Home | History | Annotate | Download | only in libutils
      1 /*
      2  * Copyright (C) 2007 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 // #define LOG_NDEBUG 0
     18 #define LOG_TAG "libutils.threads"
     19 
     20 #include <assert.h>
     21 #include <errno.h>
     22 #include <memory.h>
     23 #include <stdio.h>
     24 #include <stdlib.h>
     25 #include <string.h>
     26 #include <unistd.h>
     27 
     28 #if !defined(_WIN32)
     29 # include <pthread.h>
     30 # include <sched.h>
     31 # include <sys/resource.h>
     32 #else
     33 # include <windows.h>
     34 # include <stdint.h>
     35 # include <process.h>
     36 # define HAVE_CREATETHREAD  // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
     37 #endif
     38 
     39 #if defined(__linux__)
     40 #include <sys/prctl.h>
     41 #endif
     42 
     43 #include <utils/threads.h>
     44 #include <utils/Log.h>
     45 
     46 #include <cutils/sched_policy.h>
     47 
     48 #if defined(__ANDROID__)
     49 # define __android_unused
     50 #else
     51 # define __android_unused __attribute__((__unused__))
     52 #endif
     53 
     54 /*
     55  * ===========================================================================
     56  *      Thread wrappers
     57  * ===========================================================================
     58  */
     59 
     60 using namespace android;
     61 
     62 // ----------------------------------------------------------------------------
     63 #if !defined(_WIN32)
     64 // ----------------------------------------------------------------------------
     65 
     66 /*
     67  * Create and run a new thread.
     68  *
     69  * We create it "detached", so it cleans up after itself.
     70  */
     71 
     72 typedef void* (*android_pthread_entry)(void*);
     73 
     74 struct thread_data_t {
     75     thread_func_t   entryFunction;
     76     void*           userData;
     77     int             priority;
     78     char *          threadName;
     79 
     80     // we use this trampoline when we need to set the priority with
     81     // nice/setpriority, and name with prctl.
     82     static int trampoline(const thread_data_t* t) {
     83         thread_func_t f = t->entryFunction;
     84         void* u = t->userData;
     85         int prio = t->priority;
     86         char * name = t->threadName;
     87         delete t;
     88         setpriority(PRIO_PROCESS, 0, prio);
     89         if (prio >= ANDROID_PRIORITY_BACKGROUND) {
     90             set_sched_policy(0, SP_BACKGROUND);
     91         } else {
     92             set_sched_policy(0, SP_FOREGROUND);
     93         }
     94 
     95         if (name) {
     96             androidSetThreadName(name);
     97             free(name);
     98         }
     99         return f(u);
    100     }
    101 };
    102 
    103 void androidSetThreadName(const char* name) {
    104 #if defined(__linux__)
    105     // Mac OS doesn't have this, and we build libutil for the host too
    106     int hasAt = 0;
    107     int hasDot = 0;
    108     const char *s = name;
    109     while (*s) {
    110         if (*s == '.') hasDot = 1;
    111         else if (*s == '@') hasAt = 1;
    112         s++;
    113     }
    114     int len = s - name;
    115     if (len < 15 || hasAt || !hasDot) {
    116         s = name;
    117     } else {
    118         s = name + len - 15;
    119     }
    120     prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
    121 #endif
    122 }
    123 
    124 int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
    125                                void *userData,
    126                                const char* threadName __android_unused,
    127                                int32_t threadPriority,
    128                                size_t threadStackSize,
    129                                android_thread_id_t *threadId)
    130 {
    131     pthread_attr_t attr;
    132     pthread_attr_init(&attr);
    133     pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
    134 
    135 #if defined(__ANDROID__)  /* valgrind is rejecting RT-priority create reqs */
    136     if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
    137         // Now that the pthread_t has a method to find the associated
    138         // android_thread_id_t (pid) from pthread_t, it would be possible to avoid
    139         // this trampoline in some cases as the parent could set the properties
    140         // for the child.  However, there would be a race condition because the
    141         // child becomes ready immediately, and it doesn't work for the name.
