Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SmallBitVector class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ADT_SMALLBITVECTOR_H
     15 #define LLVM_ADT_SMALLBITVECTOR_H
     16 
     17 #include "llvm/ADT/BitVector.h"
     18 #include "llvm/Support/Compiler.h"
     19 #include "llvm/Support/MathExtras.h"
     20 #include <cassert>
     21 
     22 namespace llvm {
     23 
     24 /// SmallBitVector - This is a 'bitvector' (really, a variable-sized bit array),
     25 /// optimized for the case when the array is small.  It contains one
     26 /// pointer-sized field, which is directly used as a plain collection of bits
     27 /// when possible, or as a pointer to a larger heap-allocated array when
     28 /// necessary.  This allows normal "small" cases to be fast without losing
     29 /// generality for large inputs.
     30 ///
     31 class SmallBitVector {
     32   // TODO: In "large" mode, a pointer to a BitVector is used, leading to an
     33   // unnecessary level of indirection. It would be more efficient to use a
     34   // pointer to memory containing size, allocation size, and the array of bits.
     35   uintptr_t X;
     36 
     37   enum {
     38     // The number of bits in this class.
     39     NumBaseBits = sizeof(uintptr_t) * CHAR_BIT,
     40 
     41     // One bit is used to discriminate between small and large mode. The
     42     // remaining bits are used for the small-mode representation.
     43     SmallNumRawBits = NumBaseBits - 1,
     44 
     45     // A few more bits are used to store the size of the bit set in small mode.
     46     // Theoretically this is a ceil-log2. These bits are encoded in the most
     47     // significant bits of the raw bits.
     48     SmallNumSizeBits = (NumBaseBits == 32 ? 5 :
     49                         NumBaseBits == 64 ? 6 :
     50                         SmallNumRawBits),
     51 
     52     // The remaining bits are used to store the actual set in small mode.
     53     SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits
     54   };
     55 
     56   static_assert(NumBaseBits == 64 || NumBaseBits == 32,
     57                 "Unsupported word size");
     58 
     59 public:
     60   typedef unsigned size_type;
     61   // Encapsulation of a single bit.
     62   class reference {
     63     SmallBitVector &TheVector;
     64     unsigned BitPos;
     65 
     66   public:
     67     reference(SmallBitVector &b, unsigned Idx) : TheVector(b), BitPos(Idx) {}
     68 
     69     reference(const reference&) = default;
     70 
     71     reference& operator=(reference t) {
     72       *this = bool(t);
     73       return *this;
     74     }
     75 
     76     reference& operator=(bool t) {
     77       if (t)
     78         TheVector.set(BitPos);
     79       else
     80         TheVector.reset(BitPos);
     81       return *this;
     82     }
     83 
     84     operator bool() const {
     85       return const_cast<const SmallBitVector &>(TheVector).operator[](BitPos);
     86     }
     87   };
     88 
     89 private:
     90   bool isSmall() const {
     91     return X & uintptr_t(1);
     92   }
     93 
     94   BitVector *getPointer() const {
     95     assert(!isSmall());
     96     return reinterpret_cast<BitVector *>(X);
     97   }
     98 
     99   void switchToSmall(uintptr_t NewSmallBits, size_t NewSize) {
    100     X = 1;
    101     setSmallSize(NewSize);
    102     setSmallBits(NewSmallBits);
    103   }
    104 
    105   void switchToLarge(BitVector *BV) {
    106     X = reinterpret_cast<uintptr_t>(BV);
    107     assert(!isSmall() && "Tried to use an unaligned pointer");
    108   }
    109 
    110   // Return all the bits used for the "small" representation; this includes
    111   // bits for the size as well as the element bits.
    112   uintptr_t getSmallRawBits() const {
    113     assert(isSmall());
    114     return X >> 1;
    115   }
    116 
    117   void setSmallRawBits(uintptr_t NewRawBits) {
    118     assert(isSmall());
    119     X = (NewRawBits << 1) | uintptr_t(1);
    120   }
    121 
    122   // Return the size.
