Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2011 Gael Guennebaud <g.gael (at) free.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #include "sparse.h"
     11 #include <Eigen/SparseCore>
     12 
     13 template<typename Solver, typename Rhs, typename DenseMat, typename DenseRhs>
     14 void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db)
     15 {
     16   typedef typename Solver::MatrixType Mat;
     17   typedef typename Mat::Scalar Scalar;
     18 
     19   DenseRhs refX = dA.lu().solve(db);
     20   {
     21     Rhs x(b.rows(), b.cols());
     22     Rhs oldb = b;
     23 
     24     solver.compute(A);
     25     if (solver.info() != Success)
     26     {
     27       std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n";
     28       exit(0);
     29       return;
     30     }
     31     x = solver.solve(b);
     32     if (solver.info() != Success)
     33     {
     34       std::cerr << "sparse solver testing: solving failed\n";
     35       return;
     36     }
     37     VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
     38 
     39     VERIFY(x.isApprox(refX,test_precision<Scalar>()));
     40     x.setZero();
     41     // test the analyze/factorize API
     42     solver.analyzePattern(A);
     43     solver.factorize(A);
     44     if (solver.info() != Success)
     45     {
     46       std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n";
     47       exit(0);
     48       return;
     49     }
     50     x = solver.solve(b);
     51     if (solver.info() != Success)
     52     {
     53       std::cerr << "sparse solver testing: solving failed\n";
     54       return;
     55     }
     56     VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!");
     57 
     58     VERIFY(x.isApprox(refX,test_precision<Scalar>()));
     59   }
     60 
     61   // test dense Block as the result and rhs:
     62   {
     63     DenseRhs x(db.rows(), db.cols());
     64     DenseRhs oldb(db);
     65     x.setZero();
     66     x.block(0,0,x.rows(),x.cols()) = solver.solve(db.block(0,0,db.rows(),db.cols()));
     67     VERIFY(oldb.isApprox(db) && "sparse solver testing: the rhs should not be modified!");
     68     VERIFY(x.isApprox(refX,test_precision<Scalar>()));
     69   }
     70 }
     71 
     72 template<typename Solver, typename Rhs>
     73 void check_sparse_solving_real_cases(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const Rhs& refX)
     74 {
     75   typedef typename Solver::MatrixType Mat;
     76   typedef typename Mat::Scalar Scalar;
     77   typedef typename Mat::RealScalar RealScalar;
     78 
     79   Rhs x(b.rows(), b.cols());
     80 
     81   solver.compute(A);
     82   if (solver.info() != Success)
     83   {
     84     std::cerr << "sparse solver testing: factorization failed (check_sparse_solving_real_cases)\n";
     85     exit(0);
     86     return;
     87   }
     88   x = solver.solve(b);
     89   if (solver.info() != Success)
     90   {
     91     std::cerr << "sparse solver testing: solving failed\n";
     92     return;
     93   }
     94 
     95   RealScalar res_error;
     96   // Compute the norm of the relative error
     97   if(refX.size() != 0)
     98     res_error = (refX - x).norm()/refX.norm();
     99   else
    100   {
    101     // Compute the relative residual norm
    102     res_error = (b - A * x).norm()/b.norm();
    103   }
    104   if (res_error > test_precision<Scalar>() ){
    105     std::cerr << "Test " << g_test_stack.back() << " failed in "EI_PP_MAKE_STRING(__FILE__)
    106     << " (" << EI_PP_MAKE_STRING(__LINE__) << ")" << std::endl << std::endl;
    107     abort();
    108   }
    109 
    110 }
    111 template<typename Solver, typename DenseMat>
    112 void check_sparse_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
    113 {
    114   typedef typename Solver::MatrixType Mat;
    115   typedef typename Mat::Scalar Scalar;
    116 
    117   solver.compute(A);
    118   if (solver.info() != Success)
    119   {
    120     std::cerr << "sparse solver testing: factorization failed (check_sparse_determinant)\n";
    121     return;
    122   }
    123 
    124   Scalar refDet = dA.determinant();
    125   VERIFY_IS_APPROX(refDet,solver.determinant());
    126 }
    127 template<typename Solver, typename DenseMat>