    142         // prctl(PR_SET_NAME) only works for self; prctl(PR_SET_THREAD_NAME) was
    143         // proposed but not yet accepted.
    144         thread_data_t* t = new thread_data_t;
    145         t->priority = threadPriority;
    146         t->threadName = threadName ? strdup(threadName) : NULL;
    147         t->entryFunction = entryFunction;
    148         t->userData = userData;
    149         entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
    150         userData = t;
    151     }
    152 #endif
    153 
    154     if (threadStackSize) {
    155         pthread_attr_setstacksize(&attr, threadStackSize);
    156     }
    157 
    158     errno = 0;
    159     pthread_t thread;
    160     int result = pthread_create(&thread, &attr,
    161                     (android_pthread_entry)entryFunction, userData);
    162     pthread_attr_destroy(&attr);
    163     if (result != 0) {
    164         ALOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, %s)\n"
    165              "(android threadPriority=%d)",
    166             entryFunction, result, strerror(errno), threadPriority);
    167         return 0;
    168     }
    169 
    170     // Note that *threadID is directly available to the parent only, as it is
    171     // assigned after the child starts.  Use memory barrier / lock if the child
    172     // or other threads also need access.
    173     if (threadId != NULL) {
    174         *threadId = (android_thread_id_t)thread; // XXX: this is not portable
    175     }
    176     return 1;
    177 }
    178 
    179 #if defined(__ANDROID__)
    180 static pthread_t android_thread_id_t_to_pthread(android_thread_id_t thread)
    181 {
    182     return (pthread_t) thread;
    183 }
    184 #endif
    185 
    186 android_thread_id_t androidGetThreadId()
    187 {
    188     return (android_thread_id_t)pthread_self();
    189 }
    190 
    191 // ----------------------------------------------------------------------------
    192 #else // !defined(_WIN32)
    193 // ----------------------------------------------------------------------------
    194 
    195 /*
    196  * Trampoline to make us __stdcall-compliant.
    197  *
    198  * We're expected to delete "vDetails" when we're done.
    199  */
    200 struct threadDetails {
    201     int (*func)(void*);
    202     void* arg;
    203 };
    204 static __stdcall unsigned int threadIntermediary(void* vDetails)
    205 {
    206     struct threadDetails* pDetails = (struct threadDetails*) vDetails;
    207     int result;
    208 
    209     result = (*(pDetails->func))(pDetails->arg);
    210 
    211     delete pDetails;
    212 
    213     ALOG(LOG_VERBOSE, "thread", "thread exiting\n");
    214     return (unsigned int) result;
    215 }
    216 
    217 /*
    218  * Create and run a new thread.
    219  */
    220 static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
    221 {
    222     HANDLE hThread;
    223     struct threadDetails* pDetails = new threadDetails; // must be on heap
    224     unsigned int thrdaddr;
    225 
    226     pDetails->func = fn;
    227     pDetails->arg = arg;
    228 
    229 #if defined(HAVE__BEGINTHREADEX)
    230     hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
    231                     &thrdaddr);
    232     if (hThread == 0)
    233 #elif defined(HAVE_CREATETHREAD)
    234     hThread = CreateThread(NULL, 0,
    235                     (LPTHREAD_START_ROUTINE) threadIntermediary,
    236                     (void*) pDetails, 0, (DWORD*) &thrdaddr);
    237     if (hThread == NULL)
    238 #endif
    239     {
    240         ALOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
    241         return false;
    242     }
    243 
    244 #if defined(HAVE_CREATETHREAD)
    245     /* close the management handle */
    246     CloseHandle(hThread);
    247 #endif
    248 
    249     if (id != NULL) {
    250       	*id = (android_thread_id_t)thrdaddr;
    251     }
    252 
    253     return true;
    254 }
    255 
    256 int androidCreateRawThreadEtc(android_thread_func_t fn,
    257                                void *userData,
    258                                const char* /*threadName*/,
    259                                int32_t /*threadPriority*/,
    260                                size_t /*threadStackSize*/,
    261                                android_thread_id_t *threadId)
    262 {
    263     return doCreateThread(  fn, userData, threadId);
    264 }
    265 
    266 android_thread_id_t androidGetThreadId()
    267 {
    268     return (android_thread_id_t)GetCurrentThreadId();
    269 }
    270 
    271 // ----------------------------------------------------------------------------
    272 #endif // !defined(_WIN32)
    273 
    274 // ----------------------------------------------------------------------------