    123   size_t getSmallSize() const {
    124     return getSmallRawBits() >> SmallNumDataBits;
    125   }
    126 
    127   void setSmallSize(size_t Size) {
    128     setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits));
    129   }
    130 
    131   // Return the element bits.
    132   uintptr_t getSmallBits() const {
    133     return getSmallRawBits() & ~(~uintptr_t(0) << getSmallSize());
    134   }
    135 
    136   void setSmallBits(uintptr_t NewBits) {
    137     setSmallRawBits((NewBits & ~(~uintptr_t(0) << getSmallSize())) |
    138                     (getSmallSize() << SmallNumDataBits));
    139   }
    140 
    141 public:
    142   /// SmallBitVector default ctor - Creates an empty bitvector.
    143   SmallBitVector() : X(1) {}
    144 
    145   /// SmallBitVector ctor - Creates a bitvector of specified number of bits. All
    146   /// bits are initialized to the specified value.
    147   explicit SmallBitVector(unsigned s, bool t = false) {
    148     if (s <= SmallNumDataBits)
    149       switchToSmall(t ? ~uintptr_t(0) : 0, s);
    150     else
    151       switchToLarge(new BitVector(s, t));
    152   }
    153 
    154   /// SmallBitVector copy ctor.
    155   SmallBitVector(const SmallBitVector &RHS) {
    156     if (RHS.isSmall())
    157       X = RHS.X;
    158     else
    159       switchToLarge(new BitVector(*RHS.getPointer()));
    160   }
    161 
    162   SmallBitVector(SmallBitVector &&RHS) : X(RHS.X) {
    163     RHS.X = 1;
    164   }
    165 
    166   ~SmallBitVector() {
    167     if (!isSmall())
    168       delete getPointer();
    169   }
    170 
    171   /// empty - Tests whether there are no bits in this bitvector.
    172   bool empty() const {
    173     return isSmall() ? getSmallSize() == 0 : getPointer()->empty();
    174   }
    175 
    176   /// size - Returns the number of bits in this bitvector.
    177   size_t size() const {
    178     return isSmall() ? getSmallSize() : getPointer()->size();
    179   }
    180 
    181   /// count - Returns the number of bits which are set.
    182   size_type count() const {
    183     if (isSmall()) {
    184       uintptr_t Bits = getSmallBits();
    185       return countPopulation(Bits);
    186     }
    187     return getPointer()->count();
    188   }
    189 
    190   /// any - Returns true if any bit is set.
    191   bool any() const {
    192     if (isSmall())
    193       return getSmallBits() != 0;
    194     return getPointer()->any();
    195   }
    196 
    197   /// all - Returns true if all bits are set.
    198   bool all() const {
    199     if (isSmall())
    200       return getSmallBits() == (uintptr_t(1) << getSmallSize()) - 1;
    201     return getPointer()->all();
    202   }
    203 
    204   /// none - Returns true if none of the bits are set.
    205   bool none() const {
    206     if (isSmall())
    207       return getSmallBits() == 0;
    208     return getPointer()->none();
    209   }
    210 
    211   /// find_first - Returns the index of the first set bit, -1 if none
    212   /// of the bits are set.
    213   int find_first() const {
    214     if (isSmall()) {
    215       uintptr_t Bits = getSmallBits();
    216       if (Bits == 0)
    217         return -1;
    218       return countTrailingZeros(Bits);
    219     }
    220     return getPointer()->find_first();
    221   }
    222 
    223   /// find_next - Returns the index of the next set bit following the
    224   /// "Prev" bit. Returns -1 if the next set bit is not found.
    225   int find_next(unsigned Prev) const {
    226     if (isSmall()) {
    227       uintptr_t Bits = getSmallBits();
    228       // Mask off previous bits.
    229       Bits &= ~uintptr_t(0) << (Prev + 1);
    230       if (Bits == 0 || Prev + 1 >= getSmallSize())
    231         return -1;
    232       return countTrailingZeros(Bits);
    233     }
    234     return getPointer()->find_next(Prev);
    235   }
    236 
    237   /// clear - Clear all bits.
    238   void clear() {
    239     if (!isSmall())
    240       delete getPointer();
    241     switchToSmall(0, 0);
    242   }
    243 
    244   /// resize - Grow or shrink the bitvector.
