Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/TinyPtrVector.h - 'Normally tiny' vectors -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef LLVM_ADT_TINYPTRVECTOR_H
     11 #define LLVM_ADT_TINYPTRVECTOR_H
     12 
     13 #include "llvm/ADT/ArrayRef.h"
     14 #include "llvm/ADT/PointerUnion.h"
     15 #include "llvm/ADT/SmallVector.h"
     16 
     17 namespace llvm {
     18 
     19 /// TinyPtrVector - This class is specialized for cases where there are
     20 /// normally 0 or 1 element in a vector, but is general enough to go beyond that
     21 /// when required.
     22 ///
     23 /// NOTE: This container doesn't allow you to store a null pointer into it.
     24 ///
     25 template <typename EltTy>
     26 class TinyPtrVector {
     27 public:
     28   typedef llvm::SmallVector<EltTy, 4> VecTy;
     29   typedef typename VecTy::value_type value_type;
     30   typedef llvm::PointerUnion<EltTy, VecTy *> PtrUnion;
     31 
     32 private:
     33   PtrUnion Val;
     34 
     35 public:
     36   TinyPtrVector() {}
     37   ~TinyPtrVector() {
     38     if (VecTy *V = Val.template dyn_cast<VecTy*>())
     39       delete V;
     40   }
     41 
     42   TinyPtrVector(const TinyPtrVector &RHS) : Val(RHS.Val) {
     43     if (VecTy *V = Val.template dyn_cast<VecTy*>())
     44       Val = new VecTy(*V);
     45   }
     46   TinyPtrVector &operator=(const TinyPtrVector &RHS) {
     47     if (this == &RHS)
     48       return *this;
     49     if (RHS.empty()) {
     50       this->clear();
     51       return *this;
     52     }
     53 
     54     // Try to squeeze into the single slot. If it won't fit, allocate a copied
     55     // vector.
     56     if (Val.template is<EltTy>()) {
     57       if (RHS.size() == 1)
     58         Val = RHS.front();
     59       else
     60         Val = new VecTy(*RHS.Val.template get<VecTy*>());
     61       return *this;
     62     }
     63 
     64     // If we have a full vector allocated, try to re-use it.
     65     if (RHS.Val.template is<EltTy>()) {
     66       Val.template get<VecTy*>()->clear();
     67       Val.template get<VecTy*>()->push_back(RHS.front());
     68     } else {
     69       *Val.template get<VecTy*>() = *RHS.Val.template get<VecTy*>();
     70     }
     71     return *this;
     72   }
     73 
     74   TinyPtrVector(TinyPtrVector &&RHS) : Val(RHS.Val) {
     75     RHS.Val = (EltTy)nullptr;
     76   }
     77   TinyPtrVector &operator=(TinyPtrVector &&RHS) {
     78     if (this == &RHS)
     79       return *this;
     80     if (RHS.empty()) {
     81       this->clear();
     82       return *this;
     83     }
     84 
     85     // If this vector has been allocated on the heap, re-use it if cheap. If it
     86     // would require more copying, just delete it and we'll steal the other
     87     // side.
     88     if (VecTy *V = Val.template dyn_cast<VecTy*>()) {
     89       if (RHS.Val.template is<EltTy>()) {
     90         V->clear();
     91         V->push_back(RHS.front());
     92         return *this;
     93       }
     94       delete V;
     95     }
     96 
     97     Val = RHS.Val;
     98     RHS.Val = (EltTy)nullptr;
     99     return *this;
    100   }
    101 
    102   /// Constructor from an ArrayRef.
    103   ///
    104   /// This also is a constructor for individual array elements due to the single
    105   /// element constructor for ArrayRef.
    106   explicit TinyPtrVector(ArrayRef<EltTy> Elts)
    107       : Val(Elts.size() == 1 ? PtrUnion(Elts[0])
    108                              : PtrUnion(new VecTy(Elts.begin(), Elts.end()))) {}
    109 
    110   // implicit conversion operator to ArrayRef.
    111   operator ArrayRef<EltTy>() const {
    112     if (Val.isNull())
    113       return None;
    114     if (Val.template is<EltTy>())
    115       return *Val.getAddrOfPtr1();
    116     return *Val.template get<VecTy*>();
    117   }
    118 
    119   // implicit conversion operator to MutableArrayRef.
    120   operator MutableArrayRef<EltTy>() {
    121     if (Val.isNull())
    122       return None;
    123     if (Val.template is<EltTy>())
    124       return *Val.getAddrOfPtr1();
    125     return *Val.template get<VecTy*>();
    126   }
    127 
    128   bool empty() const {
    129     // This vector can be empty if it contains no element, or if it
    130     // contains a pointer to an empty vector.
