1 //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the ValueEnumerator class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/UseListOrder.h" 23 #include "llvm/IR/ValueSymbolTable.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 using namespace llvm; 28 29 namespace { 30 struct OrderMap { 31 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 32 unsigned LastGlobalConstantID; 33 unsigned LastGlobalValueID; 34 35 OrderMap() : LastGlobalConstantID(0), LastGlobalValueID(0) {} 36 37 bool isGlobalConstant(unsigned ID) const { 38 return ID <= LastGlobalConstantID; 39 } 40 bool isGlobalValue(unsigned ID) const { 41 return ID <= LastGlobalValueID && !isGlobalConstant(ID); 42 } 43 44 unsigned size() const { return IDs.size(); } 45 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 46 std::pair<unsigned, bool> lookup(const Value *V) const { 47 return IDs.lookup(V); 48 } 49 void index(const Value *V) { 50 // Explicitly sequence get-size and insert-value operations to avoid UB. 51 unsigned ID = IDs.size() + 1; 52 IDs[V].first = ID; 53 } 54 }; 55 } 56 57 static void orderValue(const Value *V, OrderMap &OM) { 58 if (OM.lookup(V).first) 59 return; 60 61 if (const Constant *C = dyn_cast<Constant>(V)) 62 if (C->getNumOperands() && !isa<GlobalValue>(C)) 63 for (const Value *Op : C->operands()) 64 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 65 orderValue(Op, OM); 66 67 // Note: we cannot cache this lookup above, since inserting into the map 68 // changes the map's size, and thus affects the other IDs. 69 OM.index(V); 70 } 71 72 static OrderMap orderModule(const Module &M) { 73 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 74 // and ValueEnumerator::incorporateFunction(). 75 OrderMap OM; 76 77 // In the reader, initializers of GlobalValues are set *after* all the 78 // globals have been read. Rather than awkwardly modeling this behaviour 79 // directly in predictValueUseListOrderImpl(), just assign IDs to 80 // initializers of GlobalValues before GlobalValues themselves to model this 81 // implicitly. 82 for (const GlobalVariable &G : M.globals()) 83 if (G.hasInitializer()) 84 if (!isa<GlobalValue>(G.getInitializer())) 85 orderValue(G.getInitializer(), OM); 86 for (const GlobalAlias &A : M.aliases()) 87 if (!isa<GlobalValue>(A.getAliasee())) 88 orderValue(A.getAliasee(), OM); 89 for (const Function &F : M) { 90 for (const Use &U : F.operands()) 91 if (!isa<GlobalValue>(U.get())) 92 orderValue(U.get(), OM); 93 } 94 OM.LastGlobalConstantID = OM.size(); 95 96 // Initializers of GlobalValues are processed in 97 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather 98 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() 99 // by giving IDs in reverse order. 100 // 101 // Since GlobalValues never reference each other directly (just through 102 // initializers), their relative IDs only matter for determining order of 103 // uses in their initializers. 104 for (const Function &F : M) 105 orderValue(&F, OM); 106 for (const GlobalAlias &A : M.aliases()) 107 orderValue(&A, OM); 108 for (const GlobalVariable &G : M.globals()) 109 orderValue(&G, OM); 110 OM.LastGlobalValueID = OM.size(); 111 112 for (const Function &F : M) { 113 if (F.isDeclaration()) 114 continue; 115 // Here we need to match the union of ValueEnumerator::incorporateFunction() 116 // and WriteFunction(). Basic blocks are implicitly declared before 117 // anything else (by declaring their size). 118 for (const BasicBlock &BB : F) 119 orderValue(&BB, OM); 120 for (const Argument &A : F.args()) 121 orderValue(&A, OM); 122 for (const BasicBlock &BB : F) 123 for (const Instruction &I : BB) 124 for (const Value *Op : I.operands()) 125 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 126 isa<InlineAsm>(*Op)) 127 orderValue(Op, OM); 128 for (const BasicBlock &BB : F) 129 for (const Instruction &I : BB) 130 orderValue(&I, OM); 131 } 132 return OM; 133 } 134 135 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 136 unsigned ID, const OrderMap &OM, 137 UseListOrderStack &Stack) { 138 // Predict use-list order for this one. 139 typedef std::pair<const Use *, unsigned> Entry; 140 SmallVector<Entry, 64> List; 141 for (const Use &U : V->uses()) 142 // Check if this user will be serialized. 143 if (OM.lookup(U.getUser()).first) 144 List.push_back(std::make_pair(&U, List.size())); 145 146 if (List.size() < 2) 147 // We may have lost some users. 