Home | History | Annotate | Download | only in concurrent
      1 /*
      2  * Written by Doug Lea with assistance from members of JCP JSR-166
      3  * Expert Group and released to the public domain, as explained at
      4  * http://creativecommons.org/publicdomain/zero/1.0/
      5  */
      6 
      7 package java.util.concurrent;
      8 
      9 import java.util.concurrent.atomic.AtomicReference;
     10 import java.util.concurrent.locks.LockSupport;
     11 
     12 /**
     13  * A reusable synchronization barrier, similar in functionality to
     14  * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
     15  * {@link java.util.concurrent.CountDownLatch CountDownLatch}
     16  * but supporting more flexible usage.
     17  *
     18  * <p><b>Registration.</b> Unlike the case for other barriers, the
     19  * number of parties <em>registered</em> to synchronize on a phaser
     20  * may vary over time.  Tasks may be registered at any time (using
     21  * methods {@link #register}, {@link #bulkRegister}, or forms of
     22  * constructors establishing initial numbers of parties), and
     23  * optionally deregistered upon any arrival (using {@link
     24  * #arriveAndDeregister}).  As is the case with most basic
     25  * synchronization constructs, registration and deregistration affect
     26  * only internal counts; they do not establish any further internal
     27  * bookkeeping, so tasks cannot query whether they are registered.
     28  * (However, you can introduce such bookkeeping by subclassing this
     29  * class.)
     30  *
     31  * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
     32  * Phaser} may be repeatedly awaited.  Method {@link
     33  * #arriveAndAwaitAdvance} has effect analogous to {@link
     34  * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
     35  * generation of a phaser has an associated phase number. The phase
     36  * number starts at zero, and advances when all parties arrive at the
     37  * phaser, wrapping around to zero after reaching {@code
     38  * Integer.MAX_VALUE}. The use of phase numbers enables independent
     39  * control of actions upon arrival at a phaser and upon awaiting
     40  * others, via two kinds of methods that may be invoked by any
     41  * registered party:
     42  *
     43  * <ul>
     44  *
     45  *   <li><b>Arrival.</b> Methods {@link #arrive} and
     46  *       {@link #arriveAndDeregister} record arrival.  These methods
     47  *       do not block, but return an associated <em>arrival phase
     48  *       number</em>; that is, the phase number of the phaser to which
     49  *       the arrival applied. When the final party for a given phase
     50  *       arrives, an optional action is performed and the phase
     51  *       advances.  These actions are performed by the party
     52  *       triggering a phase advance, and are arranged by overriding
     53  *       method {@link #onAdvance(int, int)}, which also controls
     54  *       termination. Overriding this method is similar to, but more
     55  *       flexible than, providing a barrier action to a {@code
     56  *       CyclicBarrier}.
     57  *
     58  *   <li><b>Waiting.</b> Method {@link #awaitAdvance} requires an
     59  *       argument indicating an arrival phase number, and returns when
     60  *       the phaser advances to (or is already at) a different phase.
     61  *       Unlike similar constructions using {@code CyclicBarrier},
     62  *       method {@code awaitAdvance} continues to wait even if the
     63  *       waiting thread is interrupted. Interruptible and timeout
     64  *       versions are also available, but exceptions encountered while
     65  *       tasks wait interruptibly or with timeout do not change the
     66  *       state of the phaser. If necessary, you can perform any
     67  *       associated recovery within handlers of those exceptions,
     68  *       often after invoking {@code forceTermination}.  Phasers may
     69  *       also be used by tasks executing in a {@link ForkJoinPool}.
     70  *       Progress is ensured if the pool's parallelismLevel can
     71  *       accommodate the maximum number of simultaneously blocked
     72  *       parties.
     73  *
     74  * </ul>
     75  *
     76  * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
     77  * state, that may be checked using method {@link #isTerminated}. Upon
     78  * termination, all synchronization methods immediately return without
     79  * waiting for advance, as indicated by a negative return value.
     80  * Similarly, attempts to register upon termination have no effect.