    131     if (Val.isNull()) return true;
    132     if (VecTy *Vec = Val.template dyn_cast<VecTy*>())
    133       return Vec->empty();
    134     return false;
    135   }
    136 
    137   unsigned size() const {
    138     if (empty())
    139       return 0;
    140     if (Val.template is<EltTy>())
    141       return 1;
    142     return Val.template get<VecTy*>()->size();
    143   }
    144 
    145   typedef const EltTy *const_iterator;
    146   typedef EltTy *iterator;
    147 
    148   iterator begin() {
    149     if (Val.template is<EltTy>())
    150       return Val.getAddrOfPtr1();
    151 
    152     return Val.template get<VecTy *>()->begin();
    153   }
    154   iterator end() {
    155     if (Val.template is<EltTy>())
    156       return begin() + (Val.isNull() ? 0 : 1);
    157 
    158     return Val.template get<VecTy *>()->end();
    159   }
    160 
    161   const_iterator begin() const {
    162     return (const_iterator)const_cast<TinyPtrVector*>(this)->begin();
    163   }
    164 
    165   const_iterator end() const {
    166     return (const_iterator)const_cast<TinyPtrVector*>(this)->end();
    167   }
    168 
    169   EltTy operator[](unsigned i) const {
    170     assert(!Val.isNull() && "can't index into an empty vector");
    171     if (EltTy V = Val.template dyn_cast<EltTy>()) {
    172       assert(i == 0 && "tinyvector index out of range");
    173       return V;
    174     }
    175 
    176     assert(i < Val.template get<VecTy*>()->size() &&
    177            "tinyvector index out of range");
    178     return (*Val.template get<VecTy*>())[i];
    179   }
    180 
    181   EltTy front() const {
    182     assert(!empty() && "vector empty");
    183     if (EltTy V = Val.template dyn_cast<EltTy>())
    184       return V;
    185     return Val.template get<VecTy*>()->front();
    186   }
    187 
    188   EltTy back() const {
    189     assert(!empty() && "vector empty");
    190     if (EltTy V = Val.template dyn_cast<EltTy>())
    191       return V;
    192     return Val.template get<VecTy*>()->back();
    193   }
    194 
    195   void push_back(EltTy NewVal) {
    196     assert(NewVal && "Can't add a null value");
    197 
    198     // If we have nothing, add something.
    199     if (Val.isNull()) {
    200       Val = NewVal;
    201       return;
    202     }
    203 
    204     // If we have a single value, convert to a vector.
    205     if (EltTy V = Val.template dyn_cast<EltTy>()) {
    206       Val = new VecTy();
    207       Val.template get<VecTy*>()->push_back(V);
    208     }
    209 
    210     // Add the new value, we know we have a vector.
    211     Val.template get<VecTy*>()->push_back(NewVal);
    212   }
    213 
    214   void pop_back() {
    215     // If we have a single value, convert to empty.
    216     if (Val.template is<EltTy>())
    217       Val = (EltTy)nullptr;
    218     else if (VecTy *Vec = Val.template get<VecTy*>())
    219       Vec->pop_back();
    220   }
    221 
    222   void clear() {
    223     // If we have a single value, convert to empty.
    224     if (Val.template is<EltTy>()) {
    225       Val = (EltTy)nullptr;
    226     } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
    227       // If we have a vector form, just clear it.
    228       Vec->clear();
    229     }
    230     // Otherwise, we're already empty.
    231   }
    232 
    233   iterator erase(iterator I) {
    234     assert(I >= begin() && "Iterator to erase is out of bounds.");
    235     assert(I < end() && "Erasing at past-the-end iterator.");
    236 
    237     // If we have a single value, convert to empty.
    238     if (Val.template is<EltTy>()) {
    239       if (I == begin())
    240         Val = (EltTy)nullptr;
    241     } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
    242       // multiple items in a vector; just do the erase, there is no
    243       // benefit to collapsing back to a pointer
    244       return Vec->erase(I);
    245     }
    246     return end();
    247   }
    248 
    249   iterator erase(iterator S, iterator E) {
    250     assert(S >= begin() && "Range to erase is out of bounds.");
    251     assert(S <= E && "Trying to erase invalid range.");
    252     assert(E <= end() && "Trying to erase past the end.");
    253 
    254     if (Val.template is<EltTy>()) {
    255       if (S == begin() && S != E)
    256         Val = (EltTy)nullptr;
    257     } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
    258       return Vec->erase(S, E);
    259     }
    260     return end();
    261   }
    262 
    263   iterator insert(iterator I, const EltTy &Elt) {
    264     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    265     assert(I <= this->end() && "Inserting past the end of the vector.");
    266     if (I == end()) {
    267       push_back(Elt);
    268       return std::prev(end());
    269     }
    270     assert(!Val.isNull() && "Null value with non-end insert iterator.");
    271     if (EltTy V = Val.template dyn_cast<EltTy>()) {
    272       assert(I == begin());
    273       Val = Elt;
    274       push_back(V);
    275       return begin();
    276     }
    277 
    278     return Val.template get<VecTy*>()->insert(I, Elt);
    279   }
    280 
    281   template<typename ItTy>
    282   iterator insert(iterator I, ItTy From, ItTy To) {
    283     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    284     assert(I <= this->end() && "Inserting past the end of the vector.");
    285     if (From == To)
    286       return I;
    287 
    288     // If we have a single value, convert to a vector.
    289     ptrdiff_t Offset = I - begin();
    290     if (Val.isNull()) {
    291       if (std::next(From) == To) {
    292         Val = *From;
    293         return begin();
    294       }
    295 
    296       Val = new VecTy();
    297     } else if (EltTy V = Val.template dyn_cast<EltTy>()) {
    298       Val = new VecTy();
    299       Val.template get<VecTy*>()->push_back(V);
    300     }
    301     return Val.template get<VecTy*>()->insert(begin() + Offset, From, To);
    302   }
    303 };
    304 } // end namespace llvm
    305 
    306 #endif
    307