 logln("Testing constructors"); 510 511 // constant (shouldn't really be public) 512 LLAssert(llong(llong::kD32).asDouble() == llong::kD32); 513 514 // internal constructor (shouldn't really be public) 515 LLAssert(llong(0, 1).asDouble() == 1); 516 LLAssert(llong(1, 0).asDouble() == llong::kD32); 517 LLAssert(llong((uint32_t)-1, (uint32_t)-1).asDouble() == -1); 518 519 // public empty constructor 520 LLAssert(llong().asDouble() == 0); 521 522 // public int32_t constructor 523 LLAssert(llong((int32_t)0).asInt() == (int32_t)0); 524 LLAssert(llong((int32_t)1).asInt() == (int32_t)1); 525 LLAssert(llong((int32_t)-1).asInt() == (int32_t)-1); 526 LLAssert(llong((int32_t)0x7fffffff).asInt() == (int32_t)0x7fffffff); 527 LLAssert(llong((int32_t)0xffffffff).asInt() == (int32_t)-1); 528 LLAssert(llong((int32_t)0x80000000).asInt() == (int32_t)0x80000000); 529 530 // public int16_t constructor 531 LLAssert(llong((int16_t)0).asInt() == (int16_t)0); 532 LLAssert(llong((int16_t)1).asInt() == (int16_t)1); 533 LLAssert(llong((int16_t)-1).asInt() == (int16_t)-1); 534 LLAssert(llong((int16_t)0x7fff).asInt() == (int16_t)0x7fff); 535 LLAssert(llong((int16_t)0xffff).asInt() == (int16_t)0xffff); 536 LLAssert(llong((int16_t)0x8000).asInt() == (int16_t)0x8000); 537 538 // public int8_t constructor 539 LLAssert(llong((int8_t)0).asInt() == (int8_t)0); 540 LLAssert(llong((int8_t)1).asInt() == (int8_t)1); 541 LLAssert(llong((int8_t)-1).asInt() == (int8_t)-1); 542 LLAssert(llong((int8_t)0x7f).asInt() == (int8_t)0x7f); 543 LLAssert(llong((int8_t)0xff).asInt() == (int8_t)0xff); 544 LLAssert(llong((int8_t)0x80).asInt() == (int8_t)0x80); 545 546 // public uint16_t constructor 547 LLAssert(llong((uint16_t)0).asUInt() == (uint16_t)0); 548 LLAssert(llong((uint16_t)1).asUInt() == (uint16_t)1); 549 LLAssert(llong((uint16_t)-1).asUInt() == (uint16_t)-1); 550 LLAssert(llong((uint16_t)0x7fff).asUInt() == (uint16_t)0x7fff); 551 LLAssert(llong((uint16_t)0xffff).asUInt() == (uint16_t)0xffff); 552 LLAssert(llong((uint16_t)0x8000).asUInt() == (uint16_t)0x8000); 553 554 // public uint32_t constructor 555 LLAssert(llong((uint32_t)0).asUInt() == (uint32_t)0); 556 LLAssert(llong((uint32_t)1).asUInt() == (uint32_t)1); 557 LLAssert(llong((uint32_t)-1).asUInt() == (uint32_t)-1); 558 LLAssert(llong((uint32_t)0x7fffffff).asUInt() == (uint32_t)0x7fffffff); 559 LLAssert(llong((uint32_t)0xffffffff).asUInt() == (uint32_t)-1); 560 LLAssert(llong((uint32_t)0x80000000).asUInt() == (uint32_t)0x80000000); 561 562 // public double constructor 563 LLAssert(llong((double)0).asDouble() == (double)0); 564 LLAssert(llong((double)1).asDouble() == (double)1); 565 LLAssert(llong((double)0x7fffffff).asDouble() == (double)0x7fffffff); 566 LLAssert(llong((double)0x80000000).asDouble() == (double)0x80000000); 567 LLAssert(llong((double)0x80000001).asDouble() == (double)0x80000001); 568 569 // can't access uprv_maxmantissa, so fake it 570 double maxmantissa = (llong((int32_t)1) << 40).asDouble(); 571 LLAssert(llong(maxmantissa).asDouble() == maxmantissa); 572 LLAssert(llong(-maxmantissa).asDouble() == -maxmantissa); 573 574 // copy constructor 575 LLAssert(llong(llong(0, 1)).asDouble() == 1); 576 LLAssert(llong(llong(1, 0)).asDouble() == llong::kD32); 577 LLAssert(llong(llong(-1, (uint32_t)-1)).asDouble() == -1); 578 579 // asInt - test unsigned to signed narrowing conversion 580 LLAssert(llong((uint32_t)-1).asInt() == (int32_t)0x7fffffff); 581 LLAssert(llong(-1, 0).asInt() == (int32_t)0x80000000); 582 583 // asUInt - test signed to unsigned narrowing conversion 584 LLAssert(llong((int32_t)-1).asUInt() == (uint32_t)-1); 585 LLAssert(llong((int32_t)0x80000000).asUInt() == (uint32_t)0x80000000); 586 587 // asDouble already tested 588 589 } 590 591 void IntlTestRBNF::TestLLongSimpleOperators() 592 { 593 logln("Testing simple operators"); 594 595 // operator== 596 LLAssert(llong() == llong(0, 0)); 597 LLAssert(llong(1,0) == llong(1, 0)); 598 LLAssert(llong(0,1) == llong(0, 1)); 599 600 // operator!= 601 LLAssert(llong(1,0) != llong(1,1)); 602 LLAssert(llong(0,1) != llong(1,1)); 603 LLAssert(llong(0xffffffff,0xffffffff) != llong(0x7fffffff, 0xffffffff)); 604 605 // unsigned > 606 LLAssert(llong((int32_t)-1).ugt(llong(0x7fffffff, 0xffffffff))); 607 608 // unsigned < 609 LLAssert(llong(0x7fffffff, 0xffffffff).ult(llong((int32_t)-1))); 610 611 // unsigned >= 612 LLAssert(llong((int32_t)-1).uge(llong(0x7fffffff, 0xffffffff))); 613 LLAssert(llong((int32_t)-1).uge(llong((int32_t)-1))); 614 615 // unsigned <= 616 LLAssert(llong(0x7fffffff, 0xffffffff).ule(llong((int32_t)-1))); 617 LLAssert(llong((int32_t)-1).ule(llong((int32_t)-1))); 618 619 // operator> 620 LLAssert(llong(1, 1) > llong(1, 0)); 621 LLAssert(llong(0, 0x80000000) > llong(0, 0x7fffffff)); 622 LLAssert(llong(0x80000000, 1) > llong(0x80000000, 0)); 623 LLAssert(llong(1, 0) > llong(0, 0x7fffffff)); 624 LLAssert(llong(1, 0) > llong(0, 0xffffffff)); 625 LLAssert(llong(0, 0) > llong(0x80000000, 1)); 626 627 // operator< 628 LLAssert(llong(1, 0) < llong(1, 1)); 629 LLAssert(llong(0, 0x7fffffff) < llong(0, 0x80000000)); 630 LLAssert(llong(0x80000000, 0) < llong(0x80000000, 1)); 631 LLAssert(llong(0, 0x7fffffff) < llong(1, 0)); 632 LLAssert(llong(0, 0xffffffff) < llong(1, 0)); 633 LLAssert(llong(0x80000000, 1) < llong(0, 0)); 634 635 // operator>= 636 LLAssert(llong(1, 1) >= llong(1, 0)); 637 LLAssert(llong(0, 0x80000000) >= llong(0, 0x7fffffff)); 638 LLAssert(llong(0x80000000, 1) >= llong(0x80000000, 0)); 639 LLAssert(llong(1, 0) >= llong(0, 0x7fffffff)); 640 LLAssert(llong(1, 0) >= llong(0, 0xffffffff)); 641 LLAssert(llong(0, 0) >= llong(0x80000000, 1)); 642 LLAssert(llong() >= llong(0, 0)); 643 LLAssert(llong(1,0) >= llong(1, 0)); 644 LLAssert(llong(0,1) >= llong(0, 1)); 645 646 // operator<= 647 LLAssert(llong(1, 0) <= llong(1, 1)); 648 LLAssert(llong(0, 0x7fffffff) <= llong(0, 0x80000000)); 649 LLAssert(llong(0x80000000, 0) <= llong(0x80000000, 1)); 650 LLAssert(llong(0, 0x7fffffff) <= llong(1, 0)); 651 LLAssert(llong(0, 0xffffffff) <= llong(1, 0)); 652 LLAssert(llong(0x80000000, 1) <= llong(0, 0)); 653 LLAssert(llong() <= llong(0, 0)); 654 LLAssert(llong(1,0) <= llong(1, 0)); 655 LLAssert(llong(0,1) <= llong(0, 1)); 656 657 // operator==(int32) 658 LLAssert(llong() == (int32_t)0); 659 LLAssert(llong(0,1) == (int32_t)1); 660 661 // operator!=(int32) 662 LLAssert(llong(1,0) != (int32_t)0); 663 LLAssert(llong(0,1) != (int32_t)2); 664 LLAssert(llong(0,0xffffffff) != (int32_t)-1); 665 666 llong negOne(0xffffffff, 0xffffffff); 667 668 // operator>(int32) 669 LLAssert(llong(0, 0x80000000) > (int32_t)0x7fffffff); 670 LLAssert(negOne > (int32_t)-2); 671 LLAssert(llong(1, 0) > (int32_t)0x7fffffff); 672 LLAssert(llong(0, 0) > (int32_t)-1); 673 674 // operator<(int32) 675 LLAssert(llong(0, 0x7ffffffe) < (int32_t)0x7fffffff); 676 LLAssert(llong(0xffffffff, 0xfffffffe) < (int32_t)-1); 677 678 // operator>=(int32) 679 LLAssert(llong(0, 0x80000000) >= (int32_t)0x7fffffff); 680 LLAssert(negOne >= (int32_t)-2); 681 LLAssert(llong(1, 0) >= (int32_t)0x7fffffff); 682 LLAssert(llong(0, 0) >= (int32_t)-1); 683 LLAssert(llong() >= (int32_t)0); 684 LLAssert(llong(0,1) >= (int32_t)1); 685 686 // operator<=(int32) 687 LLAssert(llong(0, 0x7ffffffe) <= (int32_t)0x7fffffff); 688 LLAssert(llong(0xffffffff, 0xfffffffe) <= (int32_t)-1); 689 LLAssert(llong() <= (int32_t)0); 690 LLAssert(llong(0,1) <= (int32_t)1); 691 692 // operator= 693 LLAssert((llong(2,3) = llong((uint32_t)-1)).asUInt() == (uint32_t)-1); 694 695 // operator <<= 696 LLAssert((llong(1, 1) <<= 0) == llong(1, 1)); 697 LLAssert((llong(1, 1) <<= 31) == llong(0x80000000, 0x80000000)); 698 LLAssert((llong(1, 1) <<= 32) == llong(1, 0)); 699 LLAssert((llong(1, 1) <<= 63) == llong(0x80000000, 0)); 700 LLAssert((llong(1, 1) <<= 64) == llong(1, 1)); // only lower 6 bits are used 701 LLAssert((llong(1, 1) <<= -1) == llong(0x80000000, 0)); // only lower 6 bits are used 702 703 // operator << 704 LLAssert((llong((int32_t)1) << 5).asUInt() == 32); 705 706 // operator >>= (sign extended) 707 LLAssert((llong(0x7fffa0a0, 0xbcbcdfdf) >>= 16) == llong(0x7fff,0xa0a0bcbc)); 708 LLAssert((llong(0x8000789a, 0xbcde0000) >>= 16) == llong(0xffff8000,0x789abcde)); 709 LLAssert((llong(0x80000000, 0) >>= 63) == llong(0xffffffff, 0xffffffff)); 710 LLAssert((llong(0x80000000, 0) >>= 