     81  * Termination is triggered when an invocation of {@code onAdvance}
     82  * returns {@code true}. The default implementation returns {@code
     83  * true} if a deregistration has caused the number of registered
     84  * parties to become zero.  As illustrated below, when phasers control
     85  * actions with a fixed number of iterations, it is often convenient
     86  * to override this method to cause termination when the current phase
     87  * number reaches a threshold. Method {@link #forceTermination} is
     88  * also available to abruptly release waiting threads and allow them
     89  * to terminate.
     90  *
     91  * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
     92  * constructed in tree structures) to reduce contention. Phasers with
     93  * large numbers of parties that would otherwise experience heavy
     94  * synchronization contention costs may instead be set up so that
     95  * groups of sub-phasers share a common parent.  This may greatly
     96  * increase throughput even though it incurs greater per-operation
     97  * overhead.
     98  *
     99  * <p>In a tree of tiered phasers, registration and deregistration of
    100  * child phasers with their parent are managed automatically.
    101  * Whenever the number of registered parties of a child phaser becomes
    102  * non-zero (as established in the {@link #Phaser(Phaser,int)}
    103  * constructor, {@link #register}, or {@link #bulkRegister}), the
    104  * child phaser is registered with its parent.  Whenever the number of
    105  * registered parties becomes zero as the result of an invocation of
    106  * {@link #arriveAndDeregister}, the child phaser is deregistered
    107  * from its parent.
    108  *
    109  * <p><b>Monitoring.</b> While synchronization methods may be invoked
    110  * only by registered parties, the current state of a phaser may be
    111  * monitored by any caller.  At any given moment there are {@link
    112  * #getRegisteredParties} parties in total, of which {@link
    113  * #getArrivedParties} have arrived at the current phase ({@link
    114  * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
    115  * parties arrive, the phase advances.  The values returned by these
    116  * methods may reflect transient states and so are not in general
    117  * useful for synchronization control.  Method {@link #toString}
    118  * returns snapshots of these state queries in a form convenient for
    119  * informal monitoring.
    120  *
    121  * <p><b>Sample usages:</b>
    122  *
    123  * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
    124  * to control a one-shot action serving a variable number of parties.
    125  * The typical idiom is for the method setting this up to first
    126  * register, then start the actions, then deregister, as in:
    127  *
    128  * <pre> {@code
    129  * void runTasks(List<Runnable> tasks) {
    130  *   final Phaser phaser = new Phaser(1); // "1" to register self
    131  *   // create and start threads
    132  *   for (final Runnable task : tasks) {
    133  *     phaser.register();
    134  *     new Thread() {
    135  *       public void run() {
    136  *         phaser.arriveAndAwaitAdvance(); // await all creation
    137  *         task.run();
    138  *       }
    139  *     }.start();
    140  *   }
    141  *
    142  *   // allow threads to start and deregister self
    143  *   phaser.arriveAndDeregister();
    144  * }}</pre>
    145  *
    146  * <p>One way to cause a set of threads to repeatedly perform actions
    147  * for a given number of iterations is to override {@code onAdvance}:
    148  *
    149  * <pre> {@code
    150  * void startTasks(List<Runnable> tasks, final int iterations) {
    151  *   final Phaser phaser = new Phaser() {
    152  *     protected boolean onAdvance(int phase, int registeredParties) {
    153  *       return phase >= iterations || registeredParties == 0;
    154  *     }
    155  *   };
    156  *   phaser.register();
    157  *   for (final Runnable task : tasks) {
    158  *     phaser.register();
    159  *     new Thread() {
    160  *       public void run() {
    161  *         do {
    162  *           task.run();
    163  *           phaser.arriveAndAwaitAdvance();
    164  *         } while (!phaser.isTerminated());
    165  *       }
    166  *     }.start();
    167  *   }
    168  *   phaser.arriveAndDeregister(); // deregister self, don't wait
    169  * }}</pre>
    170  *
    171  * If the main task must later await termination, it
    172  * may re-register and then execute a similar loop:
    173  * <pre> {@code
    174  *   // ...