    275 
    276 int androidCreateThread(android_thread_func_t fn, void* arg)
    277 {
    278     return createThreadEtc(fn, arg);
    279 }
    280 
    281 int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
    282 {
    283     return createThreadEtc(fn, arg, "android:unnamed_thread",
    284                            PRIORITY_DEFAULT, 0, id);
    285 }
    286 
    287 static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
    288 
    289 int androidCreateThreadEtc(android_thread_func_t entryFunction,
    290                             void *userData,
    291                             const char* threadName,
    292                             int32_t threadPriority,
    293                             size_t threadStackSize,
    294                             android_thread_id_t *threadId)
    295 {
    296     return gCreateThreadFn(entryFunction, userData, threadName,
    297         threadPriority, threadStackSize, threadId);
    298 }
    299 
    300 void androidSetCreateThreadFunc(android_create_thread_fn func)
    301 {
    302     gCreateThreadFn = func;
    303 }
    304 
    305 #if defined(__ANDROID__)
    306 int androidSetThreadPriority(pid_t tid, int pri)
    307 {
    308     int rc = 0;
    309     int lasterr = 0;
    310 
    311     if (pri >= ANDROID_PRIORITY_BACKGROUND) {
    312         rc = set_sched_policy(tid, SP_BACKGROUND);
    313     } else if (getpriority(PRIO_PROCESS, tid) >= ANDROID_PRIORITY_BACKGROUND) {
    314         rc = set_sched_policy(tid, SP_FOREGROUND);
    315     }
    316 
    317     if (rc) {
    318         lasterr = errno;
    319     }
    320 
    321     if (setpriority(PRIO_PROCESS, tid, pri) < 0) {
    322         rc = INVALID_OPERATION;
    323     } else {
    324         errno = lasterr;
    325     }
    326 
    327     return rc;
    328 }
    329 
    330 int androidGetThreadPriority(pid_t tid) {
    331     return getpriority(PRIO_PROCESS, tid);
    332 }
    333 
    334 #endif
    335 
    336 namespace android {
    337 
    338 /*
    339  * ===========================================================================
    340  *      Mutex class
    341  * ===========================================================================
    342  */
    343 
    344 #if !defined(_WIN32)
    345 // implemented as inlines in threads.h
    346 #else
    347 
    348 Mutex::Mutex()
    349 {
    350     HANDLE hMutex;
    351 
    352     assert(sizeof(hMutex) == sizeof(mState));
    353 
    354     hMutex = CreateMutex(NULL, FALSE, NULL);
    355     mState = (void*) hMutex;
    356 }
    357 
    358 Mutex::Mutex(const char* name)
    359 {
    360     // XXX: name not used for now
    361     HANDLE hMutex;
    362 
    363     assert(sizeof(hMutex) == sizeof(mState));
    364 
    365     hMutex = CreateMutex(NULL, FALSE, NULL);
    366     mState = (void*) hMutex;
    367 }
    368 
    369 Mutex::Mutex(int type, const char* name)
    370 {
    371     // XXX: type and name not used for now
    372     HANDLE hMutex;
    373 
    374     assert(sizeof(hMutex) == sizeof(mState));
    375 
    376     hMutex = CreateMutex(NULL, FALSE, NULL);
    377     mState = (void*) hMutex;
    378 }
    379 
    380 Mutex::~Mutex()
    381 {
    382     CloseHandle((HANDLE) mState);
    383 }
    384 
    385 status_t Mutex::lock()
    386 {
    387     DWORD dwWaitResult;
    388     dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
    389     return dwWaitResult != WAIT_OBJECT_0 ? -1 : NO_ERROR;
    390 }
    391 
    392 void Mutex::unlock()
    393 {
    394     if (!ReleaseMutex((HANDLE) mState))
    395         ALOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
    396 }
    397 
    398 status_t Mutex::tryLock()
    399 {
    400     DWORD dwWaitResult;
    401 
    402     dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
    403     if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
    404         ALOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
    405     return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
    406 }
    407 
    408 #endif // !defined(_WIN32)
    409 
    410 
    411 /*
    412  * ===========================================================================
    413  *      Condition class
    414  * ===========================================================================
    415  */
    416 
    417 #if !defined(_WIN32)
    418 // implemented as inlines in threads.h
    419 #else
    420 
    421 /*
    422  * Windows doesn't have a condition variable solution.  It's possible
    423  * to create one, but it's easy to get it wrong.  For a discussion, and
    424  * the origin of this implementation, see:
    425  *
    426  *  http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
    427  *
    428  * The implementation shown on the page does NOT follow POSIX semantics.