47) == llong(0xffffffff, 0xffff0000)); 711 LLAssert((llong(0x80000000, 0x80000000) >> 64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used 712 LLAssert((llong(0x80000000, 0) >>= -1) == llong(0xffffffff, 0xffffffff)); // only lower 6 bits are used 713 714 // operator >> sign extended) 715 LLAssert((llong(0x8000789a, 0xbcde0000) >> 16) == llong(0xffff8000,0x789abcde)); 716 717 // ushr (right shift without sign extension) 718 LLAssert(llong(0x7fffa0a0, 0xbcbcdfdf).ushr(16) == llong(0x7fff,0xa0a0bcbc)); 719 LLAssert(llong(0x8000789a, 0xbcde0000).ushr(16) == llong(0x00008000,0x789abcde)); 720 LLAssert(llong(0x80000000, 0).ushr(63) == llong(0, 1)); 721 LLAssert(llong(0x80000000, 0).ushr(47) == llong(0, 0x10000)); 722 LLAssert(llong(0x80000000, 0x80000000).ushr(64) == llong(0x80000000, 0x80000000)); // only lower 6 bits are used 723 LLAssert(llong(0x80000000, 0).ushr(-1) == llong(0, 1)); // only lower 6 bits are used 724 725 // operator&(llong) 726 LLAssert((llong(0x55555555, 0x55555555) & llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000)); 727 728 // operator|(llong) 729 LLAssert((llong(0x55555555, 0x55555555) | llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff)); 730 731 // operator^(llong) 732 LLAssert((llong(0x55555555, 0x55555555) ^ llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff)); 733 734 // operator&(uint32) 735 LLAssert((llong(0x55555555, 0x55555555) & (uint32_t)0xffffaaaa) == llong(0, 0x55550000)); 736 737 // operator|(uint32) 738 LLAssert((llong(0x55555555, 0x55555555) | (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff)); 739 740 // operator^(uint32) 741 LLAssert((llong(0x55555555, 0x55555555) ^ (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff)); 742 743 // operator~ 744 LLAssert(~llong(0x55555555, 0x55555555) == llong(0xaaaaaaaa, 0xaaaaaaaa)); 745 746 // operator&=(llong) 747 LLAssert((llong(0x55555555, 0x55555555) &= llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000)); 748 749 // operator|=(llong) 750 LLAssert((llong(0x55555555, 0x55555555) |= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff)); 751 752 // operator^=(llong) 753 LLAssert((llong(0x55555555, 0x55555555) ^= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff)); 754 755 // operator&=(uint32) 756 LLAssert((llong(0x55555555, 0x55555555) &= (uint32_t)0xffffaaaa) == llong(0, 0x55550000)); 757 758 // operator|=(uint32) 759 LLAssert((llong(0x55555555, 0x55555555) |= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xffffffff)); 760 761 // operator^=(uint32) 762 LLAssert((llong(0x55555555, 0x55555555) ^= (uint32_t)0xffffaaaa) == llong(0x55555555, 0xaaaaffff)); 763 764 // prefix inc 765 LLAssert(llong(1, 0) == ++llong(0,0xffffffff)); 766 767 // prefix dec 768 LLAssert(llong(0,0xffffffff) == --llong(1, 0)); 769 770 // postfix inc 771 { 772 llong n(0, 0xffffffff); 773 LLAssert(llong(0, 0xffffffff) == n++); 774 LLAssert(llong(1, 0) == n); 775 } 776 777 // postfix dec 778 { 779 llong n(1, 0); 780 LLAssert(llong(1, 0) == n--); 781 LLAssert(llong(0, 0xffffffff) == n); 782 } 783 784 // unary minus 785 LLAssert(llong(0, 0) == -llong(0, 0)); 786 LLAssert(llong(0xffffffff, 0xffffffff) == -llong(0, 1)); 787 LLAssert(llong(0, 1) == -llong(0xffffffff, 0xffffffff)); 788 LLAssert(llong(0x7fffffff, 0xffffffff) == -llong(0x80000000, 1)); 789 LLAssert(llong(0x80000000, 0) == -llong(0x80000000, 0)); // !!! we don't handle overflow 790 791 // operator-= 792 { 793 llong n; 794 LLAssert((n -= llong(0, 1)) == llong(0xffffffff, 0xffffffff)); 795 LLAssert(n == llong(0xffffffff, 0xffffffff)); 796 797 n = llong(1, 0); 798 LLAssert((n -= llong(0, 1)) == llong(0, 0xffffffff)); 799 LLAssert(n == llong(0, 0xffffffff)); 800 } 801 802 // operator- 803 { 804 llong n; 805 LLAssert((n - llong(0, 1)) == llong(0xffffffff, 0xffffffff)); 806 LLAssert(n == llong(0, 0)); 807 808 n = llong(1, 0); 809 LLAssert((n - llong(0, 1)) == llong(0, 0xffffffff)); 810 LLAssert(n == llong(1, 0)); 811 } 812 813 // operator+= 814 { 815 llong n(0xffffffff, 0xffffffff); 816 LLAssert((n += llong(0, 1)) == llong(0, 0)); 817 LLAssert(n == llong(0, 0)); 818 819 n = llong(0, 0xffffffff); 820 LLAssert((n += llong(0, 1)) == llong(1, 0)); 821 LLAssert(n == llong(1, 0)); 822 } 823 824 // operator+ 825 { 826 llong n(0xffffffff, 0xffffffff); 827 LLAssert((n + llong(0, 1)) == llong(0, 0)); 828 LLAssert(n == llong(0xffffffff, 0xffffffff)); 829 830 n = llong(0, 0xffffffff); 831 LLAssert((n + llong(0, 1)) == llong(1, 0)); 832 LLAssert(n == llong(0, 0xffffffff)); 833 } 834 835 } 836 837 void IntlTestRBNF::TestLLong() 838 { 839 logln("Starting TestLLong"); 840 841 TestLLongConstructors(); 842 843 TestLLongSimpleOperators(); 844 845 logln("Testing operator*=, operator*"); 846 847 // operator*=, operator* 848 // small and large values, positive, &NEGative, zero 849 // also test commutivity 850 { 851 const llong ZERO; 852 const llong ONE(0, 1); 853 const llong NEG_ONE((int32_t)-1); 854 const llong THREE(0, 3); 855 const llong NEG_THREE((int32_t)-3); 856 const llong TWO_TO_16(0, 0x10000); 857 const llong NEG_TWO_TO_16 = -TWO_TO_16; 858 const llong TWO_TO_32(1, 0); 859 const llong NEG_TWO_TO_32 = -TWO_TO_32; 860 861 const llong NINE(0, 9); 862 const llong NEG_NINE = -NINE; 863 864 const llong TWO_TO_16X3(0, 0x00030000); 865 const llong NEG_TWO_TO_16X3 = -TWO_TO_16X3; 866 867 const llong TWO_TO_32X3(3, 0); 868 const llong NEG_TWO_TO_32X3 = -TWO_TO_32X3; 869 870 const llong TWO_TO_48(0x10000, 0); 871 const llong NEG_TWO_TO_48 = -TWO_TO_48; 872 873 const int32_t VALUE_WIDTH = 9; 874 const llong* values[VALUE_WIDTH] = { 875 &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32 876 }; 877 878 const llong* answers[VALUE_WIDTH*VALUE_WIDTH] = { 879 &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, 880 &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_32, &NEG_TWO_TO_32, 881 &ZERO, &NEG_ONE, &ONE, &NEG_THREE, &THREE, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_32, &TWO_TO_32, 882 &ZERO, &THREE, &NEG_THREE, &NINE, &NEG_NINE, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32X3, &NEG_TWO_TO_32X3, 883 &ZERO, &NEG_THREE, &THREE, &NEG_NINE, &NINE, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32X3, &TWO_TO_32X3, 884 &ZERO, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_16X3, &NEG_TWO_TO_16X3, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_48, &NEG_TWO_TO_48, 885 &ZERO, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_16X3, &TWO_TO_16X3, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_48, &TWO_TO_48, 886 &ZERO, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_32X3, &NEG_TWO_TO_32X3, &TWO_TO_48, &NEG_TWO_TO_48, &ZERO, &ZERO, 887 &ZERO, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_32X3, &TWO_TO_32X3, &NEG_TWO_TO_48, &TWO_TO_48, &ZERO, &ZERO 888 }; 889 890 for (int i = 0; i < VALUE_WIDTH; ++i) { 891 for (int j = 0; j < VALUE_WIDTH; ++j) { 892 llong lhs = *values[i]; 893 llong rhs = *values[j]; 894 llong ans = *answers[i*VALUE_WIDTH + j]; 895 896 llong n = lhs; 897 898 LLAssert((n *= rhs) == ans); 899 LLAssert(n == ans); 900 901 n = lhs; 902 LLAssert((n * rhs) == ans); 903 LLAssert(n == lhs); 904 } 905 } 906 } 907 908 logln("Testing operator/=, operator/"); 909 // operator/=, operator/ 910 // test num = 0, div = 0, pos/neg, > 2^32, div > num 911 { 912 const llong ZERO; 913 const llong ONE(0, 1); 914 const llong NEG_ONE = -ONE; 915 const llong MAX(0x7fffffff, 0xffffffff); 916 const llong MIN(0x80000000, 0); 917 const llong TWO(0, 2); 918 const llong NEG_TWO = -TWO; 919 const llong FIVE(0, 5); 920 const llong NEG_FIVE = -FIVE; 921 const llong TWO_TO_32(1, 0); 922 const llong NEG_TWO_TO_32 = -TWO_TO_32; 923 const llong TWO_TO_32d5 = llong(TWO_TO_32.asDouble()/5.0); 924 const llong NEG_TWO_TO_32d5 = -TWO_TO_32d5; 925 const llong TWO_TO_32X5 = TWO_TO_32 * FIVE; 926 const llong NEG_TWO_TO_32X5 = -TWO_TO_32X5; 927 928 const llong* tuples[] = { // lhs, rhs, ans 929 &ZERO, &ZERO, &ZERO, 930 &ONE, &ZERO,&MAX, 931 &NEG_ONE, &ZERO, &MIN, 932 &ONE, &ONE, &ONE, 933 &ONE, &NEG_ONE, &NEG_ONE, 934 &NEG_ONE, &ONE, &NEG_ONE, 935 &NEG_ONE, &NEG_ONE, &ONE, 936 &FIVE, &TWO, &TWO, 937 &FIVE, &NEG_TWO, &NEG_TWO, 938 &NEG_FIVE, &TWO, &NEG_TWO, 939 &NEG_FIVE, &NEG_TWO, &TWO, 940 &TWO, &FIVE, &ZERO, 941 &TWO, &NEG_FIVE, &ZERO, 942 &NEG_TWO, &FIVE, &ZERO, 943 &NEG_TWO, &NEG_FIVE, &ZERO, 944 &TWO_TO_32, &TWO_TO_32, &ONE, 945 &TWO_TO_32, &NEG_TWO_TO_32, &NEG_ONE, 946 &NEG_TWO_TO_32, &TWO_TO_32, &NEG_ONE, 947 &NEG_TWO_TO_32, &NEG_TWO_TO_32, &ONE, 948 &TWO_TO_32, &FIVE, &TWO_TO_32d5, 949 &TWO_TO_32, &NEG_FIVE, &NEG_TWO_TO_32d5, 950 &NEG_TWO_TO_32, &FIVE, &NEG_TWO_TO_32d5, 951 &NEG_TWO_TO_32, &NEG_FIVE, &TWO_TO_32d5, 952 &TWO_TO_32X5, &FIVE, &TWO_TO_32, 953 &TWO_TO_32X5, &NEG_FIVE, &NEG_TWO_TO_32, 954 &NEG_TWO_TO_32X5, &FIVE, &NEG_TWO_TO_32, 955 &NEG_TWO_TO_32X5, &NEG_FIVE, &TWO_TO_32, 956 &TWO_TO_32X5, &TWO_TO_32, &FIVE, 957 &TWO_TO_32X5, &NEG_TWO_TO_32, &NEG_FIVE, 958 &NEG_TWO_TO_32X5, &NEG_TWO_TO_32, &FIVE, 959 &NEG_TWO_TO_32X5, &TWO_TO_32, &NEG_FIVE 960 }; 961 const int TUPLE_WIDTH = 3; 962 const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH; 963 for (int i = 0; i < TUPLE_COUNT; ++i) { 964 const llong lhs = *tuples[i*TUPLE_WIDTH+0]; 965 const llong rhs = *tuples[i*TUPLE_WIDTH+1]; 966 const llong ans = *tuples[i*TUPLE_WIDTH+2]; 967 968 llong n = lhs; 969 if (!