    175  *   phaser.register();
    176  *   while (!phaser.isTerminated())
    177  *     phaser.arriveAndAwaitAdvance();}</pre>
    178  *
    179  * <p>Related constructions may be used to await particular phase numbers
    180  * in contexts where you are sure that the phase will never wrap around
    181  * {@code Integer.MAX_VALUE}. For example:
    182  *
    183  * <pre> {@code
    184  * void awaitPhase(Phaser phaser, int phase) {
    185  *   int p = phaser.register(); // assumes caller not already registered
    186  *   while (p < phase) {
    187  *     if (phaser.isTerminated())
    188  *       // ... deal with unexpected termination
    189  *     else
    190  *       p = phaser.arriveAndAwaitAdvance();
    191  *   }
    192  *   phaser.arriveAndDeregister();
    193  * }}</pre>
    194  *
    195  *
    196  * <p>To create a set of {@code n} tasks using a tree of phasers, you
    197  * could use code of the following form, assuming a Task class with a
    198  * constructor accepting a {@code Phaser} that it registers with upon
    199  * construction. After invocation of {@code build(new Task[n], 0, n,
    200  * new Phaser())}, these tasks could then be started, for example by
    201  * submitting to a pool:
    202  *
    203  * <pre> {@code
    204  * void build(Task[] tasks, int lo, int hi, Phaser ph) {
    205  *   if (hi - lo > TASKS_PER_PHASER) {
    206  *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
    207  *       int j = Math.min(i + TASKS_PER_PHASER, hi);
    208  *       build(tasks, i, j, new Phaser(ph));
    209  *     }
    210  *   } else {
    211  *     for (int i = lo; i < hi; ++i)
    212  *       tasks[i] = new Task(ph);
    213  *       // assumes new Task(ph) performs ph.register()
    214  *   }
    215  * }}</pre>
    216  *
    217  * The best value of {@code TASKS_PER_PHASER} depends mainly on
    218  * expected synchronization rates. A value as low as four may
    219  * be appropriate for extremely small per-phase task bodies (thus
    220  * high rates), or up to hundreds for extremely large ones.
    221  *
    222  * <p><b>Implementation notes</b>: This implementation restricts the
    223  * maximum number of parties to 65535. Attempts to register additional
    224  * parties result in {@code IllegalStateException}. However, you can and
    225  * should create tiered phasers to accommodate arbitrarily large sets
    226  * of participants.
    227  *
    228  * @since 1.7
    229  * @author Doug Lea
    230  */
    231 public class Phaser {
    232     /*
    233      * This class implements an extension of X10 "clocks".  Thanks to
    234      * Vijay Saraswat for the idea, and to Vivek Sarkar for
    235      * enhancements to extend functionality.
    236      */
    237 
    238     /**
    239      * Primary state representation, holding four bit-fields:
    240      *
    241      * unarrived  -- the number of parties yet to hit barrier (bits  0-15)
    242      * parties    -- the number of parties to wait            (bits 16-31)
    243      * phase      -- the generation of the barrier            (bits 32-62)
    244      * terminated -- set if barrier is terminated             (bit  63 / sign)
    245      *
    246      * Except that a phaser with no registered parties is
    247      * distinguished by the otherwise illegal state of having zero
    248      * parties and one unarrived parties (encoded as EMPTY below).
    249      *
    250      * To efficiently maintain atomicity, these values are packed into
    251      * a single (atomic) long. Good performance relies on keeping
    252      * state decoding and encoding simple, and keeping race windows
    253      * short.
    254      *
    255      * All state updates are performed via CAS except initial
    256      * registration of a sub-phaser (i.e., one with a non-null
    257      * parent).  In this (relatively rare) case, we use built-in
    258      * synchronization to lock while first registering with its
    259      * parent.
    260      *
    261      * The phase of a subphaser is allowed to lag that of its
    262      * ancestors until it is actually accessed -- see method
    263      * reconcileState.