148 return; 149 150 bool IsGlobalValue = OM.isGlobalValue(ID); 151 std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) { 152 const Use *LU = L.first; 153 const Use *RU = R.first; 154 if (LU == RU) 155 return false; 156 157 auto LID = OM.lookup(LU->getUser()).first; 158 auto RID = OM.lookup(RU->getUser()).first; 159 160 // Global values are processed in reverse order. 161 // 162 // Moreover, initializers of GlobalValues are set *after* all the globals 163 // have been read (despite having earlier IDs). Rather than awkwardly 164 // modeling this behaviour here, orderModule() has assigned IDs to 165 // initializers of GlobalValues before GlobalValues themselves. 166 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) 167 return LID < RID; 168 169 // If ID is 4, then expect: 7 6 5 1 2 3. 170 if (LID < RID) { 171 if (RID <= ID) 172 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 173 return true; 174 return false; 175 } 176 if (RID < LID) { 177 if (LID <= ID) 178 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 179 return false; 180 return true; 181 } 182 183 // LID and RID are equal, so we have different operands of the same user. 184 // Assume operands are added in order for all instructions. 185 if (LID <= ID) 186 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 187 return LU->getOperandNo() < RU->getOperandNo(); 188 return LU->getOperandNo() > RU->getOperandNo(); 189 }); 190 191 if (std::is_sorted( 192 List.begin(), List.end(), 193 [](const Entry &L, const Entry &R) { return L.second < R.second; })) 194 // Order is already correct. 195 return; 196 197 // Store the shuffle. 198 Stack.emplace_back(V, F, List.size()); 199 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 200 for (size_t I = 0, E = List.size(); I != E; ++I) 201 Stack.back().Shuffle[I] = List[I].second; 202 } 203 204 static void predictValueUseListOrder(const Value *V, const Function *F, 205 OrderMap &OM, UseListOrderStack &Stack) { 206 auto &IDPair = OM[V]; 207 assert(IDPair.first && "Unmapped value"); 208 if (IDPair.second) 209 // Already predicted. 210 return; 211 212 // Do the actual prediction. 213 IDPair.second = true; 214 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 215 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 216 217 // Recursive descent into constants. 218 if (const Constant *C = dyn_cast<Constant>(V)) 219 if (C->getNumOperands()) // Visit GlobalValues. 220 for (const Value *Op : C->operands()) 221 if (isa<Constant>(Op)) // Visit GlobalValues. 222 predictValueUseListOrder(Op, F, OM, Stack); 223 } 224 225 static UseListOrderStack predictUseListOrder(const Module &M) { 226 OrderMap OM = orderModule(M); 227 228 // Use-list orders need to be serialized after all the users have been added 229 // to a value, or else the shuffles will be incomplete. Store them per 230 // function in a stack. 231 // 232 // Aside from function order, the order of values doesn't matter much here. 233 UseListOrderStack Stack; 234 235 // We want to visit the functions backward now so we can list function-local 236 // constants in the last Function they're used in. Module-level constants 237 // have already been visited above. 238 for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) { 239 const Function &F = *I; 240 if (F.isDeclaration()) 241 continue; 242 for (const BasicBlock &BB : F) 243 predictValueUseListOrder(&BB, &F, OM, Stack); 244 for (const Argument &A : F.args()) 245 predictValueUseListOrder(&A, &F, OM, Stack); 246 for (const BasicBlock &BB : F) 247 for (const Instruction &I : BB) 248 for (const Value *Op : I.operands()) 249 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 250 predictValueUseListOrder(Op, &F, OM, Stack); 251 for (const BasicBlock &BB : F) 252 for (const Instruction &I : BB) 253 predictValueUseListOrder(&I, &F, OM, Stack); 254 } 255 256 // Visit globals last, since the module-level use-list block will be seen 257 // before the function bodies are processed. 