((n /= rhs) == ans)) { 970 errln("fail: (n /= rhs) == ans"); 971 } 972 LLAssert(n == ans); 973 974 n = lhs; 975 LLAssert((n / rhs) == ans); 976 LLAssert(n == lhs); 977 } 978 } 979 980 logln("Testing operator%%=, operator%%"); 981 //operator%=, operator% 982 { 983 const llong ZERO; 984 const llong ONE(0, 1); 985 const llong TWO(0, 2); 986 const llong THREE(0,3); 987 const llong FOUR(0, 4); 988 const llong FIVE(0, 5); 989 const llong SIX(0, 6); 990 991 const llong NEG_ONE = -ONE; 992 const llong NEG_TWO = -TWO; 993 const llong NEG_THREE = -THREE; 994 const llong NEG_FOUR = -FOUR; 995 const llong NEG_FIVE = -FIVE; 996 const llong NEG_SIX = -SIX; 997 998 const llong NINETY_NINE(0, 99); 999 const llong HUNDRED(0, 100); 1000 const llong HUNDRED_ONE(0, 101); 1001 1002 const llong BIG(0x12345678, 0x9abcdef0); 1003 const llong BIG_FIVE(BIG * FIVE); 1004 const llong BIG_FIVEm1 = BIG_FIVE - ONE; 1005 const llong BIG_FIVEp1 = BIG_FIVE + ONE; 1006 1007 const llong* tuples[] = { 1008 &ZERO, &FIVE, &ZERO, 1009 &ONE, &FIVE, &ONE, 1010 &TWO, &FIVE, &TWO, 1011 &THREE, &FIVE, &THREE, 1012 &FOUR, &FIVE, &FOUR, 1013 &FIVE, &FIVE, &ZERO, 1014 &SIX, &FIVE, &ONE, 1015 &ZERO, &NEG_FIVE, &ZERO, 1016 &ONE, &NEG_FIVE, &ONE, 1017 &TWO, &NEG_FIVE, &TWO, 1018 &THREE, &NEG_FIVE, &THREE, 1019 &FOUR, &NEG_FIVE, &FOUR, 1020 &FIVE, &NEG_FIVE, &ZERO, 1021 &SIX, &NEG_FIVE, &ONE, 1022 &NEG_ONE, &FIVE, &NEG_ONE, 1023 &NEG_TWO, &FIVE, &NEG_TWO, 1024 &NEG_THREE, &FIVE, &NEG_THREE, 1025 &NEG_FOUR, &FIVE, &NEG_FOUR, 1026 &NEG_FIVE, &FIVE, &ZERO, 1027 &NEG_SIX, &FIVE, &NEG_ONE, 1028 &NEG_ONE, &NEG_FIVE, &NEG_ONE, 1029 &NEG_TWO, &NEG_FIVE, &NEG_TWO, 1030 &NEG_THREE, &NEG_FIVE, &NEG_THREE, 1031 &NEG_FOUR, &NEG_FIVE, &NEG_FOUR, 1032 &NEG_FIVE, &NEG_FIVE, &ZERO, 1033 &NEG_SIX, &NEG_FIVE, &NEG_ONE, 1034 &NINETY_NINE, &FIVE, &FOUR, 1035 &HUNDRED, &FIVE, &ZERO, 1036 &HUNDRED_ONE, &FIVE, &ONE, 1037 &BIG_FIVEm1, &FIVE, &FOUR, 1038 &BIG_FIVE, &FIVE, &ZERO, 1039 &BIG_FIVEp1, &FIVE, &ONE 1040 }; 1041 const int TUPLE_WIDTH = 3; 1042 const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WIDTH; 1043 for (int i = 0; i < TUPLE_COUNT; ++i) { 1044 const llong lhs = *tuples[i*TUPLE_WIDTH+0]; 1045 const llong rhs = *tuples[i*TUPLE_WIDTH+1]; 1046 const llong ans = *tuples[i*TUPLE_WIDTH+2]; 1047 1048 llong n = lhs; 1049 if (!((n %= rhs) == ans)) { 1050 errln("fail: (n %= rhs) == ans"); 1051 } 1052 LLAssert(n == ans); 1053 1054 n = lhs; 1055 LLAssert((n % rhs) == ans); 1056 LLAssert(n == lhs); 1057 } 1058 } 1059 1060 logln("Testing pow"); 1061 // pow 1062 LLAssert(llong(0, 0).pow(0) == llong(0, 0)); 1063 LLAssert(llong(0, 0).pow(2) == llong(0, 0)); 1064 LLAssert(llong(0, 2).pow(0) == llong(0, 1)); 1065 LLAssert(llong(0, 2).pow(2) == llong(0, 4)); 1066 LLAssert(llong(0, 2).pow(32) == llong(1, 0)); 1067 LLAssert(llong(0, 5).pow(10) == llong((double)5.0 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5)); 1068 1069 // absolute value 1070 { 1071 const llong n(0xffffffff,0xffffffff); 1072 LLAssert(n.abs() == llong(0, 1)); 1073 } 1074 1075 #ifdef RBNF_DEBUG 1076 logln("Testing atoll"); 1077 // atoll 1078 const char empty[] = ""; 1079 const char zero[] = "0"; 1080 const char neg_one[] = "-1"; 1081 const char neg_12345[] = "-12345"; 1082 const char big1[] = "123456789abcdef0"; 1083 const char big2[] = "fFfFfFfFfFfFfFfF"; 1084 LLAssert(llong::atoll(empty) == llong(0, 0)); 1085 LLAssert(llong::atoll(zero) == llong(0, 0)); 1086 LLAssert(llong::atoll(neg_one) == llong(0xffffffff, 0xffffffff)); 1087 LLAssert(llong::atoll(neg_12345) == -llong(0, 12345)); 1088 LLAssert(llong::atoll(big1, 16) == llong(0x12345678, 0x9abcdef0)); 1089 LLAssert(llong::atoll(big2, 16) == llong(0xffffffff, 0xffffffff)); 1090 #endif 1091 1092 // u_atoll 1093 const UChar uempty[] = { 0 }; 1094 const UChar uzero[] = { 0x30, 0 }; 1095 const UChar uneg_one[] = { 0x2d, 0x31, 0 }; 1096 const UChar uneg_12345[] = { 0x2d, 0x31, 0x32, 0x33, 0x34, 0x35, 0 }; 1097 const UChar ubig1[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0 }; 1098 const UChar ubig2[] = { 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0 }; 1099 LLAssert(llong::utoll(uempty) == llong(0, 0)); 1100 LLAssert(llong::utoll(uzero) == llong(0, 0)); 1101 LLAssert(llong::utoll(uneg_one) == llong(0xffffffff, 0xffffffff)); 1102 LLAssert(llong::utoll(uneg_12345) == -llong(0, 12345)); 1103 LLAssert(llong::utoll(ubig1, 16) == llong(0x12345678, 0x9abcdef0)); 1104 LLAssert(llong::utoll(ubig2, 16) == llong(0xffffffff, 0xffffffff)); 1105 1106 #ifdef RBNF_DEBUG 1107 logln("Testing lltoa"); 1108 // lltoa 1109 { 1110 char buf[64]; // ascii 1111 LLAssert((llong(0, 0).lltoa(buf, (uint32_t)sizeof(buf)) == 1) && (strcmp(buf, zero) == 0)); 1112 LLAssert((llong(0xffffffff, 0xffffffff).lltoa(buf, (uint32_t)sizeof(buf)) == 2) && (strcmp(buf, neg_one) == 0)); 1113 LLAssert(((-llong(0, 12345)).lltoa(buf, (uint32_t)sizeof(buf)) == 6) && (strcmp(buf, neg_12345) == 0)); 1114 LLAssert((llong(0x12345678, 0x9abcdef0).lltoa(buf, (uint32_t)sizeof(buf), 16) == 16) && (strcmp(buf, big1) == 0)); 1115 } 1116 #endif 1117 1118 logln("Testing u_lltoa"); 1119 // u_lltoa 1120 { 1121 UChar buf[64]; 1122 LLAssert((llong(0, 0).lltou(buf, (uint32_t)sizeof(buf)) == 1) && (u_strcmp(buf, uzero) == 0)); 1123 LLAssert((llong(0xffffffff, 0xffffffff).lltou(buf, (uint32_t)sizeof(buf)) == 2) && (u_strcmp(buf, uneg_one) == 0)); 1124 LLAssert(((-llong(0, 12345)).lltou(buf, (uint32_t)sizeof(buf)) == 6) && (u_strcmp(buf, uneg_12345) == 0)); 1125 LLAssert((llong(0x12345678, 0x9abcdef0).lltou(buf, (uint32_t)sizeof(buf), 16) == 16) && (u_strcmp(buf, ubig1) == 0)); 1126 } 1127 } 1128 1129 /* if 0 */ 1130 #endif 1131 1132 void 1133 IntlTestRBNF::TestEnglishSpellout() 1134 { 1135 UErrorCode status = U_ZERO_ERROR; 1136 RuleBasedNumberFormat* formatter 1137 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status); 1138 if (U_FAILURE(status)) { 1139 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1140 } else { 1141 static const char* const testData[][2] = { 1142 { "1", "one" }, 1143 { "2", "two" }, 1144 { "15", "fifteen" }, 1145 { "20", "twenty" }, 1146 { "23", "twenty-three" }, 1147 { "73", "seventy-three" }, 1148 { "88", "eighty-eight" }, 1149 { "100", "one hundred" }, 1150 { "106", "one hundred six" }, 1151 { "127", "one hundred twenty-seven" }, 1152 { "200", "two hundred" }, 1153 { "579", "five hundred seventy-nine" }, 1154 { "1,000", "one thousand" }, 1155 { "2,000", "two thousand" }, 1156 { "3,004", "three thousand four" }, 1157 { "4,567", "four thousand five hundred sixty-seven" }, 1158 { "15,943", "fifteen thousand nine hundred forty-three" }, 1159 { "2,345,678", "two million three hundred forty-five thousand six hundred seventy-eight" }, 1160 { "-36", "minus thirty-six" }, 1161 { "234.567", "two hundred thirty-four point five six seven" }, 1162 { NULL, NULL} 1163 }; 1164 1165 doTest(formatter, testData, TRUE); 1166 1167 #if !UCONFIG_NO_COLLATION 1168 if( !logKnownIssue("9503") ) { 1169 formatter->setLenient(TRUE); 1170 static const char* lpTestData[][2] = { 1171 { "fifty-7", "57" }, 1172 { " fifty-7", "57" }, 1173 { " fifty-7", "57" }, 1174 { "2 thousand six HUNDRED fifty-7", "2,657" }, 1175 { "fifteen hundred and zero", "1,500" }, 1176 { "FOurhundred thiRTY six", "436" }, 1177 { NULL, NULL} 1178 }; 1179 doLenientParseTest(formatter, lpTestData); 1180 } 1181 #endif 1182 } 1183 