    245   void resize(unsigned N, bool t = false) {
    246     if (!isSmall()) {
    247       getPointer()->resize(N, t);
    248     } else if (SmallNumDataBits >= N) {
    249       uintptr_t NewBits = t ? ~uintptr_t(0) << getSmallSize() : 0;
    250       setSmallSize(N);
    251       setSmallBits(NewBits | getSmallBits());
    252     } else {
    253       BitVector *BV = new BitVector(N, t);
    254       uintptr_t OldBits = getSmallBits();
    255       for (size_t i = 0, e = getSmallSize(); i != e; ++i)
    256         (*BV)[i] = (OldBits >> i) & 1;
    257       switchToLarge(BV);
    258     }
    259   }
    260 
    261   void reserve(unsigned N) {
    262     if (isSmall()) {
    263       if (N > SmallNumDataBits) {
    264         uintptr_t OldBits = getSmallRawBits();
    265         size_t SmallSize = getSmallSize();
    266         BitVector *BV = new BitVector(SmallSize);
    267         for (size_t i = 0; i < SmallSize; ++i)
    268           if ((OldBits >> i) & 1)
    269             BV->set(i);
    270         BV->reserve(N);
    271         switchToLarge(BV);
    272       }
    273     } else {
    274       getPointer()->reserve(N);
    275     }
    276   }
    277 
    278   // Set, reset, flip
    279   SmallBitVector &set() {
    280     if (isSmall())
    281       setSmallBits(~uintptr_t(0));
    282     else
    283       getPointer()->set();
    284     return *this;
    285   }
    286 
    287   SmallBitVector &set(unsigned Idx) {
    288     if (isSmall()) {
    289       assert(Idx <= static_cast<unsigned>(
    290                         std::numeric_limits<uintptr_t>::digits) &&
    291              "undefined behavior");
    292       setSmallBits(getSmallBits() | (uintptr_t(1) << Idx));
    293     }
    294     else
    295       getPointer()->set(Idx);
    296     return *this;
    297   }
    298 
    299   /// set - Efficiently set a range of bits in [I, E)
    300   SmallBitVector &set(unsigned I, unsigned E) {
    301     assert(I <= E && "Attempted to set backwards range!");
    302     assert(E <= size() && "Attempted to set out-of-bounds range!");
    303     if (I == E) return *this;
    304     if (isSmall()) {
    305       uintptr_t EMask = ((uintptr_t)1) << E;
    306       uintptr_t IMask = ((uintptr_t)1) << I;
    307       uintptr_t Mask = EMask - IMask;
    308       setSmallBits(getSmallBits() | Mask);
    309     } else
    310       getPointer()->set(I, E);
    311     return *this;
    312   }
    313 
    314   SmallBitVector &reset() {
    315     if (isSmall())
    316       setSmallBits(0);
    317     else
    318       getPointer()->reset();
    319     return *this;
    320   }
    321 
    322   SmallBitVector &reset(unsigned Idx) {
    323     if (isSmall())
    324       setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx));
    325     else
    326       getPointer()->reset(Idx);
    327     return *this;
    328   }
    329 
    330   /// reset - Efficiently reset a range of bits in [I, E)
    331   SmallBitVector &reset(unsigned I, unsigned E) {
    332     assert(I <= E && "Attempted to reset backwards range!");
    333     assert(E <= size() && "Attempted to reset out-of-bounds range!");
    334     if (I == E) return *this;
    335     if (isSmall()) {
    336       uintptr_t EMask = ((uintptr_t)1) << E;
    337       uintptr_t IMask = ((uintptr_t)1) << I;
    338       uintptr_t Mask = EMask - IMask;
    339       setSmallBits(getSmallBits() & ~Mask);
    340     } else
    341       getPointer()->reset(I, E);
    342     return *this;
    343   }
    344 
    345   SmallBitVector &flip() {
    346     if (isSmall())
    347       setSmallBits(~getSmallBits());
    348     else
    349       getPointer()->flip();
    350     return *this;
    351   }
    352 
    353   SmallBitVector &flip(unsigned Idx) {
    354     if (isSmall())
    355       setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx));
    356     else
    357       getPointer()->flip(Idx);
    358     return *this;
    359   }
    360 
    361   // No argument flip.