258 for (const GlobalVariable &G : M.globals()) 259 predictValueUseListOrder(&G, nullptr, OM, Stack); 260 for (const Function &F : M) 261 predictValueUseListOrder(&F, nullptr, OM, Stack); 262 for (const GlobalAlias &A : M.aliases()) 263 predictValueUseListOrder(&A, nullptr, OM, Stack); 264 for (const GlobalVariable &G : M.globals()) 265 if (G.hasInitializer()) 266 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 267 for (const GlobalAlias &A : M.aliases()) 268 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 269 for (const Function &F : M) { 270 for (const Use &U : F.operands()) 271 predictValueUseListOrder(U.get(), nullptr, OM, Stack); 272 } 273 274 return Stack; 275 } 276 277 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { 278 return V.first->getType()->isIntOrIntVectorTy(); 279 } 280 281 ValueEnumerator::ValueEnumerator(const Module &M, 282 bool ShouldPreserveUseListOrder) 283 : HasMDString(false), HasDILocation(false), HasGenericDINode(false), 284 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 285 if (ShouldPreserveUseListOrder) 286 UseListOrders = predictUseListOrder(M); 287 288 // Enumerate the global variables. 289 for (const GlobalVariable &GV : M.globals()) 290 EnumerateValue(&GV); 291 292 // Enumerate the functions. 293 for (const Function & F : M) { 294 EnumerateValue(&F); 295 EnumerateAttributes(F.getAttributes()); 296 } 297 298 // Enumerate the aliases. 299 for (const GlobalAlias &GA : M.aliases()) 300 EnumerateValue(&GA); 301 302 // Remember what is the cutoff between globalvalue's and other constants. 303 unsigned FirstConstant = Values.size(); 304 305 // Enumerate the global variable initializers. 306 for (const GlobalVariable &GV : M.globals()) 307 if (GV.hasInitializer()) 308 EnumerateValue(GV.getInitializer()); 309 310 // Enumerate the aliasees. 311 for (const GlobalAlias &GA : M.aliases()) 312 EnumerateValue(GA.getAliasee()); 313 314 // Enumerate any optional Function data. 315 for (const Function &F : M) 316 for (const Use &U : F.operands()) 317 EnumerateValue(U.get()); 318 319 // Enumerate the metadata type. 320 // 321 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode 322 // only encodes the metadata type when it's used as a value. 323 EnumerateType(Type::getMetadataTy(M.getContext())); 324 325 // Insert constants and metadata that are named at module level into the slot 326 // pool so that the module symbol table can refer to them... 327 EnumerateValueSymbolTable(M.getValueSymbolTable()); 328 EnumerateNamedMetadata(M); 329 330 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 331 332 // Enumerate types used by function bodies and argument lists. 333 for (const Function &F : M) { 334 for (const Argument &A : F.args()) 335 EnumerateType(A.getType()); 336 337 // Enumerate metadata attached to this function. 338 F.getAllMetadata(MDs); 339 for (const auto &I : MDs) 340 EnumerateMetadata(I.second); 341 342 for (const BasicBlock &BB : F) 343 for (const Instruction &I : BB) { 344 for (const Use &Op : I.operands()) { 345 auto *MD = dyn_cast<MetadataAsValue>(&Op); 346 if (!MD) { 347 EnumerateOperandType(Op); 348 continue; 349 } 350 351 // Local metadata is enumerated during function-incorporation. 352 if (isa<LocalAsMetadata>(MD->getMetadata())) 353 continue; 354 355 EnumerateMetadata(MD->getMetadata()); 356 } 357 EnumerateType(I.getType()); 358 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 359 EnumerateAttributes(CI->getAttributes()); 360 else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) 361 EnumerateAttributes(II->getAttributes()); 362 363 // Enumerate metadata attached with this instruction. 364 MDs.clear(); 365 I.getAllMetadataOtherThanDebugLoc(MDs); 366 for (unsigned i = 0, e = MDs.size(); i != e; ++i) 367 EnumerateMetadata(MDs[i].second); 368 369 // Don't enumerate the location directly -- it has a special record 370 // type -- but enumerate its operands. 371 if (DILocation *L = I.getDebugLoc()) 372 EnumerateMDNodeOperands(L); 373 } 374 } 375 376 // Optimize constant ordering. 