delete formatter; 1184 } 1185 1186 void 1187 IntlTestRBNF::TestOrdinalAbbreviations() 1188 { 1189 UErrorCode status = U_ZERO_ERROR; 1190 RuleBasedNumberFormat* formatter 1191 = new RuleBasedNumberFormat(URBNF_ORDINAL, Locale::getUS(), status); 1192 1193 if (U_FAILURE(status)) { 1194 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1195 } else { 1196 static const char* const testData[][2] = { 1197 { "1", "1st" }, 1198 { "2", "2nd" }, 1199 { "3", "3rd" }, 1200 { "4", "4th" }, 1201 { "7", "7th" }, 1202 { "10", "10th" }, 1203 { "11", "11th" }, 1204 { "13", "13th" }, 1205 { "20", "20th" }, 1206 { "21", "21st" }, 1207 { "22", "22nd" }, 1208 { "23", "23rd" }, 1209 { "24", "24th" }, 1210 { "33", "33rd" }, 1211 { "102", "102nd" }, 1212 { "312", "312th" }, 1213 { "12,345", "12,345th" }, 1214 { NULL, NULL} 1215 }; 1216 1217 doTest(formatter, testData, FALSE); 1218 } 1219 delete formatter; 1220 } 1221 1222 void 1223 IntlTestRBNF::TestDurations() 1224 { 1225 UErrorCode status = U_ZERO_ERROR; 1226 RuleBasedNumberFormat* formatter 1227 = new RuleBasedNumberFormat(URBNF_DURATION, Locale::getUS(), status); 1228 1229 if (U_FAILURE(status)) { 1230 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1231 } else { 1232 static const char* const testData[][2] = { 1233 { "3,600", "1:00:00" }, //move me and I fail 1234 { "0", "0 sec." }, 1235 { "1", "1 sec." }, 1236 { "24", "24 sec." }, 1237 { "60", "1:00" }, 1238 { "73", "1:13" }, 1239 { "145", "2:25" }, 1240 { "666", "11:06" }, 1241 // { "3,600", "1:00:00" }, 1242 { "3,740", "1:02:20" }, 1243 { "10,293", "2:51:33" }, 1244 { NULL, NULL} 1245 }; 1246 1247 doTest(formatter, testData, TRUE); 1248 1249 #if !UCONFIG_NO_COLLATION 1250 formatter->setLenient(TRUE); 1251 static const char* lpTestData[][2] = { 1252 { "2-51-33", "10,293" }, 1253 { NULL, NULL} 1254 }; 1255 doLenientParseTest(formatter, lpTestData); 1256 #endif 1257 } 1258 delete formatter; 1259 } 1260 1261 void 1262 IntlTestRBNF::TestSpanishSpellout() 1263 { 1264 UErrorCode status = U_ZERO_ERROR; 1265 RuleBasedNumberFormat* formatter 1266 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("es", "ES", ""), status); 1267 1268 if (U_FAILURE(status)) { 1269 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1270 } else { 1271 static const char* const testData[][2] = { 1272 { "1", "uno" }, 1273 { "6", "seis" }, 1274 { "16", "diecis\\u00e9is" }, 1275 { "20", "veinte" }, 1276 { "24", "veinticuatro" }, 1277 { "26", "veintis\\u00e9is" }, 1278 { "73", "setenta y tres" }, 1279 { "88", "ochenta y ocho" }, 1280 { "100", "cien" }, 1281 { "106", "ciento seis" }, 1282 { "127", "ciento veintisiete" }, 1283 { "200", "doscientos" }, 1284 { "579", "quinientos setenta y nueve" }, 1285 { "1,000", "mil" }, 1286 { "2,000", "dos mil" }, 1287 { "3,004", "tres mil cuatro" }, 1288 { "4,567", "cuatro mil quinientos sesenta y siete" }, 1289 { "15,943", "quince mil novecientos cuarenta y tres" }, 1290 { "2,345,678", "dos millones trescientos cuarenta y cinco mil seiscientos setenta y ocho"}, 1291 { "-36", "menos treinta y seis" }, 1292 { "234.567", "doscientos treinta y cuatro coma cinco seis siete" }, 1293 { NULL, NULL} 1294 }; 1295 1296 doTest(formatter, testData, TRUE); 1297 } 1298 delete formatter; 1299 } 1300 1301 void 1302 IntlTestRBNF::TestFrenchSpellout() 1303 { 1304 UErrorCode status = U_ZERO_ERROR; 1305 RuleBasedNumberFormat* formatter 1306 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getFrance(), status); 1307 1308 if (U_FAILURE(status)) { 1309 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1310 } else { 1311 static const char* const testData[][2] = { 1312 { "1", "un" }, 1313 { "15", "quinze" }, 1314 { "20", "vingt" }, 1315 { "21", "vingt-et-un" }, 1316 { "23", "vingt-trois" }, 1317 { "62", "soixante-deux" }, 1318 { "70", "soixante-dix" }, 1319 { "71", "soixante-et-onze" }, 1320 { "73", "soixante-treize" }, 1321 { "80", "quatre-vingts" }, 1322 { "88", "quatre-vingt-huit" }, 1323 { "100", "cent" }, 1324 { "106", "cent six" }, 1325 { "127", "cent vingt-sept" }, 1326 { "200", "deux cents" }, 1327 { "579", "cinq cent soixante-dix-neuf" }, 1328 { "1,000", "mille" }, 1329 { "1,123", "mille cent vingt-trois" }, 1330 { "1,594", "mille cinq cent quatre-vingt-quatorze" }, 1331 { "2,000", "deux mille" }, 1332 { "3,004", "trois mille quatre" }, 1333 { "4,567", "quatre mille cinq cent soixante-sept" }, 1334 { "15,943", "quinze mille neuf cent quarante-trois" }, 1335 { "2,345,678", "deux millions trois cent quarante-cinq mille six cent soixante-dix-huit" }, 1336 { "-36", "moins trente-six" }, 1337 { "234.567", "deux cent trente-quatre virgule cinq six sept" }, 1338 { NULL, NULL} 1339 }; 1340 1341 doTest(formatter, testData, TRUE); 1342 1343 #if !UCONFIG_NO_COLLATION 1344 formatter->setLenient(TRUE); 1345 static const char* lpTestData[][2] = { 1346 { "trente-et-un", "31" }, 1347 { "un cent quatre vingt dix huit", "198" }, 1348 { NULL, NULL} 1349 }; 1350 doLenientParseTest(formatter, lpTestData); 1351 #endif 1352 } 1353 delete formatter; 1354 } 1355 1356 static const char* const swissFrenchTestData[][2] = { 1357 { "1", "un" }, 1358 { "15", "quinze" }, 1359 { "20", "vingt" }, 1360 { "21", "vingt-et-un" }, 1361 { "23", "vingt-trois" }, 1362 { "62", "soixante-deux" }, 1363 { "70", "septante" }, 1364 { "71", "septante-et-un" }, 1365 { "73", "septante-trois" }, 1366 { "80", "huitante" }, 1367 { "88", "huitante-huit" }, 1368 { "100", "cent" }, 1369 { "106", "cent six" }, 1370 { "127", "cent vingt-sept" }, 1371 { "200", "deux cents" }, 1372 { "579", "cinq cent septante-neuf" }, 1373 { "1,000", "mille" }, 1374 { "1,123", "mille cent vingt-trois" }, 1375 { "1,594", "mille cinq cent nonante-quatre" }, 1376 { "2,000", "deux mille" }, 1377 { "3,004", "trois mille quatre" }, 1378 { "4,567", "quatre mille cinq cent soixante-sept" }, 1379 { "15,943", "quinze mille neuf cent quarante-trois" }, 1380 { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septante-huit" }, 1381 { "-36", "moins trente-six" }, 1382 { "234.567", "deux cent trente-quatre virgule cinq six sept" }, 1383 { NULL, NULL} 1384 }; 1385 1386 void 1387 IntlTestRBNF::TestSwissFrenchSpellout() 1388 { 1389 UErrorCode status = U_ZERO_ERROR; 1390 RuleBasedNumberFormat* formatter 1391 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "CH", ""), status); 1392 1393 if (U_FAILURE(status)) { 1394 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1395 } else { 1396 doTest(formatter, swissFrenchTestData, TRUE); 1397 } 1398 delete formatter; 1399 } 1400 1401 static const char* const belgianFrenchTestData[][2] = { 1402 { "1", "un" }, 1403 { "15", "quinze" }, 1404 { "20", "vingt" }, 1405 { "21", "vingt-et-un" }, 1406 { "23", "vingt-trois" }, 1407 { "62", "soixante-deux" }, 1408 { "70", "septante" }, 1409 { "71", "septante-et-un" }, 1410 { "73", "septante-trois" }, 1411 { "80", "quatre-vingts" }, 1412 { "88", "quatre-vingt huit" }, 1413 { "90", "nonante" }, 1414 { "91", "nonante-et-un" }, 1415 { "95", "nonante-cinq" }, 1416 { "100", "cent" }, 1417 { "106", "cent six" }, 1418 { "127", "cent vingt-sept" }, 1419 { "200", "deux cents" }, 1420 { "579", "cinq cent septante-neuf" }, 1421 { "1,000", "mille" }, 1422 { "1,123", "mille cent vingt-trois" }, 1423 { "1,594", "mille cinq cent nonante-quatre" }, 1424 { "2,000", "deux mille" }, 1425 { "3,004", "trois mille quatre" }, 1426 { "4,567", "quatre mille cinq cent soixante-sept" }, 1427 { "15,943", "quinze mille neuf cent quarante-trois" }, 1428 { "2,345,678", "deux millions trois cent quarante-cinq mille six cent septante-huit" }, 1429 { "-36", "moins trente-six" }, 1430 { "234.567", "deux cent trente-quatre virgule cinq six sept" }, 1431 { NULL, NULL} 1432 }; 1433 1434 1435 void 1436 IntlTestRBNF::TestBelgianFrenchSpellout() 1437 { 1438 UErrorCode status = U_ZERO_ERROR; 1439 RuleBasedNumberFormat* formatter 1440 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "BE", ""), status); 1441 1442 if (U_FAILURE(status)) { 1443 errcheckln(status, "rbnf status: 0x%x (%s)\n", status, u_errorName(status)); 1444 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1445 } else { 1446 // Belgian french should match Swiss french. 