    429  * As an optimization they require acquiring the external mutex before
    430  * calling signal() and broadcast(), whereas POSIX only requires grabbing
    431  * it before calling wait().  The implementation here has been un-optimized
    432  * to have the correct behavior.
    433  */
    434 typedef struct WinCondition {
    435     // Number of waiting threads.
    436     int                 waitersCount;
    437 
    438     // Serialize access to waitersCount.
    439     CRITICAL_SECTION    waitersCountLock;
    440 
    441     // Semaphore used to queue up threads waiting for the condition to
    442     // become signaled.
    443     HANDLE              sema;
    444 
    445     // An auto-reset event used by the broadcast/signal thread to wait
    446     // for all the waiting thread(s) to wake up and be released from
    447     // the semaphore.
    448     HANDLE              waitersDone;
    449 
    450     // This mutex wouldn't be necessary if we required that the caller
    451     // lock the external mutex before calling signal() and broadcast().
    452     // I'm trying to mimic pthread semantics though.
    453     HANDLE              internalMutex;
    454 
    455     // Keeps track of whether we were broadcasting or signaling.  This
    456     // allows us to optimize the code if we're just signaling.
    457     bool                wasBroadcast;
    458 
    459     status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
    460     {
    461         // Increment the wait count, avoiding race conditions.
    462         EnterCriticalSection(&condState->waitersCountLock);
    463         condState->waitersCount++;
    464         //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
    465         //    condState->waitersCount, getThreadId());
    466         LeaveCriticalSection(&condState->waitersCountLock);
    467 
    468         DWORD timeout = INFINITE;
    469         if (abstime) {
    470             nsecs_t reltime = *abstime - systemTime();
    471             if (reltime < 0)
    472                 reltime = 0;
    473             timeout = reltime/1000000;
    474         }
    475 
    476         // Atomically release the external mutex and wait on the semaphore.
    477         DWORD res =
    478             SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
    479 
    480         //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
    481 
    482         // Reacquire lock to avoid race conditions.
    483         EnterCriticalSection(&condState->waitersCountLock);
    484 
    485         // No longer waiting.
    486         condState->waitersCount--;
    487 
    488         // Check to see if we're the last waiter after a broadcast.
    489         bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
    490 
    491         //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
    492         //    lastWaiter, condState->wasBroadcast, condState->waitersCount);
    493 
    494         LeaveCriticalSection(&condState->waitersCountLock);
    495 
    496         // If we're the last waiter thread during this particular broadcast
    497         // then signal broadcast() that we're all awake.  It'll drop the
    498         // internal mutex.
    499         if (lastWaiter) {
    500             // Atomically signal the "waitersDone" event and wait until we
    501             // can acquire the internal mutex.  We want to do this in one step
    502             // because it ensures that everybody is in the mutex FIFO before
    503             // any thread has a chance to run.  Without it, another thread
    504             // could wake up, do work, and hop back in ahead of us.