377 OptimizeConstants(FirstConstant, Values.size()); 378 } 379 380 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { 381 InstructionMapType::const_iterator I = InstructionMap.find(Inst); 382 assert(I != InstructionMap.end() && "Instruction is not mapped!"); 383 return I->second; 384 } 385 386 unsigned ValueEnumerator::getComdatID(const Comdat *C) const { 387 unsigned ComdatID = Comdats.idFor(C); 388 assert(ComdatID && "Comdat not found!"); 389 return ComdatID; 390 } 391 392 void ValueEnumerator::setInstructionID(const Instruction *I) { 393 InstructionMap[I] = InstructionCount++; 394 } 395 396 unsigned ValueEnumerator::getValueID(const Value *V) const { 397 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 398 return getMetadataID(MD->getMetadata()); 399 400 ValueMapType::const_iterator I = ValueMap.find(V); 401 assert(I != ValueMap.end() && "Value not in slotcalculator!"); 402 return I->second-1; 403 } 404 405 void ValueEnumerator::dump() const { 406 print(dbgs(), ValueMap, "Default"); 407 dbgs() << '\n'; 408 print(dbgs(), MDValueMap, "MetaData"); 409 dbgs() << '\n'; 410 } 411 412 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, 413 const char *Name) const { 414 415 OS << "Map Name: " << Name << "\n"; 416 OS << "Size: " << Map.size() << "\n"; 417 for (ValueMapType::const_iterator I = Map.begin(), 418 E = Map.end(); I != E; ++I) { 419 420 const Value *V = I->first; 421 if (V->hasName()) 422 OS << "Value: " << V->getName(); 423 else 424 OS << "Value: [null]\n"; 425 V->dump(); 426 427 OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):"; 428 for (const Use &U : V->uses()) { 429 if (&U != &*V->use_begin()) 430 OS << ","; 431 if(U->hasName()) 432 OS << " " << U->getName(); 433 else 434 OS << " [null]"; 435 436 } 437 OS << "\n\n"; 438 } 439 } 440 441 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, 442 const char *Name) const { 443 444 OS << "Map Name: " << Name << "\n"; 445 OS << "Size: " << Map.size() << "\n"; 446 for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { 447 const Metadata *MD = I->first; 448 OS << "Metadata: slot = " << I->second << "\n"; 449 MD->print(OS); 450 } 451 } 452 453 /// OptimizeConstants - Reorder constant pool for denser encoding. 454 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { 455 if (CstStart == CstEnd || CstStart+1 == CstEnd) return; 456 457 if (ShouldPreserveUseListOrder) 458 // Optimizing constants makes the use-list order difficult to predict. 459 // Disable it for now when trying to preserve the order. 460 return; 461 462 std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, 463 [this](const std::pair<const Value *, unsigned> &LHS, 464 const std::pair<const Value *, unsigned> &RHS) { 465 // Sort by plane. 466 if (LHS.first->getType() != RHS.first->getType()) 467 return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType()); 468 // Then by frequency. 469 return LHS.second > RHS.second; 470 }); 471 472 // Ensure that integer and vector of integer constants are at the start of the 473 // constant pool. This is important so that GEP structure indices come before 474 // gep constant exprs. 475 std::partition(Values.begin()+CstStart, Values.begin()+CstEnd, 476 isIntOrIntVectorValue); 477 478 // Rebuild the modified portion of ValueMap. 479 for (; CstStart != CstEnd; ++CstStart) 480 ValueMap[Values[CstStart].first] = CstStart+1; 481 } 482 483 484 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol 485 /// table into the values table. 486 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { 487 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 488 VI != VE; ++VI) 489 EnumerateValue(VI->getValue()); 490 } 491 492 /// Insert all of the values referenced by named metadata in the specified 493 /// module. 494 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { 495 for (const auto &I : M.named_metadata()) 496 EnumerateNamedMDNode(&I); 497 } 498 499 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { 500 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) 501 EnumerateMetadata(MD->getOperand(i)); 502 } 503 504 /// EnumerateMDNodeOperands - Enumerate all non-function-local values 505 /// and types referenced by the given MDNode. 506 void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) { 507 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 508 Metadata *MD = N->getOperand(i); 509 if (!MD) 510 continue; 511 assert(!isa<LocalAsMetadata>(MD) && "MDNodes cannot be function-local"); 512 EnumerateMetadata(MD); 513 } 514 } 515 516 void ValueEnumerator::EnumerateMetadata(const Metadata *MD) { 517 assert( 518 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && 519 "Invalid metadata kind"); 520 521 // Insert a dummy ID to block the co-recursive call to 522 // EnumerateMDNodeOperands() from re-visiting MD in a cyclic graph. 