    264      */
    265     private volatile long state;
    266 
    267     private static final int  MAX_PARTIES     = 0xffff;
    268     private static final int  MAX_PHASE       = Integer.MAX_VALUE;
    269     private static final int  PARTIES_SHIFT   = 16;
    270     private static final int  PHASE_SHIFT     = 32;
    271     private static final int  UNARRIVED_MASK  = 0xffff;      // to mask ints
    272     private static final long PARTIES_MASK    = 0xffff0000L; // to mask longs
    273     private static final long COUNTS_MASK     = 0xffffffffL;
    274     private static final long TERMINATION_BIT = 1L << 63;
    275 
    276     // some special values
    277     private static final int  ONE_ARRIVAL     = 1;
    278     private static final int  ONE_PARTY       = 1 << PARTIES_SHIFT;
    279     private static final int  ONE_DEREGISTER  = ONE_ARRIVAL|ONE_PARTY;
    280     private static final int  EMPTY           = 1;
    281 
    282     // The following unpacking methods are usually manually inlined
    283 
    284     private static int unarrivedOf(long s) {
    285         int counts = (int)s;
    286         return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
    287     }
    288 
    289     private static int partiesOf(long s) {
    290         return (int)s >>> PARTIES_SHIFT;
    291     }
    292 
    293     private static int phaseOf(long s) {
    294         return (int)(s >>> PHASE_SHIFT);
    295     }
    296 
    297     private static int arrivedOf(long s) {
    298         int counts = (int)s;
    299         return (counts == EMPTY) ? 0 :
    300             (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
    301     }
    302 
    303     /**
    304      * The parent of this phaser, or null if none.
    305      */
    306     private final Phaser parent;
    307 
    308     /**
    309      * The root of phaser tree. Equals this if not in a tree.
    310      */
    311     private final Phaser root;
    312 
    313     /**
    314      * Heads of Treiber stacks for waiting threads. To eliminate
    315      * contention when releasing some threads while adding others, we
    316      * use two of them, alternating across even and odd phases.
    317      * Subphasers share queues with root to speed up releases.
    318      */
    319     private final AtomicReference<QNode> evenQ;
    320     private final AtomicReference<QNode> oddQ;
    321 
    322     private AtomicReference<QNode> queueFor(int phase) {
    323         return ((phase & 1) == 0) ? evenQ : oddQ;
    324     }
    325 
    326     /**
    327      * Returns message string for bounds exceptions on arrival.
    328      */
    329     private String badArrive(long s) {
    330         return "Attempted arrival of unregistered party for " +
    331             stateToString(s);
    332     }
    333 
    334     /**
    335      * Returns message string for bounds exceptions on registration.
    336      */
    337     private String badRegister(long s) {
    338         return "Attempt to register more than " +
    339             MAX_PARTIES + " parties for " + stateToString(s);
    340     }
    341 
    342     /**
    343      * Main implementation for methods arrive and arriveAndDeregister.
    344      * Manually tuned to speed up and minimize race windows for the
    345      * common case of just decrementing unarrived field.
    346      *
    347      * @param adjust value to subtract from state;
    348      *               ONE_ARRIVAL for arrive,
    349      *               ONE_DEREGISTER for arriveAndDeregister
    350      */
    351     private int doArrive(int adjust) {
    352         final Phaser root = this.root;
    353         for (;;) {
    354             long s = (root == this) ? state : reconcileState();
    355             int phase = (int)(s >>> PHASE_SHIFT);
    356             if (phase < 0)
    357                 return phase;
    358             int counts = (int)s;
    359             int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
    360             if (unarrived <= 0)
    361                 throw new IllegalStateException(badArrive(s));
    362             if (U.compareAndSwapLong(this, STATE, s, s-=adjust)) {
    363                 if (unarrived == 1) {
    364                     long n = s & PARTIES_MASK;  // base of next state
    365                     int nextUnarrived = (int)n >>> PARTIES_SHIFT;
    366                     if (root == this) {
    367                         if (onAdvance(phase, nextUnarrived))
    368                             n |= TERMINATION_BIT;
    369                         else if (nextUnarrived == 0)
    370                             n |= EMPTY;
    371                         else
    372                             n |= nextUnarrived;
    373                         int nextPhase = (phase + 1) & MAX_PHASE;
    374                         n |= (long)nextPhase << PHASE_SHIFT;
    375                         U.compareAndSwapLong(this, STATE, s, n);
    376                         releaseWaiters(phase);
    377                     }
    378                     else if (nextUnarrived == 0) { // propagate deregistration
    379                         phase = parent.doArrive(ONE_DEREGISTER);
    380                         U.compareAndSwapLong(this, STATE, s, s | EMPTY);
    381                     }
    382                     else
    383                         phase = parent.doArrive(ONE_ARRIVAL);
    384                 }
    385                 return phase;
    386             }
    387         }
    388     }
    389 
    390     /**
    391      * Implementation of register, bulkRegister.