    362   SmallBitVector operator~() const {
    363     return SmallBitVector(*this).flip();
    364   }
    365 
    366   // Indexing.
    367   reference operator[](unsigned Idx) {
    368     assert(Idx < size() && "Out-of-bounds Bit access.");
    369     return reference(*this, Idx);
    370   }
    371 
    372   bool operator[](unsigned Idx) const {
    373     assert(Idx < size() && "Out-of-bounds Bit access.");
    374     if (isSmall())
    375       return ((getSmallBits() >> Idx) & 1) != 0;
    376     return getPointer()->operator[](Idx);
    377   }
    378 
    379   bool test(unsigned Idx) const {
    380     return (*this)[Idx];
    381   }
    382 
    383   /// Test if any common bits are set.
    384   bool anyCommon(const SmallBitVector &RHS) const {
    385     if (isSmall() && RHS.isSmall())
    386       return (getSmallBits() & RHS.getSmallBits()) != 0;
    387     if (!isSmall() && !RHS.isSmall())
    388       return getPointer()->anyCommon(*RHS.getPointer());
    389 
    390     for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
    391       if (test(i) && RHS.test(i))
    392         return true;
    393     return false;
    394   }
    395 
    396   // Comparison operators.
    397   bool operator==(const SmallBitVector &RHS) const {
    398     if (size() != RHS.size())
    399       return false;
    400     if (isSmall())
    401       return getSmallBits() == RHS.getSmallBits();
    402     else
    403       return *getPointer() == *RHS.getPointer();
    404   }
    405 
    406   bool operator!=(const SmallBitVector &RHS) const {
    407     return !(*this == RHS);
    408   }
    409 
    410   // Intersection, union, disjoint union.
    411   SmallBitVector &operator&=(const SmallBitVector &RHS) {
    412     resize(std::max(size(), RHS.size()));
    413     if (isSmall())
    414       setSmallBits(getSmallBits() & RHS.getSmallBits());
    415     else if (!RHS.isSmall())
    416       getPointer()->operator&=(*RHS.getPointer());
    417     else {
    418       SmallBitVector Copy = RHS;
    419       Copy.resize(size());
    420       getPointer()->operator&=(*Copy.getPointer());
    421     }
    422     return *this;
    423   }
    424 
    425   /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS.
    426   SmallBitVector &reset(const SmallBitVector &RHS) {
    427     if (isSmall() && RHS.isSmall())
    428       setSmallBits(getSmallBits() & ~RHS.getSmallBits());
    429     else if (!isSmall() && !RHS.isSmall())
    430       getPointer()->reset(*RHS.getPointer());
    431     else
    432       for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
    433         if (RHS.test(i))
    434           reset(i);
    435 
    436     return *this;
    437   }
    438 
    439   /// test - Check if (This - RHS) is zero.
    440   /// This is the same as reset(RHS) and any().
    441   bool test(const SmallBitVector &RHS) const {
    442     if (isSmall() && RHS.isSmall())
    443       return (getSmallBits() & ~RHS.getSmallBits()) != 0;
    444     if (!isSmall() && !RHS.isSmall())
    445       return getPointer()->test(*RHS.getPointer());
    446 
    447     unsigned i, e;
    448     for (i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
    449       if (test(i) && !RHS.test(i))
    450         return true;
    451 
    452     for (e = size(); i != e; ++i)
    453       if (test(i))
    454         return true;
    455 
    456     return false;
    457   }
    458 
    459   SmallBitVector &operator|=(const SmallBitVector &RHS) {
    460     resize(std::max(size(), RHS.size()));
    461     if (isSmall())
    462       setSmallBits(getSmallBits() | RHS.getSmallBits());
    463     else if (!RHS.isSmall())
    464       getPointer()->operator|=(*RHS.getPointer());
    465     else {
    466       SmallBitVector Copy = RHS;
    467       Copy.resize(size());
    468       getPointer()->operator|=(*Copy.getPointer());
    469     }
    470     return *this;
    471   }
    472 
    473   SmallBitVector &operator^=(const SmallBitVector &RHS) {
    474     resize(std::max(size(), RHS.size()));
    475     if (isSmall())
    476       setSmallBits(getSmallBits() ^ RHS.getSmallBits());
    477     else if (!RHS.isSmall())
    478       getPointer()->operator^=(*RHS.getPointer());
    479     else {
    480       SmallBitVector Copy = RHS;
    481       Copy.resize(size());
    482       getPointer()->operator^=(*Copy.getPointer());
    483     }
    484     return *this;
    485   }
    486 
    487   // Assignment operator.