    128 void check_sparse_abs_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA)
    129 {
    130   using std::abs;
    131   typedef typename Solver::MatrixType Mat;
    132   typedef typename Mat::Scalar Scalar;
    133 
    134   solver.compute(A);
    135   if (solver.info() != Success)
    136   {
    137     std::cerr << "sparse solver testing: factorization failed (check_sparse_abs_determinant)\n";
    138     return;
    139   }
    140 
    141   Scalar refDet = abs(dA.determinant());
    142   VERIFY_IS_APPROX(refDet,solver.absDeterminant());
    143 }
    144 
    145 template<typename Solver, typename DenseMat>
    146 int generate_sparse_spd_problem(Solver& , typename Solver::MatrixType& A, typename Solver::MatrixType& halfA, DenseMat& dA, int maxSize = 300)
    147 {
    148   typedef typename Solver::MatrixType Mat;
    149   typedef typename Mat::Scalar Scalar;
    150   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    151 
    152   int size = internal::random<int>(1,maxSize);
    153   double density = (std::max)(8./(size*size), 0.01);
    154 
    155   Mat M(size, size);
    156   DenseMatrix dM(size, size);
    157 
    158   initSparse<Scalar>(density, dM, M, ForceNonZeroDiag);
    159 
    160   A = M * M.adjoint();
    161   dA = dM * dM.adjoint();
    162 
    163   halfA.resize(size,size);
    164   if(Solver::UpLo==(Lower|Upper))
    165     halfA = A;
    166   else
    167     halfA.template selfadjointView<Solver::UpLo>().rankUpdate(M);
    168 
    169   return size;
    170 }
    171 
    172 
    173 #ifdef TEST_REAL_CASES
    174 template<typename Scalar>
    175 inline std::string get_matrixfolder()
    176 {
    177   std::string mat_folder = TEST_REAL_CASES;
    178   if( internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value )
    179     mat_folder  = mat_folder + static_cast<std::string>("/complex/");
    180   else
    181     mat_folder = mat_folder + static_cast<std::string>("/real/");
    182   return mat_folder;
    183 }
    184 #endif
    185 
    186 template<typename Solver> void check_sparse_spd_solving(Solver& solver)
    187 {
    188   typedef typename Solver::MatrixType Mat;
    189   typedef typename Mat::Scalar Scalar;
    190   typedef SparseMatrix<Scalar,ColMajor> SpMat;
    191   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    192   typedef Matrix<Scalar,Dynamic,1> DenseVector;
    193 
    194   // generate the problem
    195   Mat A, halfA;
    196   DenseMatrix dA;
    197   for (int i = 0; i < g_repeat; i++) {
    198     int size = generate_sparse_spd_problem(solver, A, halfA, dA);
    199 
    200     // generate the right hand sides
    201     int rhsCols = internal::random<int>(1,16);
    202     double density = (std::max)(8./(size*rhsCols), 0.1);
    203     SpMat B(size,rhsCols);
    204     DenseVector b = DenseVector::Random(size);
    205     DenseMatrix dB(size,rhsCols);
    206     initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
    207 
    208     check_sparse_solving(solver, A,     b,  dA, b);
    209     check_sparse_solving(solver, halfA, b,  dA, b);
    210     check_sparse_solving(solver, A,     dB, dA, dB);
    211     check_sparse_solving(solver, halfA, dB, dA, dB);
    212     check_sparse_solving(solver, A,     B,  dA, dB);
    213     check_sparse_solving(solver, halfA, B,  dA, dB);
    214 
    215     // check only once
    216     if(i==0)
    217     {
    218       b = DenseVector::Zero(size);
    219       check_sparse_solving(solver, A, b, dA, b);
    220     }
    221   }
    222 
    223   // First, get the folder
    224 #ifdef TEST_REAL_CASES
    225   if (internal::is_same<Scalar, float>::value
    226       || internal::is_same<Scalar, std::complex<float> >::value)
    227     return ;
    228 
    229   std::string mat_folder = get_matrixfolder<Scalar>();
    230   MatrixMarketIterator<Scalar> it(mat_folder);
    231   for (; it; ++it)
    232   {
    233     if (it.sym() == SPD){
    234       Mat halfA;
    235       PermutationMatrix<Dynamic, Dynamic, Index> pnull;
    236       halfA.template selfadjointView<Solver::UpLo>() = it.matrix().template triangularView<Eigen::Lower>().twistedBy(pnull);
    237 
    238       std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n";
    239       check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX());