523 // 524 // Return early if there's already an ID. 525 if (!MDValueMap.insert(std::make_pair(MD, 0)).second) 526 return; 527 528 // Visit operands first to minimize RAUW. 529 if (auto *N = dyn_cast<MDNode>(MD)) 530 EnumerateMDNodeOperands(N); 531 else if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) 532 EnumerateValue(C->getValue()); 533 534 HasMDString |= isa<MDString>(MD); 535 HasDILocation |= isa<DILocation>(MD); 536 HasGenericDINode |= isa<GenericDINode>(MD); 537 538 // Replace the dummy ID inserted above with the correct one. MDValueMap may 539 // have changed by inserting operands, so we need a fresh lookup here. 540 MDs.push_back(MD); 541 MDValueMap[MD] = MDs.size(); 542 } 543 544 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata 545 /// information reachable from the metadata. 546 void ValueEnumerator::EnumerateFunctionLocalMetadata( 547 const LocalAsMetadata *Local) { 548 // Check to see if it's already in! 549 unsigned &MDValueID = MDValueMap[Local]; 550 if (MDValueID) 551 return; 552 553 MDs.push_back(Local); 554 MDValueID = MDs.size(); 555 556 EnumerateValue(Local->getValue()); 557 558 // Also, collect all function-local metadata for easy access. 559 FunctionLocalMDs.push_back(Local); 560 } 561 562 void ValueEnumerator::EnumerateValue(const Value *V) { 563 assert(!V->getType()->isVoidTy() && "Can't insert void values!"); 564 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); 565 566 // Check to see if it's already in! 567 unsigned &ValueID = ValueMap[V]; 568 if (ValueID) { 569 // Increment use count. 570 Values[ValueID-1].second++; 571 return; 572 } 573 574 if (auto *GO = dyn_cast<GlobalObject>(V)) 575 if (const Comdat *C = GO->getComdat()) 576 Comdats.insert(C); 577 578 // Enumerate the type of this value. 579 EnumerateType(V->getType()); 580 581 if (const Constant *C = dyn_cast<Constant>(V)) { 582 if (isa<GlobalValue>(C)) { 583 // Initializers for globals are handled explicitly elsewhere. 584 } else if (C->getNumOperands()) { 585 // If a constant has operands, enumerate them. This makes sure that if a 586 // constant has uses (for example an array of const ints), that they are 587 // inserted also. 588 589 // We prefer to enumerate them with values before we enumerate the user 590 // itself. This makes it more likely that we can avoid forward references 591 // in the reader. We know that there can be no cycles in the constants 592 // graph that don't go through a global variable. 593 for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); 594 I != E; ++I) 595 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. 596 EnumerateValue(*I); 597 598 // Finally, add the value. Doing this could make the ValueID reference be 599 // dangling, don't reuse it. 600 Values.push_back(std::make_pair(V, 1U)); 601 ValueMap[V] = Values.size(); 602 return; 603 } 604 } 605 606 // Add the value. 607 Values.push_back(std::make_pair(V, 1U)); 608 ValueID = Values.size(); 609 } 610 611 612 void ValueEnumerator::EnumerateType(Type *Ty) { 613 unsigned *TypeID = &TypeMap[Ty]; 614 615 // We've already seen this type. 616 if (*TypeID) 617 return; 618 619 // If it is a non-anonymous struct, mark the type as being visited so that we 620 // don't recursively visit it. This is safe because we allow forward 621 // references of these in the bitcode reader. 622 if (StructType *STy = dyn_cast<StructType>(Ty)) 623 if (!STy->isLiteral()) 624 *TypeID = ~0U; 625 626 // Enumerate all of the subtypes before we enumerate this type. This ensures 627 // that the type will be enumerated in an order that can be directly built. 628 for (Type *SubTy : Ty->subtypes()) 629 EnumerateType(SubTy); 630 631 // Refresh the TypeID pointer in case the table rehashed. 632 TypeID = &TypeMap[Ty]; 633 634 // Check to see if we got the pointer another way. This can happen when 635 // enumerating recursive types that hit the base case deeper than they start. 636 // 637 // If this is actually a struct that we are treating as forward ref'able, 638 // then emit the definition now that all of its contents are available. 639 if (*TypeID && *TypeID != ~0U) 640 return; 641 642 // Add this type now that its contents are all happily enumerated. 643 Types.push_back(Ty); 644 645 *TypeID = Types.size(); 646 } 647 648 // Enumerate the types for the specified value. If the value is a constant, 649 // walk through it, enumerating the types of the constant. 