    488   const SmallBitVector &operator=(const SmallBitVector &RHS) {
    489     if (isSmall()) {
    490       if (RHS.isSmall())
    491         X = RHS.X;
    492       else
    493         switchToLarge(new BitVector(*RHS.getPointer()));
    494     } else {
    495       if (!RHS.isSmall())
    496         *getPointer() = *RHS.getPointer();
    497       else {
    498         delete getPointer();
    499         X = RHS.X;
    500       }
    501     }
    502     return *this;
    503   }
    504 
    505   const SmallBitVector &operator=(SmallBitVector &&RHS) {
    506     if (this != &RHS) {
    507       clear();
    508       swap(RHS);
    509     }
    510     return *this;
    511   }
    512 
    513   void swap(SmallBitVector &RHS) {
    514     std::swap(X, RHS.X);
    515   }
    516 
    517   /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize.
    518   /// This computes "*this |= Mask".
    519   void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    520     if (isSmall())
    521       applyMask<true, false>(Mask, MaskWords);
    522     else
    523       getPointer()->setBitsInMask(Mask, MaskWords);
    524   }
    525 
    526   /// clearBitsInMask - Clear any bits in this vector that are set in Mask.
    527   /// Don't resize. This computes "*this &= ~Mask".
    528   void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    529     if (isSmall())
    530       applyMask<false, false>(Mask, MaskWords);
    531     else
    532       getPointer()->clearBitsInMask(Mask, MaskWords);
    533   }
    534 
    535   /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask.
    536   /// Don't resize.  This computes "*this |= ~Mask".
    537   void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    538     if (isSmall())
    539       applyMask<true, true>(Mask, MaskWords);
    540     else
    541       getPointer()->setBitsNotInMask(Mask, MaskWords);
    542   }
    543 
    544   /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask.
    545   /// Don't resize.  This computes "*this &= Mask".
    546   void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
    547     if (isSmall())
    548       applyMask<false, true>(Mask, MaskWords);
    549     else
    550       getPointer()->clearBitsNotInMask(Mask, MaskWords);
    551   }
    552 
    553 private:
    554   template <bool AddBits, bool InvertMask>
    555   void applyMask(const uint32_t *Mask, unsigned MaskWords) {
    556     assert(MaskWords <= sizeof(uintptr_t) && "Mask is larger than base!");
    557     uintptr_t M = Mask[0];
    558     if (NumBaseBits == 64)
    559       M |= uint64_t(Mask[1]) << 32;
    560     if (InvertMask)
    561       M = ~M;
    562     if (AddBits)
    563       setSmallBits(getSmallBits() | M);
    564     else
    565       setSmallBits(getSmallBits() & ~M);
    566   }
    567 };
    568 
    569 inline SmallBitVector
    570 operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) {
    571   SmallBitVector Result(LHS);
    572   Result &= RHS;
    573   return Result;
    574 }
    575 
    576 inline SmallBitVector
    577 operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) {
    578   SmallBitVector Result(LHS);
    579   Result |= RHS;
    580   return Result;
    581 }
    582 
    583 inline SmallBitVector
    584 operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) {
    585   SmallBitVector Result(LHS);
    586   Result ^= RHS;
    587   return Result;
    588 }
    589 
    590 } // End llvm namespace
    591 
    592 namespace std {
    593   /// Implement std::swap in terms of BitVector swap.
    594   inline void
    595   swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) {
    596     LHS.swap(RHS);
    597   }
    598 }
    599 
    600 #endif
    601