    505             SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
    506                 INFINITE, FALSE);
    507         } else {
    508             // Grab the internal mutex.
    509             WaitForSingleObject(condState->internalMutex, INFINITE);
    510         }
    511 
    512         // Release the internal and grab the external.
    513         ReleaseMutex(condState->internalMutex);
    514         WaitForSingleObject(hMutex, INFINITE);
    515 
    516         return res == WAIT_OBJECT_0 ? NO_ERROR : -1;
    517     }
    518 } WinCondition;
    519 
    520 /*
    521  * Constructor.  Set up the WinCondition stuff.
    522  */
    523 Condition::Condition()
    524 {
    525     WinCondition* condState = new WinCondition;
    526 
    527     condState->waitersCount = 0;
    528     condState->wasBroadcast = false;
    529     // semaphore: no security, initial value of 0
    530     condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
    531     InitializeCriticalSection(&condState->waitersCountLock);
    532     // auto-reset event, not signaled initially
    533     condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
    534     // used so we don't have to lock external mutex on signal/broadcast
    535     condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
    536 
    537     mState = condState;
    538 }
    539 
    540 /*
    541  * Destructor.  Free Windows resources as well as our allocated storage.
    542  */
    543 Condition::~Condition()
    544 {
    545     WinCondition* condState = (WinCondition*) mState;
    546     if (condState != NULL) {
    547         CloseHandle(condState->sema);
    548         CloseHandle(condState->waitersDone);
    549         delete condState;
    550     }
    551 }
    552 
    553 
    554 status_t Condition::wait(Mutex& mutex)
    555 {
    556     WinCondition* condState = (WinCondition*) mState;
    557     HANDLE hMutex = (HANDLE) mutex.mState;
    558 
    559     return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
    560 }
    561 
    562 status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
    563 {
    564     WinCondition* condState = (WinCondition*) mState;
    565     HANDLE hMutex = (HANDLE) mutex.mState;
    566     nsecs_t absTime = systemTime()+reltime;
    567 
    568     return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
    569 }
    570 
    571 /*
    572  * Signal the condition variable, allowing one thread to continue.
    573  */
    574 void Condition::signal()
    575 {
    576     WinCondition* condState = (WinCondition*) mState;
    577 
    578     // Lock the internal mutex.  This ensures that we don't clash with
    579     // broadcast().
    580     WaitForSingleObject(condState->internalMutex, INFINITE);
    581 
    582     EnterCriticalSection(&condState->waitersCountLock);
    583     bool haveWaiters = (condState->waitersCount > 0);
    584     LeaveCriticalSection(&condState->waitersCountLock);
    585 
    586     // If no waiters, then this is a no-op.  Otherwise, knock the semaphore
    587     // down a notch.
    588     if (haveWaiters)
    589         ReleaseSemaphore(condState->sema, 1, 0);
    590 
    591     // Release internal mutex.
    592     ReleaseMutex(condState->internalMutex);
    593 }
    594 
    595 /*
    596  * Signal the condition variable, allowing all threads to continue.
    597  *
    598  * First we have to wake up all threads waiting on the semaphore, then
    599  * we wait until all of the threads have actually been woken before
    600  * releasing the internal mutex.  This ensures that all threads are woken.
    601  */
    602 void Condition::broadcast()
    603 {
    604     WinCondition* condState = (WinCondition*) mState;
    605 
    606     // Lock the internal mutex.  This keeps the guys we're waking up
    607     // from getting too far.
    608     WaitForSingleObject(condState->internalMutex, INFINITE);
    609 
    610     EnterCriticalSection(&condState->waitersCountLock);
    611     bool haveWaiters = false;
    612 
    613     if (condState->waitersCount > 0) {
    614         haveWaiters = true;
    615         condState->wasBroadcast = true;
    616     }
    617 
    618     if (haveWaiters) {
    619         // Wake up all the waiters.