650 void ValueEnumerator::EnumerateOperandType(const Value *V) { 651 EnumerateType(V->getType()); 652 653 if (auto *MD = dyn_cast<MetadataAsValue>(V)) { 654 assert(!isa<LocalAsMetadata>(MD->getMetadata()) && 655 "Function-local metadata should be left for later"); 656 657 EnumerateMetadata(MD->getMetadata()); 658 return; 659 } 660 661 const Constant *C = dyn_cast<Constant>(V); 662 if (!C) 663 return; 664 665 // If this constant is already enumerated, ignore it, we know its type must 666 // be enumerated. 667 if (ValueMap.count(C)) 668 return; 669 670 // This constant may have operands, make sure to enumerate the types in 671 // them. 672 for (const Value *Op : C->operands()) { 673 // Don't enumerate basic blocks here, this happens as operands to 674 // blockaddress. 675 if (isa<BasicBlock>(Op)) 676 continue; 677 678 EnumerateOperandType(Op); 679 } 680 } 681 682 void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) { 683 if (PAL.isEmpty()) return; // null is always 0. 684 685 // Do a lookup. 686 unsigned &Entry = AttributeMap[PAL]; 687 if (Entry == 0) { 688 // Never saw this before, add it. 689 Attribute.push_back(PAL); 690 Entry = Attribute.size(); 691 } 692 693 // Do lookups for all attribute groups. 694 for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) { 695 AttributeSet AS = PAL.getSlotAttributes(i); 696 unsigned &Entry = AttributeGroupMap[AS]; 697 if (Entry == 0) { 698 AttributeGroups.push_back(AS); 699 Entry = AttributeGroups.size(); 700 } 701 } 702 } 703 704 void ValueEnumerator::incorporateFunction(const Function &F) { 705 InstructionCount = 0; 706 NumModuleValues = Values.size(); 707 NumModuleMDs = MDs.size(); 708 709 // Adding function arguments to the value table. 710 for (const auto &I : F.args()) 711 EnumerateValue(&I); 712 713 FirstFuncConstantID = Values.size(); 714 715 // Add all function-level constants to the value table. 716 for (const BasicBlock &BB : F) { 717 for (const Instruction &I : BB) 718 for (const Use &OI : I.operands()) { 719 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) 720 EnumerateValue(OI); 721 } 722 BasicBlocks.push_back(&BB); 723 ValueMap[&BB] = BasicBlocks.size(); 724 } 725 726 // Optimize the constant layout. 727 OptimizeConstants(FirstFuncConstantID, Values.size()); 728 729 // Add the function's parameter attributes so they are available for use in 730 // the function's instruction. 731 EnumerateAttributes(F.getAttributes()); 732 733 FirstInstID = Values.size(); 734 735 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; 736 // Add all of the instructions. 737 for (const BasicBlock &BB : F) { 738 for (const Instruction &I : BB) { 739 for (const Use &OI : I.operands()) { 740 if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) 741 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) 742 // Enumerate metadata after the instructions they might refer to. 743 FnLocalMDVector.push_back(Local); 744 } 745 746 if (!I.getType()->isVoidTy()) 747 EnumerateValue(&I); 748 } 749 } 750 751 // Add all of the function-local metadata. 752 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) 753 EnumerateFunctionLocalMetadata(FnLocalMDVector[i]); 754 } 755 756 void ValueEnumerator::purgeFunction() { 757 /// Remove purged values from the ValueMap. 758 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) 759 ValueMap.erase(Values[i].first); 760 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) 761 MDValueMap.erase(MDs[i]); 762 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) 763 ValueMap.erase(BasicBlocks[i]); 764 765 Values.resize(NumModuleValues); 766 MDs.resize(NumModuleMDs); 767 BasicBlocks.clear(); 768 FunctionLocalMDs.clear(); 769 } 770 771 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, 772 DenseMap<const BasicBlock*, unsigned> &IDMap) { 773 unsigned Counter = 0; 774 for (const BasicBlock &BB : *F) 775 IDMap[&BB] = ++Counter; 776 } 777 778 /// getGlobalBasicBlockID - This returns the function-specific ID for the 779 /// specified basic block. This is relatively expensive information, so it 780 /// should only be used by rare constructs such as address-of-label. 781 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { 782 unsigned &Idx = GlobalBasicBlockIDs[BB]; 783 if (Idx != 0) 784 return Idx-1; 785 786 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); 787 return getGlobalBasicBlockID(BB); 788 } 789 790 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { 791 return Log2_32_Ceil(getTypes().size() + 1); 792 } 793