    392      *
    393      * @param registrations number to add to both parties and
    394      * unarrived fields. Must be greater than zero.
    395      */
    396     private int doRegister(int registrations) {
    397         // adjustment to state
    398         long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
    399         final Phaser parent = this.parent;
    400         int phase;
    401         for (;;) {
    402             long s = (parent == null) ? state : reconcileState();
    403             int counts = (int)s;
    404             int parties = counts >>> PARTIES_SHIFT;
    405             int unarrived = counts & UNARRIVED_MASK;
    406             if (registrations > MAX_PARTIES - parties)
    407                 throw new IllegalStateException(badRegister(s));
    408             phase = (int)(s >>> PHASE_SHIFT);
    409             if (phase < 0)
    410                 break;
    411             if (counts != EMPTY) {                  // not 1st registration
    412                 if (parent == null || reconcileState() == s) {
    413                     if (unarrived == 0)             // wait out advance
    414                         root.internalAwaitAdvance(phase, null);
    415                     else if (U.compareAndSwapLong(this, STATE, s, s + adjust))
    416                         break;
    417                 }
    418             }
    419             else if (parent == null) {              // 1st root registration
    420                 long next = ((long)phase << PHASE_SHIFT) | adjust;
    421                 if (U.compareAndSwapLong(this, STATE, s, next))
    422                     break;
    423             }
    424             else {
    425                 synchronized (this) {               // 1st sub registration
    426                     if (state == s) {               // recheck under lock
    427                         phase = parent.doRegister(1);
    428                         if (phase < 0)
    429                             break;
    430                         // finish registration whenever parent registration
    431                         // succeeded, even when racing with termination,
    432                         // since these are part of the same "transaction".
    433                         while (!U.compareAndSwapLong
    434                                (this, STATE, s,
    435                                 ((long)phase << PHASE_SHIFT) | adjust)) {
    436                             s = state;
    437                             phase = (int)(root.state >>> PHASE_SHIFT);
    438                             // assert (int)s == EMPTY;
    439                         }
    440                         break;
    441                     }
    442                 }
    443             }
    444         }
    445         return phase;
    446     }
    447 
    448     /**
    449      * Resolves lagged phase propagation from root if necessary.
    450      * Reconciliation normally occurs when root has advanced but
    451      * subphasers have not yet done so, in which case they must finish
    452      * their own advance by setting unarrived to parties (or if
    453      * parties is zero, resetting to unregistered EMPTY state).
    454      *
    455      * @return reconciled state
    456      */
    457     private long reconcileState() {
    458         final Phaser root = this.root;
    459         long s = state;
    460         if (root != this) {
    461             int phase, p;
    462             // CAS to root phase with current parties, tripping unarrived
    463             while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
    464                    (int)(s >>> PHASE_SHIFT) &&
    465                    !U.compareAndSwapLong
    466                    (this, STATE, s,
    467                     s = (((long)phase << PHASE_SHIFT) |
    468                          ((phase < 0) ? (s & COUNTS_MASK) :
    469                           (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
    470                            ((s & PARTIES_MASK) | p))))))
    471                 s = state;
    472         }
    473         return s;
    474     }
    475 
    476     /**
    477      * Creates a new phaser with no initially registered parties, no
    478      * parent, and initial phase number 0. Any thread using this
    479      * phaser will need to first register for it.
    480      */
    481     public Phaser() {
    482         this(null, 0);
    483     }
    484 
    485     /**
    486      * Creates a new phaser with the given number of registered
    487      * unarrived parties, no parent, and initial phase number 0.