    240       check_sparse_solving_real_cases(solver, halfA, it.rhs(), it.refX());
    241     }
    242   }
    243 #endif
    244 }
    245 
    246 template<typename Solver> void check_sparse_spd_determinant(Solver& solver)
    247 {
    248   typedef typename Solver::MatrixType Mat;
    249   typedef typename Mat::Scalar Scalar;
    250   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    251 
    252   // generate the problem
    253   Mat A, halfA;
    254   DenseMatrix dA;
    255   generate_sparse_spd_problem(solver, A, halfA, dA, 30);
    256 
    257   for (int i = 0; i < g_repeat; i++) {
    258     check_sparse_determinant(solver, A,     dA);
    259     check_sparse_determinant(solver, halfA, dA );
    260   }
    261 }
    262 
    263 template<typename Solver, typename DenseMat>
    264 int generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300)
    265 {
    266   typedef typename Solver::MatrixType Mat;
    267   typedef typename Mat::Scalar Scalar;
    268 
    269   int size = internal::random<int>(1,maxSize);
    270   double density = (std::max)(8./(size*size), 0.01);
    271 
    272   A.resize(size,size);
    273   dA.resize(size,size);
    274 
    275   initSparse<Scalar>(density, dA, A, ForceNonZeroDiag);
    276 
    277   return size;
    278 }
    279 
    280 template<typename Solver> void check_sparse_square_solving(Solver& solver)
    281 {
    282   typedef typename Solver::MatrixType Mat;
    283   typedef typename Mat::Scalar Scalar;
    284   typedef SparseMatrix<Scalar,ColMajor> SpMat;
    285   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    286   typedef Matrix<Scalar,Dynamic,1> DenseVector;
    287 
    288   int rhsCols = internal::random<int>(1,16);
    289 
    290   Mat A;
    291   DenseMatrix dA;
    292   for (int i = 0; i < g_repeat; i++) {
    293     int size = generate_sparse_square_problem(solver, A, dA);
    294 
    295     A.makeCompressed();
    296     DenseVector b = DenseVector::Random(size);
    297     DenseMatrix dB(size,rhsCols);
    298     SpMat B(size,rhsCols);
    299     double density = (std::max)(8./(size*rhsCols), 0.1);
    300     initSparse<Scalar>(density, dB, B, ForceNonZeroDiag);
    301     B.makeCompressed();
    302     check_sparse_solving(solver, A, b,  dA, b);
    303     check_sparse_solving(solver, A, dB, dA, dB);
    304     check_sparse_solving(solver, A, B,  dA, dB);
    305 
    306     // check only once
    307     if(i==0)
    308     {
    309       b = DenseVector::Zero(size);
    310       check_sparse_solving(solver, A, b, dA, b);
    311     }
    312   }
    313 
    314   // First, get the folder
    315 #ifdef TEST_REAL_CASES
    316   if (internal::is_same<Scalar, float>::value
    317       || internal::is_same<Scalar, std::complex<float> >::value)
    318     return ;
    319 
    320   std::string mat_folder = get_matrixfolder<Scalar>();
    321   MatrixMarketIterator<Scalar> it(mat_folder);
    322   for (; it; ++it)
    323   {
    324     std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n";
    325     check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX());
    326   }
    327 #endif
    328 
    329 }
    330 
    331 template<typename Solver> void check_sparse_square_determinant(Solver& solver)
    332 {
    333   typedef typename Solver::MatrixType Mat;
    334   typedef typename Mat::Scalar Scalar;
    335   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    336 
    337   // generate the problem
    338   Mat A;
    339   DenseMatrix dA;
    340   generate_sparse_square_problem(solver, A, dA, 30);
    341   A.makeCompressed();
    342   for (int i = 0; i < g_repeat; i++) {
    343     check_sparse_determinant(solver, A, dA);
    344   }
    345 }
    346 
    347 template<typename Solver> void check_sparse_square_abs_determinant(Solver& solver)
    348 {
    349   typedef typename Solver::MatrixType Mat;
    350   typedef typename Mat::Scalar Scalar;
    351   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
    352 
    353   // generate the problem
    354   Mat A;
    355   DenseMatrix dA;
    356   generate_sparse_square_problem(solver, A, dA, 30);
    357   A.makeCompressed();
    358   for (int i = 0; i < g_repeat; i++) {
    359     check_sparse_abs_determinant(solver, A, dA);
    360   }
    361 }
    362 
    363