    620         ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
    621 
    622         LeaveCriticalSection(&condState->waitersCountLock);
    623 
    624         // Wait for all awakened threads to acquire the counting semaphore.
    625         // The last guy who was waiting sets this.
    626         WaitForSingleObject(condState->waitersDone, INFINITE);
    627 
    628         // Reset wasBroadcast.  (No crit section needed because nobody
    629         // else can wake up to poke at it.)
    630         condState->wasBroadcast = 0;
    631     } else {
    632         // nothing to do
    633         LeaveCriticalSection(&condState->waitersCountLock);
    634     }
    635 
    636     // Release internal mutex.
    637     ReleaseMutex(condState->internalMutex);
    638 }
    639 
    640 #endif // !defined(_WIN32)
    641 
    642 // ----------------------------------------------------------------------------
    643 
    644 /*
    645  * This is our thread object!
    646  */
    647 
    648 Thread::Thread(bool canCallJava)
    649     :   mCanCallJava(canCallJava),
    650         mThread(thread_id_t(-1)),
    651         mLock("Thread::mLock"),
    652         mStatus(NO_ERROR),
    653         mExitPending(false), mRunning(false)
    654 #if defined(__ANDROID__)
    655         , mTid(-1)
    656 #endif
    657 {
    658 }
    659 
    660 Thread::~Thread()
    661 {
    662 }
    663 
    664 status_t Thread::readyToRun()
    665 {
    666     return NO_ERROR;
    667 }
    668 
    669 status_t Thread::run(const char* name, int32_t priority, size_t stack)
    670 {
    671     LOG_ALWAYS_FATAL_IF(name == nullptr, "thread name not provided to Thread::run");
    672 
    673     Mutex::Autolock _l(mLock);
    674 
    675     if (mRunning) {
    676         // thread already started
    677         return INVALID_OPERATION;
    678     }
    679 
    680     // reset status and exitPending to their default value, so we can
    681     // try again after an error happened (either below, or in readyToRun())
    682     mStatus = NO_ERROR;
    683     mExitPending = false;
    684     mThread = thread_id_t(-1);
    685 
    686     // hold a strong reference on ourself
    687     mHoldSelf = this;
    688 
    689     mRunning = true;
    690 
    691     bool res;
    692     if (mCanCallJava) {
    693         res = createThreadEtc(_threadLoop,
    694                 this, name, priority, stack, &mThread);
    695     } else {
    696         res = androidCreateRawThreadEtc(_threadLoop,
    697                 this, name, priority, stack, &mThread);
    698     }
    699 
    700     if (res == false) {
    701         mStatus = UNKNOWN_ERROR;   // something happened!
    702         mRunning = false;
    703         mThread = thread_id_t(-1);
    704         mHoldSelf.clear();  // "this" may have gone away after this.
    705 
    706         return UNKNOWN_ERROR;
    707     }
    708 
    709     // Do not refer to mStatus here: The thread is already running (may, in fact
    710     // already have exited with a valid mStatus result). The NO_ERROR indication
    711     // here merely indicates successfully starting the thread and does not
    712     // imply successful termination/execution.
    713     return NO_ERROR;
    714 
    715     // Exiting scope of mLock is a memory barrier and allows new thread to run
    716 }
    717 
    718 int Thread::_threadLoop(void* user)
    719 {
    720     Thread* const self = static_cast<Thread*>(user);
    721 
    722     sp<Thread> strong(self->mHoldSelf);
    723     wp<Thread> weak(strong);
    724     self->mHoldSelf.clear();
    725 
    726 #if defined(__ANDROID__)
    727     // this is very useful for debugging with gdb
    728     self->mTid = gettid();
    729 #endif
    730 
    731     bool first = true;
    732 
    733     do {
    734         bool result;
    735         if (first) {
    736             first = false;
    737             self->mStatus = self->readyToRun();
    738             result = (self->mStatus == NO_ERROR);
    739 
    740             if (result && !self->exitPending()) {
    741                 // Binder threads (and maybe others) rely on threadLoop
    742                 // running at least once after a successful ::readyToRun()
    743                 // (unless, of course, the thread has already been asked to exit
    744                 // at that point).