    488      *
    489      * @param parties the number of parties required to advance to the
    490      * next phase
    491      * @throws IllegalArgumentException if parties less than zero
    492      * or greater than the maximum number of parties supported
    493      */
    494     public Phaser(int parties) {
    495         this(null, parties);
    496     }
    497 
    498     /**
    499      * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
    500      *
    501      * @param parent the parent phaser
    502      */
    503     public Phaser(Phaser parent) {
    504         this(parent, 0);
    505     }
    506 
    507     /**
    508      * Creates a new phaser with the given parent and number of
    509      * registered unarrived parties.  When the given parent is non-null
    510      * and the given number of parties is greater than zero, this
    511      * child phaser is registered with its parent.
    512      *
    513      * @param parent the parent phaser
    514      * @param parties the number of parties required to advance to the
    515      * next phase
    516      * @throws IllegalArgumentException if parties less than zero
    517      * or greater than the maximum number of parties supported
    518      */
    519     public Phaser(Phaser parent, int parties) {
    520         if (parties >>> PARTIES_SHIFT != 0)
    521             throw new IllegalArgumentException("Illegal number of parties");
    522         int phase = 0;
    523         this.parent = parent;
    524         if (parent != null) {
    525             final Phaser root = parent.root;
    526             this.root = root;
    527             this.evenQ = root.evenQ;
    528             this.oddQ = root.oddQ;
    529             if (parties != 0)
    530                 phase = parent.doRegister(1);
    531         }
    532         else {
    533             this.root = this;
    534             this.evenQ = new AtomicReference<QNode>();
    535             this.oddQ = new AtomicReference<QNode>();
    536         }
    537         this.state = (parties == 0) ? (long)EMPTY :
    538             ((long)phase << PHASE_SHIFT) |
    539             ((long)parties << PARTIES_SHIFT) |
    540             ((long)parties);
    541     }
    542 
    543     /**
    544      * Adds a new unarrived party to this phaser.  If an ongoing
    545      * invocation of {@link #onAdvance} is in progress, this method
    546      * may await its completion before returning.  If this phaser has
    547      * a parent, and this phaser previously had no registered parties,
    548      * this child phaser is also registered with its parent. If
    549      * this phaser is terminated, the attempt to register has
    550      * no effect, and a negative value is returned.
    551      *
    552      * @return the arrival phase number to which this registration
    553      * applied.  If this value is negative, then this phaser has
    554      * terminated, in which case registration has no effect.
    555      * @throws IllegalStateException if attempting to register more
    556      * than the maximum supported number of parties
    557      */
    558     public int register() {
    559         return doRegister(1);
    560     }
    561 
    562     /**
    563      * Adds the given number of new unarrived parties to this phaser.
    564      * If an ongoing invocation of {@link #onAdvance} is in progress,
    565      * this method may await its completion before returning.  If this
    566      * phaser has a parent, and the given number of parties is greater
    567      * than zero, and this phaser previously had no registered
    568      * parties, this child phaser is also registered with its parent.
    569      * If this phaser is terminated, the attempt to register has no
    570      * effect, and a negative value is returned.
    571      *
    572      * @param parties the number of additional parties required to
    573      * advance to the next phase
    574      * @return the arrival phase number to which this registration
    575      * applied.  If this value is negative, then this phaser has
    576      * terminated, in which case registration has no effect.
    577      * @throws IllegalStateException if attempting to register more
    578      * than the maximum supported number of parties
    579      * @throws IllegalArgumentException if {@code parties < 0}
    580      */
    581     public int bulkRegister(int parties) {
    582         if (parties < 0)
    583             throw new IllegalArgumentException();
    584         if (parties == 0)
    585             return getPhase();
    586         return doRegister(parties);
    587     }
    588 
    589     /**
    590      * Arrives at this phaser, without waiting for others to arrive.
    591      *
    592      * <p>It is a usage error for an unregistered party to invoke this
    593      * method.  However, this error may result in an {@code
    594      * IllegalStateException} only upon some subsequent operation on
    595      * this phaser, if ever.