1447 doTest(formatter, belgianFrenchTestData, TRUE); 1448 } 1449 delete formatter; 1450 } 1451 1452 void 1453 IntlTestRBNF::TestItalianSpellout() 1454 { 1455 UErrorCode status = U_ZERO_ERROR; 1456 RuleBasedNumberFormat* formatter 1457 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getItalian(), status); 1458 1459 if (U_FAILURE(status)) { 1460 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1461 } else { 1462 static const char* const testData[][2] = { 1463 { "1", "uno" }, 1464 { "15", "quindici" }, 1465 { "20", "venti" }, 1466 { "23", "venti\\u00ADtr\\u00E9" }, 1467 { "73", "settanta\\u00ADtr\\u00E9" }, 1468 { "88", "ottant\\u00ADotto" }, 1469 { "100", "cento" }, 1470 { "101", "cento\\u00ADuno" }, 1471 { "103", "cento\\u00ADtr\\u00E9" }, 1472 { "106", "cento\\u00ADsei" }, 1473 { "108", "cent\\u00ADotto" }, 1474 { "127", "cento\\u00ADventi\\u00ADsette" }, 1475 { "181", "cent\\u00ADottant\\u00ADuno" }, 1476 { "200", "due\\u00ADcento" }, 1477 { "579", "cinque\\u00ADcento\\u00ADsettanta\\u00ADnove" }, 1478 { "1,000", "mille" }, 1479 { "2,000", "due\\u00ADmila" }, 1480 { "3,004", "tre\\u00ADmila\\u00ADquattro" }, 1481 { "4,567", "quattro\\u00ADmila\\u00ADcinque\\u00ADcento\\u00ADsessanta\\u00ADsette" }, 1482 { "15,943", "quindici\\u00ADmila\\u00ADnove\\u00ADcento\\u00ADquaranta\\u00ADtr\\u00E9" }, 1483 { "-36", "meno trenta\\u00ADsei" }, 1484 { "234.567", "due\\u00ADcento\\u00ADtrenta\\u00ADquattro virgola cinque sei sette" }, 1485 { NULL, NULL} 1486 }; 1487 1488 doTest(formatter, testData, TRUE); 1489 } 1490 delete formatter; 1491 } 1492 1493 void 1494 IntlTestRBNF::TestPortugueseSpellout() 1495 { 1496 UErrorCode status = U_ZERO_ERROR; 1497 RuleBasedNumberFormat* formatter 1498 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("pt","BR",""), status); 1499 1500 if (U_FAILURE(status)) { 1501 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1502 } else { 1503 static const char* const testData[][2] = { 1504 { "1", "um" }, 1505 { "15", "quinze" }, 1506 { "20", "vinte" }, 1507 { "23", "vinte e tr\\u00EAs" }, 1508 { "73", "setenta e tr\\u00EAs" }, 1509 { "88", "oitenta e oito" }, 1510 { "100", "cem" }, 1511 { "106", "cento e seis" }, 1512 { "108", "cento e oito" }, 1513 { "127", "cento e vinte e sete" }, 1514 { "181", "cento e oitenta e um" }, 1515 { "200", "duzentos" }, 1516 { "579", "quinhentos e setenta e nove" }, 1517 { "1,000", "mil" }, 1518 { "2,000", "dois mil" }, 1519 { "3,004", "tr\\u00EAs mil e quatro" }, 1520 { "4,567", "quatro mil e quinhentos e sessenta e sete" }, 1521 { "15,943", "quinze mil e novecentos e quarenta e tr\\u00EAs" }, 1522 { "-36", "menos trinta e seis" }, 1523 { "234.567", "duzentos e trinta e quatro v\\u00EDrgula cinco seis sete" }, 1524 { NULL, NULL} 1525 }; 1526 1527 doTest(formatter, testData, TRUE); 1528 } 1529 delete formatter; 1530 } 1531 void 1532 IntlTestRBNF::TestGermanSpellout() 1533 { 1534 UErrorCode status = U_ZERO_ERROR; 1535 RuleBasedNumberFormat* formatter 1536 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getGermany(), status); 1537 1538 if (U_FAILURE(status)) { 1539 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1540 } else { 1541 static const char* const testData[][2] = { 1542 { "1", "eins" }, 1543 { "15", "f\\u00fcnfzehn" }, 1544 { "20", "zwanzig" }, 1545 { "23", "drei\\u00ADund\\u00ADzwanzig" }, 1546 { "73", "drei\\u00ADund\\u00ADsiebzig" }, 1547 { "88", "acht\\u00ADund\\u00ADachtzig" }, 1548 { "100", "ein\\u00ADhundert" }, 1549 { "106", "ein\\u00ADhundert\\u00ADsechs" }, 1550 { "127", "ein\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADzwanzig" }, 1551 { "200", "zwei\\u00ADhundert" }, 1552 { "579", "f\\u00fcnf\\u00ADhundert\\u00ADneun\\u00ADund\\u00ADsiebzig" }, 1553 { "1,000", "ein\\u00ADtausend" }, 1554 { "2,000", "zwei\\u00ADtausend" }, 1555 { "3,004", "drei\\u00ADtausend\\u00ADvier" }, 1556 { "4,567", "vier\\u00ADtausend\\u00ADf\\u00fcnf\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADsechzig" }, 1557 { "15,943", "f\\u00fcnfzehn\\u00ADtausend\\u00ADneun\\u00ADhundert\\u00ADdrei\\u00ADund\\u00ADvierzig" }, 1558 { "2,345,678", "zwei Millionen drei\\u00ADhundert\\u00ADf\\u00fcnf\\u00ADund\\u00ADvierzig\\u00ADtausend\\u00ADsechs\\u00ADhundert\\u00ADacht\\u00ADund\\u00ADsiebzig" }, 1559 { NULL, NULL} 1560 }; 1561 1562 doTest(formatter, testData, TRUE); 1563 1564 #if !UCONFIG_NO_COLLATION 1565 formatter->setLenient(TRUE); 1566 static const char* lpTestData[][2] = { 1567 { "ein Tausend sechs Hundert fuenfunddreissig", "1,635" }, 1568 { NULL, NULL} 1569 }; 1570 doLenientParseTest(formatter, lpTestData); 1571 #endif 1572 } 1573 delete formatter; 1574 } 1575 1576 void 1577 IntlTestRBNF::TestThaiSpellout() 1578 { 1579 UErrorCode status = U_ZERO_ERROR; 1580 RuleBasedNumberFormat* formatter 1581 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("th"), status); 1582 1583 if (U_FAILURE(status)) { 1584 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1585 } else { 1586 static const char* const testData[][2] = { 1587 { "0", "\\u0e28\\u0e39\\u0e19\\u0e22\\u0e4c" }, 1588 { "1", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" }, 1589 { "10", "\\u0e2a\\u0e34\\u0e1a" }, 1590 { "11", "\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" }, 1591 { "21", "\\u0e22\\u0e35\\u0e48\\u200b\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" }, 1592 { "101", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e23\\u0e49\\u0e2d\\u0e22\\u200b\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" }, 1593 { "1.234", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e08\\u0e38\\u0e14\\u200b\\u0e2a\\u0e2d\\u0e07\\u0e2a\\u0e32\\u0e21\\u0e2a\\u0e35\\u0e48" }, 1594 { NULL, NULL} 1595 }; 1596 1597 doTest(formatter, testData, TRUE); 1598 } 1599 delete formatter; 1600 } 1601 1602 void 1603 IntlTestRBNF::TestSwedishSpellout() 1604 { 1605 UErrorCode status = U_ZERO_ERROR; 1606 RuleBasedNumberFormat* formatter 1607 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("sv"), status); 1608 1609 if (U_FAILURE(status)) { 1610 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1611 } else { 1612 static const char* testDataDefault[][2] = { 1613 { "101", "ett\\u00adhundra\\u00adett" }, 1614 { "123", "ett\\u00adhundra\\u00adtjugo\\u00adtre" }, 1615 { "1,001", "et\\u00adtusen ett" }, 1616 { "1,100", "et\\u00adtusen ett\\u00adhundra" }, 1617 { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" }, 1618 { "1,234", "et\\u00adtusen tv\\u00e5\\u00adhundra\\u00adtrettio\\u00adfyra" }, 1619 { "10,001", "tio\\u00adtusen ett" }, 1620 { "11,000", "elva\\u00adtusen" }, 1621 { "12,000", "tolv\\u00adtusen" }, 1622 { "20,000", "tjugo\\u00adtusen" }, 1623 { "21,000", "tjugo\\u00adet\\u00adtusen" }, 1624 { "21,001", "tjugo\\u00adet\\u00adtusen ett" }, 1625 { "200,000", "tv\\u00e5\\u00adhundra\\u00adtusen" }, 1626 { "201,000", "tv\\u00e5\\u00adhundra\\u00adet\\u00adtusen" }, 1627 { "200,200", "tv\\u00e5\\u00adhundra\\u00adtusen tv\\u00e5\\u00adhundra" }, 1628 { "2,002,000", "tv\\u00e5 miljoner tv\\u00e5\\u00adtusen" }, 1629 { "12,345,678", "tolv miljoner tre\\u00adhundra\\u00adfyrtio\\u00adfem\\u00adtusen sex\\u00adhundra\\u00adsjuttio\\u00ad\\u00e5tta" }, 1630 { "123,456.789", "ett\\u00adhundra\\u00adtjugo\\u00adtre\\u00adtusen fyra\\u00adhundra\\u00adfemtio\\u00adsex komma sju \\u00e5tta nio" }, 1631 { "-12,345.678", "minus tolv\\u00adtusen tre\\u00adhundra\\u00adfyrtio\\u00adfem komma sex sju \\u00e5tta" }, 1632 { NULL, NULL } 1633 }; 1634 doTest(formatter, testDataDefault, TRUE); 1635 1636 static const char* testDataNeutrum[][2] = { 1637 { "101", "ett\\u00adhundra\\u00adett" }, 1638 { "1,001", "et\\u00adtusen ett" }, 1639 { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" }, 1640 { "10,001", "tio\\u00adtusen ett" }, 1641 { "21,001", "tjugo\\u00adet\\u00adtusen ett" }, 1642 { NULL, NULL } 1643 }; 1644 1645 formatter->setDefaultRuleSet("%spellout-cardinal-neuter", status); 1646 if (U_SUCCESS(status)) { 1647 logln(" testing spellout-cardinal-neuter rules"); 1648 doTest(formatter, testDataNeutrum, TRUE); 1649 } 1650 else { 1651 errln("Can't test spellout-cardinal-neuter rules"); 1652 } 1653 1654 static const char* testDataYear[][2] = { 1655 { "101", "ett\\u00adhundra\\u00adett" }, 1656 { "900", "nio\\u00adhundra" }, 1657 { "1,001", "et\\u00adtusen ett" }, 1658 { "1,100", "elva\\u00adhundra" }, 1659 { "1,101", "elva\\u00adhundra\\u00adett" }, 1660 { "1,234", "tolv\\u00adhundra\\u00adtrettio\\u00adfyra" }, 1661 { "2,001", "tjugo\\u00adhundra\\u00adett" }, 1662 { "10,001", "tio\\u00adtusen ett" }, 1663 { NULL, NULL } 1664 }; 1665 1666 status = U_ZERO_ERROR; 1667 formatter->setDefaultRuleSet("%spellout-numbering-year", status); 1668 if (U_SUCCESS(status)) { 1669 logln("testing year rules"); 1670 doTest(formatter, testDataYear, TRUE); 1671 } 1672 else { 1673 errln("Can't test year rules"); 1674 } 1675 1676 } 1677 delete formatter; 1678 } 1679 1680 void 1681 IntlTestRBNF::TestSmallValues() 1682 { 1683 UErrorCode status = U_ZERO_ERROR; 1684 RuleBasedNumberFormat* formatter 1685 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("en_US"), status); 1686 1687 if (U_FAILURE(status)) { 1688 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1689 } else { 1690 static const char* const testDataDefault[][2] = { 1691 { "0.001", "zero point zero zero one" }, 1692 { "0.0001", "zero point zero zero zero one" }, 1693 { "0.00001", "zero point zero zero zero zero one" }, 1694 { "0.000001", "zero point zero zero zero zero zero one" }, 1695 { "0.0000001", "zero point zero zero zero zero zero zero one" }, 1696 { "0.00000001", "zero point zero zero zero zero zero zero zero one" }, 1697 { "0.000000001", "zero point zero zero zero zero zero zero zero zero one" }, 1698 { "0.0000000001", "zero point zero zero zero zero zero zero zero zero zero one" }, 1699 { "0.00000000001", "zero point zero zero zero zero zero zero zero zero zero zero one" }, 1700 { "0.000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero one" }, 1701 { "0.0000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero one" }, 1702 { "0.00000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero one" }, 1703 { "0.000000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero zero zero one" }, 1704 { "10,000,000.001", "ten million point zero zero one" }, 1705 { "10,000,000.0001", "ten million point zero zero zero one" }, 1706 { "10,000,000.00001", "ten million point zero zero zero zero one" }, 1707 { "10,000,000.000001", "ten million point zero zero zero zero zero one" }, 1708 { "10,000,000.0000001", "ten million point zero zero zero zero zero zero one" }, 1709 // { "10,000,000.00000001", "ten million point zero zero zero zero zero zero zero one" }, 1710 // { "10,000,000.000000002", "ten million point zero zero zero zero zero zero zero zero two" }, 1711 { "10,000,000", "ten million" }, 1712 // { "1,234,567,890.0987654", "one billion, two hundred and thirty-four million, five hundred and sixty-seven thousand, eight hundred and ninety point zero nine eight seven six five four" }, 1713 // { "123,456,789.9876543", "one hundred and twenty-three million, four hundred and fifty-six thousand, seven hundred and eighty-nine point nine eight seven six five four three" }, 1714 // { "12,345,678.87654321", "twelve million, three hundred and forty-five thousand, six hundred and seventy-eight point eight seven six five four three two one" }, 1715 { "1,234,567.7654321", "one million two hundred thirty-four thousand five hundred sixty-seven point seven six five four three two one" }, 1716 { "123,456.654321", "one hundred twenty-three thousand four hundred fifty-six point six five four three two one" }, 1717 { "12,345.54321", "twelve thousand three hundred forty-five point five four three two one" }, 1718 { "1,234.4321", "one thousand two hundred thirty-four point four three two one" }, 1719 { "123.321", "one hundred twenty-three point three two one" }, 1720 { "0.0000000011754944", "zero point zero zero zero zero zero zero zero zero one one seven five four nine four four" }, 1721 { "0.000001175494351", "zero point zero zero zero zero zero one one seven five four nine four three five one" }, 1722 { NULL, NULL } 1723 }; 1724 1725 doTest(formatter, testDataDefault, TRUE); 1726 1727 delete formatter; 1728 } 1729 } 1730 1731 void 1732 IntlTestRBNF::TestLocalizations(void) 1733 { 1734 int i; 1735 UnicodeString rules("%main:0:no;1:some;100:a lot;1000:tons;\n" 1736 "%other:0:nada;1:yah, some;100:plenty;1000:more'n you'll ever need"); 1737 1738 UErrorCode status = U_ZERO_ERROR; 1739 UParseError perror; 1740 RuleBasedNumberFormat formatter(rules, perror, status); 1741 if (U_FAILURE(status)) { 1742 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorName(status)); 1743 } else { 1744 { 1745 static const char* const testData[][2] = { 1746 { "0", "nada" }, 1747 { "5", "yah, some" }, 1748 { "423", "plenty" }, 1749 { "12345", "more'n you'll ever need" }, 1750 { NULL, NULL } 1751 }; 1752 doTest(&formatter, testData, FALSE); 1753 } 1754 1755 { 1756 UnicodeString loc("<<%main, %other>,<en, Main, Other>,<fr, leMain, leOther>,<de, 'das Main', 'etwas anderes'>>"); 1757 static const char* const testData[][2] = { 1758 { "0", "no" }, 1759 { "5", "some" }, 1760 { "423", "a lot" }, 1761 { "12345", "tons" }, 1762 { NULL, NULL } 1763 }; 1764 RuleBasedNumberFormat formatter0(rules, loc, perror, status); 1765 if (U_FAILURE(status)) { 1766 errln("failed to build second formatter"); 1767 } else { 1768 doTest(&formatter0, testData, FALSE); 1769 1770 { 1771 // exercise localization info 1772 Locale locale0("en__VALLEY@turkey=gobblegobble"); 1773 Locale locale1("de_DE_FOO"); 1774 Locale locale2("ja_JP"); 1775 UnicodeString name = formatter0.getRuleSetName(0); 1776 if ( formatter0.getRuleSetDisplayName(0, locale0) == "Main" 1777 && formatter0.getRuleSetDisplayName(0, locale1) == "das Main" 1778 && formatter0.getRuleSetDisplayName(0, locale2) == "%main" 1779 && formatter0.getRuleSetDisplayName(name, locale0) == "Main" 1780 && formatter0.getRuleSetDisplayName(name, locale1) == "das Main" 1781 && formatter0.getRuleSetDisplayName(name, locale2) == "%main"){ 1782 logln("getRuleSetDisplayName tested"); 1783 }else { 1784 errln("failed to getRuleSetDisplayName"); 1785 } 1786 } 1787 1788 for (i = 0; i < formatter0.getNumberOfRuleSetDisplayNameLocales(); ++i) { 1789 Locale locale = formatter0.getRuleSetDisplayNameLocale(i, status); 1790 if (U_SUCCESS(status)) { 1791 for (int j = 0; j < formatter0.getNumberOfRuleSetNames(); ++j) { 1792 UnicodeString name = formatter0.getRuleSetName(j); 1793 UnicodeString lname = formatter0.getRuleSetDisplayName(j, locale); 1794 UnicodeString msg = locale.getName(); 1795 msg.append(": "); 1796 msg.append(name); 1797 msg.append(" = "); 1798 msg.append(lname); 1799 logln(msg); 1800 } 1801 } 1802 } 1803 } 1804 } 1805 1806 { 1807 static const char* goodLocs[] = { 1808 "", // zero-length ok, same as providing no localization data 1809 "<<>>", // no public rule sets ok 1810 "<<%main>>", // no localizations ok 1811 "<<%main,>,<en, Main,>>", // comma before close angle ok 1812 "<<%main>,<en, ',<>\" '>>", // quotes everything until next quote 1813 "<<%main>,<'en', \"it's ok\">>", // double quotes work too 1814 " \n <\n <\n %main\n >\n , \t <\t en\t , \tfoo \t\t > \n\n > \n ", // Pattern_White_Space ok 1815 }; 1816 int32_t goodLocsLen = sizeof(goodLocs)/sizeof(goodLocs[0]); 1817 1818 static const char* badLocs[] = { 1819 " ", // non-zero length 1820 "<>", // empty array 1821 "<", // unclosed outer array 1822 "<<", // unclosed inner array 1823 "<<,>>", // unexpected comma 1824 "<<''>>", // empty string 1825 " x<<%main>>", // first non space char not open angle bracket 1826 "<%main>", // missing inner array 1827 "<<%main %other>>", // elements missing separating commma (spaces must be quoted) 1828 "<<%main><en, Main>>", // arrays missing separating comma 1829 "<<%main>,<en, main, foo>>", // too many elements in locale data 1830 "<<%main>,<en>>", // too few elements in locale data 1831 "<<<%main>>>", // unexpected open angle 1832 "<<%main<>>>", // unexpected open angle 1833 "<<%main, %other>,<en,,>>", // implicit empty strings 1834 "<<%main>,<en,''>>", // empty string 1835 "<<%main>, < en, '>>", // unterminated quote 1836 "<<%main>, < en, \"<>>", // unterminated quote 1837 "<<%main\">>", // quote in string 1838 "<<%main'>>", // quote in string 1839 "<<%main<>>", // open angle in string 1840 "<<%main>> x", // extra non-space text at end 1841 1842 }; 1843 int32_t badLocsLen = sizeof(badLocs)/sizeof(badLocs[0]); 1844 1845 for (i = 0; i < goodLocsLen; ++i) { 1846 logln("[%d] '%s'", i, goodLocs[i]); 1847 UErrorCode status = U_ZERO_ERROR; 1848 UnicodeString loc(goodLocs[i]); 1849 RuleBasedNumberFormat fmt(rules, loc, perror, status); 1850 if (U_FAILURE(status)) { 1851 errln("Failed parse of good localization string: '%s'", goodLocs[i]); 1852 } 1853 } 1854 1855 for (i = 0; i < badLocsLen; ++i) { 1856 logln("[%d] '%s'", i, badLocs[i]); 1857 UErrorCode status = U_ZERO_ERROR; 1858 UnicodeString loc(badLocs[i]); 1859 RuleBasedNumberFormat fmt(rules, loc, perror, status); 1860 if (U_SUCCESS(status)) { 1861 errln("Successful parse of bad localization string: '%s'", badLocs[i]); 1862 } 1863 } 1864 } 1865 } 1866 } 1867 1868 void 1869 IntlTestRBNF::TestAllLocales() 1870 { 1871 const char* names[] = { 1872 " (spellout) ", 1873 " (ordinal) " 1874 // " (duration) " // This is English only, and it's not really supported in CLDR anymore. 