    745                 // This is because threads are essentially used like this:
    746                 //   (new ThreadSubclass())->run();
    747                 // The caller therefore does not retain a strong reference to
    748                 // the thread and the thread would simply disappear after the
    749                 // successful ::readyToRun() call instead of entering the
    750                 // threadLoop at least once.
    751                 result = self->threadLoop();
    752             }
    753         } else {
    754             result = self->threadLoop();
    755         }
    756 
    757         // establish a scope for mLock
    758         {
    759         Mutex::Autolock _l(self->mLock);
    760         if (result == false || self->mExitPending) {
    761             self->mExitPending = true;
    762             self->mRunning = false;
    763             // clear thread ID so that requestExitAndWait() does not exit if
    764             // called by a new thread using the same thread ID as this one.
    765             self->mThread = thread_id_t(-1);
    766             // note that interested observers blocked in requestExitAndWait are
    767             // awoken by broadcast, but blocked on mLock until break exits scope
    768             self->mThreadExitedCondition.broadcast();
    769             break;
    770         }
    771         }
    772 
    773         // Release our strong reference, to let a chance to the thread
    774         // to die a peaceful death.
    775         strong.clear();
    776         // And immediately, re-acquire a strong reference for the next loop
    777         strong = weak.promote();
    778     } while(strong != 0);
    779 
    780     return 0;
    781 }
    782 
    783 void Thread::requestExit()
    784 {
    785     Mutex::Autolock _l(mLock);
    786     mExitPending = true;
    787 }
    788 
    789 status_t Thread::requestExitAndWait()
    790 {
    791     Mutex::Autolock _l(mLock);
    792     if (mThread == getThreadId()) {
    793         ALOGW(
    794         "Thread (this=%p): don't call waitForExit() from this "
    795         "Thread object's thread. It's a guaranteed deadlock!",
    796         this);
    797 
    798         return WOULD_BLOCK;
    799     }
    800 
    801     mExitPending = true;
    802 
    803     while (mRunning == true) {
    804         mThreadExitedCondition.wait(mLock);
    805     }
    806     // This next line is probably not needed any more, but is being left for
    807     // historical reference. Note that each interested party will clear flag.
    808     mExitPending = false;
    809 
    810     return mStatus;
    811 }
    812 
    813 status_t Thread::join()
    814 {
    815     Mutex::Autolock _l(mLock);
    816     if (mThread == getThreadId()) {
    817         ALOGW(
    818         "Thread (this=%p): don't call join() from this "
    819         "Thread object's thread. It's a guaranteed deadlock!",
    820         this);
    821 
    822         return WOULD_BLOCK;
    823     }
    824 
    825     while (mRunning == true) {
    826         mThreadExitedCondition.wait(mLock);
    827     }
    828 
    829     return mStatus;
    830 }
    831 
    832 bool Thread::isRunning() const {
    833     Mutex::Autolock _l(mLock);
    834     return mRunning;
    835 }
    836 
    837 #if defined(__ANDROID__)
    838 pid_t Thread::getTid() const
    839 {
    840     // mTid is not defined until the child initializes it, and the caller may need it earlier
    841     Mutex::Autolock _l(mLock);
    842     pid_t tid;
    843     if (mRunning) {
    844         pthread_t pthread = android_thread_id_t_to_pthread(mThread);
    845         tid = pthread_gettid_np(pthread);
    846     } else {
    847         ALOGW("Thread (this=%p): getTid() is undefined before run()", this);
    848         tid = -1;
    849     }
    850     return tid;
    851 }
    852 #endif
    853 
    854 bool Thread::exitPending() const
    855 {
    856     Mutex::Autolock _l(mLock);
    857     return mExitPending;
    858 }
    859 
    860 
    861 
    862 };  // namespace android
    863