1875 }; 1876 double numbers[] = {45.678, 1, 2, 10, 11, 100, 110, 200, 1000, 1111, -1111}; 1877 1878 int32_t count = 0; 1879 const Locale* locales = Locale::getAvailableLocales(count); 1880 for (int i = 0; i < count; ++i) { 1881 const Locale* loc = &locales[i]; 1882 1883 for (int j = 0; j < 2; ++j) { 1884 UErrorCode status = U_ZERO_ERROR; 1885 RuleBasedNumberFormat* f = new RuleBasedNumberFormat((URBNFRuleSetTag)j, *loc, status); 1886 1887 if (status == U_USING_DEFAULT_WARNING || status == U_USING_FALLBACK_WARNING) { 1888 // Skip it. 1889 delete f; 1890 break; 1891 } 1892 if (U_FAILURE(status)) { 1893 errln(UnicodeString(loc->getName()) + names[j] 1894 + "ERROR could not instantiate -> " + u_errorName(status)); 1895 continue; 1896 } 1897 #if !UCONFIG_NO_COLLATION 1898 for (unsigned int numidx = 0; numidx < sizeof(numbers)/sizeof(double); numidx++) { 1899 double n = numbers[numidx]; 1900 UnicodeString str; 1901 f->format(n, str); 1902 1903 if (verbose) { 1904 logln(UnicodeString(loc->getName()) + names[j] 1905 + "success: " + n + " -> " + str); 1906 } 1907 1908 // We do not validate the result in this test case, 1909 // because there are cases which do not round trip by design. 1910 Formattable num; 1911 1912 // regular parse 1913 status = U_ZERO_ERROR; 1914 f->setLenient(FALSE); 1915 f->parse(str, num, status); 1916 if (U_FAILURE(status)) { 1917 errln(UnicodeString(loc->getName()) + names[j] 1918 + "ERROR could not parse '" + str + "' -> " + u_errorName(status)); 1919 } 1920 // We only check the spellout. The behavior is undefined for numbers < 1 and fractional numbers. 1921 if (j == 0) { 1922 if (num.getType() == Formattable::kLong && num.getLong() != n) { 1923 errln(UnicodeString(loc->getName()) + names[j] 1924 + UnicodeString("ERROR could not roundtrip ") + n 1925 + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getLong()); 1926 } 1927 else if (num.getType() == Formattable::kDouble && (int64_t)(num.getDouble() * 1000) != (int64_t)(n*1000)) { 1928 // The epsilon difference is too high. 1929 errln(UnicodeString(loc->getName()) + names[j] 1930 + UnicodeString("ERROR could not roundtrip ") + n 1931 + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getDouble()); 1932 } 1933 } 1934 if (!quick && !logKnownIssue("9503") ) { 1935 // lenient parse 1936 status = U_ZERO_ERROR; 1937 f->setLenient(TRUE); 1938 f->parse(str, num, status); 1939 if (U_FAILURE(status)) { 1940 errln(UnicodeString(loc->getName()) + names[j] 1941 + "ERROR could not parse(lenient) '" + str + "' -> " + u_errorName(status)); 1942 } 1943 // We only check the spellout. The behavior is undefined for numbers < 1 and fractional numbers. 1944 if (j == 0) { 1945 if (num.getType() == Formattable::kLong && num.getLong() != n) { 1946 errln(UnicodeString(loc->getName()) + names[j] 1947 + UnicodeString("ERROR could not roundtrip ") + n 1948 + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getLong()); 1949 } 1950 else if (num.getType() == Formattable::kDouble && (int64_t)(num.getDouble() * 1000) != (int64_t)(n*1000)) { 1951 // The epsilon difference is too high. 1952 errln(UnicodeString(loc->getName()) + names[j] 1953 + UnicodeString("ERROR could not roundtrip ") + n 1954 + UnicodeString(" -> ") + str + UnicodeString(" -> ") + num.getDouble()); 1955 } 1956 } 1957 } 1958 } 1959 #endif 1960 delete f; 1961 } 1962 } 1963 } 1964 1965 void 1966 IntlTestRBNF::TestMultiplierSubstitution(void) { 1967 UnicodeString rules("=#,##0=;1,000,000: <##0.###< million;"); 1968 UErrorCode status = U_ZERO_ERROR; 1969 UParseError parse_error; 1970 RuleBasedNumberFormat *rbnf = 1971 new RuleBasedNumberFormat(rules, Locale::getUS(), parse_error, status); 1972 if (U_SUCCESS(status)) { 1973 UnicodeString res; 1974 FieldPosition pos; 1975 double n = 1234000.0; 1976 rbnf->format(n, res, pos); 1977 delete rbnf; 1978 1979 UnicodeString expected(UNICODE_STRING_SIMPLE("1.234 million")); 1980 if (expected != res) { 1981 UnicodeString msg = "Expected: "; 1982 msg.append(expected); 1983 msg.append(" but got "); 1984 msg.append(res); 1985 errln(msg); 1986 } 1987 } 1988 } 1989 1990 void 1991 IntlTestRBNF::TestSetDecimalFormatSymbols() { 1992 UErrorCode status = U_ZERO_ERROR; 1993 1994 RuleBasedNumberFormat rbnf(URBNF_ORDINAL, Locale::getEnglish(), status); 1995 if (U_FAILURE(status)) { 1996 dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); 1997 return; 1998 } 1999 2000 DecimalFormatSymbols dfs(Locale::getEnglish(), status); 2001 if (U_FAILURE(status)) { 2002 errln("Unable to create DecimalFormatSymbols - " + UnicodeString(u_errorName(status))); 2003 return; 2004 } 2005 2006 UnicodeString expected[] = { 2007 UnicodeString("1,001st"), 2008 UnicodeString("1&001st") 2009 }; 2010 2011 double number = 1001; 2012 2013 UnicodeString result; 2014 2015 rbnf.format(number, result); 2016 if (result != expected[0]) { 2017 errln("Format Error - Got: " + result + " Expected: " + expected[0]); 2018 } 2019 2020 result.remove(); 2021 2022 /* Set new symbol for testing */ 2023 dfs.setSymbol(DecimalFormatSymbols::kGroupingSeparatorSymbol, UnicodeString("&"), TRUE); 2024 rbnf.setDecimalFormatSymbols(dfs); 2025 2026 rbnf.format(number, result); 2027 if (result != expected[1]) { 2028 errln("Format Error - Got: " + result + " Expected: " + expected[1]); 2029 } 2030 } 2031 2032 void IntlTestRBNF::TestPluralRules() { 2033 UErrorCode status = U_ZERO_ERROR; 2034 UnicodeString enRules("%digits-ordinal:-x: ->>;0: =#,##0=$(ordinal,one{st}two{nd}few{rd}other{th})$;"); 2035 UParseError parseError; 2036 RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError, status); 2037 if (U_FAILURE(status)) { 2038 dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); 2039 return; 2040 } 2041 const char* const enTestData[][2] = { 2042 { "1", "1st" }, 2043 { "2", "2nd" }, 2044 { "3", "3rd" }, 2045 { "4", "4th" }, 2046 { "11", "11th" }, 2047 { "12", "12th" }, 2048 { "13", "13th" }, 2049 { "14", "14th" }, 2050 { "21", "21st" }, 2051 { "22", "22nd" }, 2052 { "23", "23rd" }, 2053 { "24", "24th" }, 2054 { NULL, NULL } 2055 }; 2056 2057 doTest(&enFormatter, enTestData, TRUE); 2058 2059 // This is trying to model the feminine form, but don't worry about the details too much. 2060 // We're trying to test the plural rules. 2061 UnicodeString ruRules("%spellout-numbering:" 2062 "-x: minus >>;" 2063 "x.x: << point >>;" 2064 "0: zero;" 2065 "1: one;" 2066 "2: two;" 2067 "3: three;" 2068 "4: four;" 2069 "5: five;" 2070 "6: six;" 2071 "7: seven;" 2072 "8: eight;" 2073 "9: nine;" 2074 "10: ten;" 2075 "11: eleven;" 2076 "12: twelve;" 2077 "13: thirteen;" 2078 "14: fourteen;" 2079 "15: fifteen;" 2080 "16: sixteen;" 2081 "17: seventeen;" 2082 "18: eighteen;" 2083 "19: nineteen;" 2084 "20: twenty[->>];" 2085 "30: thirty[->>];" 2086 "40: forty[->>];" 2087 "50: fifty[->>];" 2088 "60: sixty[->>];" 2089 "70: seventy[->>];" 2090 "80: eighty[->>];" 2091 "90: ninety[->>];" 2092 "100: hundred[ >>];" 2093 "200: << hundred[ >>];" 2094 "300: << hundreds[ >>];" 2095 "500: << hundredss[ >>];" 2096 "1000: << $(cardinal,one{thousand}few{thousands}other{thousandss})$[ >>];" 2097 "1000000: << $(cardinal,one{million}few{millions}other{millionss})$[ >>];"); 2098 RuleBasedNumberFormat ruFormatter(ruRules, Locale("ru"), parseError, status); 2099 const char* const ruTestData[][2] = { 2100 { "1", "one" }, 2101 { "100", "hundred" }, 2102 { "125", "hundred twenty-five" }, 2103 { "399", "three hundreds ninety-nine" }, 2104 { "1,000", "one thousand" }, 2105 { "1,001", "one thousand one" }, 2106 { "2,000", "two thousands" }, 2107 { "2,001", "two thousands one" }, 2108 { "2,002", "two thousands two" }, 2109 { "3,333", "three thousands three hundreds thirty-three" }, 2110 { "5,000", "five thousandss" }, 2111 { "11,000", "eleven thousandss" }, 2112 { "21,000", "twenty-one thousand" }, 2113 { "22,000", "twenty-two thousands" }, 2114 { "25,001", "twenty-five thousandss one" }, 2115 { NULL, NULL } 2116 }; 2117 2118 if (U_FAILURE(status)) { 2119 errln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); 2120 return; 2121 } 2122 doTest(&ruFormatter, ruTestData, TRUE); 2123 2124 // Make sure there are no divide by 0 errors. 2125 UnicodeString result; 2126 RuleBasedNumberFormat(ruRules, Locale("ru"), parseError, status).format(21000, result); 2127 if (result.compare(UNICODE_STRING_SIMPLE("twenty-one thousand")) != 0) { 2128 errln("Got " + result + " for 21000"); 2129 } 2130 2131 } 2132 2133 void IntlTestRBNF::TestInfinityNaN() { 2134 UErrorCode status = U_ZERO_ERROR; 2135 UParseError parseError; 2136 UnicodeString enRules("%default:" 2137 "-x: minus >>;" 2138 "Inf: infinite;" 2139 "NaN: not a number;" 2140 "0: =#,##0=;"); 2141 RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError, status); 2142 const char * const enTestData[][2] = { 2143 {"1", "1"}, 2144 {"\\u221E", "infinite"}, 2145 {"-\\u221E", "minus infinite"}, 2146 {"NaN", "not a number"}, 2147 { NULL, NULL } 2148 }; 2149 if (U_FAILURE(status)) { 2150 dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); 2151 return; 2152 } 2153 2154 doTest(&enFormatter, enTestData, true); 2155 2156 // Test the default behavior when the rules are undefined. 2157 UnicodeString enRules2("%default:" 2158 "-x: ->>;" 2159 "0: =#,##0=;"); 2160 RuleBasedNumberFormat enFormatter2(enRules2, Locale::getEnglish(), parseError, status); 2161 if (U_FAILURE(status)) { 2162 errln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); 2163 return; 2164 } 2165 const char * const enDefaultTestData[][2] = { 2166 {"1", "1"}, 2167 {"\\u221E", "\\u221E"}, 2168 {"-\\u221E", "-\\u221E"}, 2169 {"NaN", "NaN"}, 2170 { NULL, NULL } 2171 }; 2172 2173 doTest(&enFormatter2, enDefaultTestData, true); 2174 } 2175 2176 void IntlTestRBNF::TestVariableDecimalPoint() { 2177 UErrorCode status = U_ZERO_ERROR; 2178 UParseError parseError; 2179 UnicodeString enRules("%spellout-numbering:" 2180 "-x: minus >>;" 2181 "x.x: << point >>;" 2182 "x,x: << comma >>;" 2183 "0.x: xpoint >>;" 2184 "0,x: xcomma >>;" 2185 "0: zero;" 2186 "1: one;" 2187 "2: two;" 2188 "3: three;" 2189 "4: four;" 2190 "5: five;" 2191 "6: six;" 2192 "7: seven;" 2193 "8: eight;" 2194 "9: nine;"); 2195 RuleBasedNumberFormat enFormatter(enRules, Locale::getEnglish(), parseError, status); 2196 const char * const enTestPointData[][2] = { 2197 {"1.1", "one point one"}, 2198 {"1.23", "one point two three"}, 2199 {"0.4", "xpoint four"}, 2200 { NULL, NULL } 2201 }; 2202 if (U_FAILURE(status)) { 2203 dataerrln("Unable to create RuleBasedNumberFormat - " + UnicodeString(u_errorName(status))); 2204 return; 2205 } 2206 doTest(&enFormatter, enTestPointData, true); 2207 2208 DecimalFormatSymbols decimalFormatSymbols(Locale::getEnglish(), status); 2209 decimalFormatSymbols.setSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol, UNICODE_STRING_SIMPLE(",")); 2210 enFormatter.setDecimalFormatSymbols(decimalFormatSymbols); 2211 const char * const enTestCommaData[][2] = { 2212 {"1.1", "one comma one"}, 2213 {"1.23", "one comma two three"}, 2214 {"0.4", "xcomma four"}, 2215 { NULL, NULL } 2216 }; 2217 doTest(&enFormatter, enTestCommaData, true); 2218 } 2219 2220 void 2221 IntlTestRBNF::doTest(RuleBasedNumberFormat* formatter, const char* const testData[][2], UBool testParsing) 2222 { 2223 // man, error reporting would be easier with printf-style syntax for unicode string and formattable 2224 2225 UErrorCode status = U_ZERO_ERROR; 2226 DecimalFormatSymbols dfs("en", status); 2227 // NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status); 2228 DecimalFormat decFmt("#,###.################", dfs, status); 2229 if (U_FAILURE(status)) { 2230 errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status)); 2231 } else { 2232 for (int i = 0; testData[i][0]; ++i) { 2233 const char* numString = testData[i][0]; 2234 const char* expectedWords = testData[i][1]; 2235 2236 log("[%i] %s = ", i, numString); 2237 Formattable expectedNumber; 2238 UnicodeString escapedNumString = UnicodeString(numString, -1, US_INV).unescape(); 2239 decFmt.parse(escapedNumString, expectedNumber, status); 2240 if (U_FAILURE(status)) { 2241 errln("FAIL: decFmt could not parse %s", numString); 2242 break; 2243 } else { 2244 UnicodeString actualString; 2245 FieldPosition pos; 2246 formatter->format(expectedNumber, actualString/* , pos*/, status); 2247 if (U_FAILURE(status)) { 2248 UnicodeString msg = "Fail: formatter could not format "; 2249 decFmt.format(expectedNumber, msg, status); 2250 errln(msg); 2251 break; 2252 } else { 2253 UnicodeString expectedString = UnicodeString(expectedWords, -1, US_INV).unescape(); 2254 if (actualString != expectedString) { 2255 UnicodeString msg = "FAIL: check failed for "; 2256 decFmt.format(expectedNumber, msg, status); 2257 msg.append(", expected "); 2258 msg.append(expectedString); 2259 msg.append(" but got "); 2260 msg.append(actualString); 2261 errln(msg); 2262 break; 2263 } else { 2264 logln(actualString); 2265 if (testParsing) { 2266 Formattable parsedNumber; 2267 formatter->parse(actualString, parsedNumber, status); 2268 if (U_FAILURE(status)) { 2269 UnicodeString msg = "FAIL: formatter could not parse "; 2270 msg.append(actualString); 2271 msg.append(" status code: " ); 2272 msg.append(u_errorName(status)); 2273 errln(msg); 2274 break; 2275 } else { 2276 if (parsedNumber != expectedNumber 2277 && (!uprv_isNaN(parsedNumber.getDouble()) || !uprv_isNaN(expectedNumber.getDouble()))) 2278 { 2279 UnicodeString msg = "FAIL: parse failed for "; 2280 msg.append(actualString); 2281 msg.append(", expected "); 2282 decFmt.format(expectedNumber, msg, status); 2283 msg.append(", but got "); 2284 decFmt.format(parsedNumber, msg, status); 2285 errln(msg); 2286 break; 2287 } 2288 } 2289 } 2290 } 2291 } 2292 } 2293 } 2294 } 2295 } 2296 2297 void 2298 IntlTestRBNF::doLenientParseTest(RuleBasedNumberFormat* formatter, const char* testData[][2]) 2299 { 2300 UErrorCode status = U_ZERO_ERROR; 2301 NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status); 2302 if (U_FAILURE(status)) { 2303 errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorName(status)); 2304 } else { 2305 for (int i = 0; testData[i][0]; ++i) { 2306 const char* spelledNumber = testData[i][0]; // spelled-out number 2307 const char* asciiUSNumber = testData[i][1]; // number as ascii digits formatted for US locale 2308 2309 UnicodeString spelledNumberString = UnicodeString(spelledNumber).unescape(); 2310 Formattable actualNumber; 2311 formatter->parse(spelledNumberString, actualNumber, status); 2312 if (U_FAILURE(status)) { 2313 UnicodeString msg = "FAIL: formatter could not parse "; 2314 msg.append(spelledNumberString); 2315 errln(msg); 2316 break; 2317 } else { 2318 // I changed the logic of this test somewhat from Java-- instead of comparing the 2319 // strings, I compare the Formattables. Hmmm, but the Formattables don't compare, 2320 // so change it back. 2321 2322 UnicodeString asciiUSNumberString = asciiUSNumber; 2323 Formattable expectedNumber; 2324 decFmt->parse(asciiUSNumberString, expectedNumber, status); 2325 if (U_FAILURE(status)) { 2326 UnicodeString msg = "FAIL: decFmt could not parse "; 2327 msg.append(asciiUSNumberString); 2328 errln(msg); 2329 break; 2330 } else { 2331 UnicodeString actualNumberString; 2332 UnicodeString expectedNumberString; 2333 decFmt->format(actualNumber, actualNumberString, status); 2334 decFmt->format(expectedNumber, expectedNumberString, status); 2335 if (actualNumberString != expectedNumberString) { 2336 UnicodeString msg = "FAIL: parsing"; 2337 msg.append(asciiUSNumberString); 2338 msg.append("\n"); 2339 msg.append(" lenient parse failed for "); 2340 msg.append(spelledNumberString); 2341 msg.append(", expected "); 2342 msg.append(expectedNumberString); 2343 msg.append(", but got "); 2344 msg.append(actualNumberString); 2345 errln(msg); 2346 break; 2347 } 2348 } 2349 } 2350 } 2351 delete decFmt; 2352 } 2353 } 2354 2355 /* U_HAVE_RBNF */ 2356 #else 2357 2358 void 2359 IntlTestRBNF::TestRBNFDisabled() { 2360 errln("*** RBNF currently disabled on this platform ***\n"); 2361 } 2362 2363 /* U_HAVE_RBNF */ 2364 #endif 2365 2366 #endif /* #if !UCONFIG_NO_FORMATTING */ 2367