    596      *
    597      * @return the arrival phase number, or a negative value if terminated
    598      * @throws IllegalStateException if not terminated and the number
    599      * of unarrived parties would become negative
    600      */
    601     public int arrive() {
    602         return doArrive(ONE_ARRIVAL);
    603     }
    604 
    605     /**
    606      * Arrives at this phaser and deregisters from it without waiting
    607      * for others to arrive. Deregistration reduces the number of
    608      * parties required to advance in future phases.  If this phaser
    609      * has a parent, and deregistration causes this phaser to have
    610      * zero parties, this phaser is also deregistered from its parent.
    611      *
    612      * <p>It is a usage error for an unregistered party to invoke this
    613      * method.  However, this error may result in an {@code
    614      * IllegalStateException} only upon some subsequent operation on
    615      * this phaser, if ever.
    616      *
    617      * @return the arrival phase number, or a negative value if terminated
    618      * @throws IllegalStateException if not terminated and the number
    619      * of registered or unarrived parties would become negative
    620      */
    621     public int arriveAndDeregister() {
    622         return doArrive(ONE_DEREGISTER);
    623     }
    624 
    625     /**
    626      * Arrives at this phaser and awaits others. Equivalent in effect
    627      * to {@code awaitAdvance(arrive())}.  If you need to await with
    628      * interruption or timeout, you can arrange this with an analogous
    629      * construction using one of the other forms of the {@code
    630      * awaitAdvance} method.  If instead you need to deregister upon
    631      * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
    632      *
    633      * <p>It is a usage error for an unregistered party to invoke this
    634      * method.  However, this error may result in an {@code
    635      * IllegalStateException} only upon some subsequent operation on
    636      * this phaser, if ever.
    637      *
    638      * @return the arrival phase number, or the (negative)
    639      * {@linkplain #getPhase() current phase} if terminated
    640      * @throws IllegalStateException if not terminated and the number
    641      * of unarrived parties would become negative
    642      */
    643     public int arriveAndAwaitAdvance() {
    644         // Specialization of doArrive+awaitAdvance eliminating some reads/paths
    645         final Phaser root = this.root;
    646         for (;;) {
    647             long s = (root == this) ? state : reconcileState();
    648             int phase = (int)(s >>> PHASE_SHIFT);
    649             if (phase < 0)
    650                 return phase;
    651             int counts = (int)s;
    652             int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
    653             if (unarrived <= 0)
    654                 throw new IllegalStateException(badArrive(s));
    655             if (U.compareAndSwapLong(this, STATE, s, s -= ONE_ARRIVAL)) {
    656                 if (unarrived > 1)
    657                     return root.internalAwaitAdvance(phase, null);
    658                 if (root != this)
    659                     return parent.arriveAndAwaitAdvance();
    660                 long n = s & PARTIES_MASK;  // base of next state
    661                 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
    662                 if (onAdvance(phase, nextUnarrived))
    663                     n |= TERMINATION_BIT;
    664                 else if (nextUnarrived == 0)
    665                     n |= EMPTY;
    666                 else
    667                     n |= nextUnarrived;
    668                 int nextPhase = (phase + 1) & MAX_PHASE;
    669                 n |= (long)nextPhase << PHASE_SHIFT;
    670                 if (!U.compareAndSwapLong(this, STATE, s, n))
    671                     return (int)(state >>> PHASE_SHIFT); // terminated
    672                 releaseWaiters(phase);
    673                 return nextPhase;
    674             }
    675         }
    676     }
    677 
    678     /**
    679      * Awaits the phase of this phaser to advance from the given phase
    680      * value, returning immediately if the current phase is not equal
    681      * to the given phase value or this phaser is terminated.
    682      *
    683      * @param phase an arrival phase number, or negative value if
    684      * terminated; this argument is normally the value returned by a
    685      * previous call to {@code arrive} or {@code arriveAndDeregister}.
    686      * @return the next arrival phase number, or the argument if it is
    687      * negative, or the (negative) {@linkplain #getPhase() current phase}
    688      * if terminated
    689      */
    690     public int awaitAdvance(int phase) {
    691         final Phaser root = this.root;
    692         long s = (root == this) ? state : reconcileState();
    693         int p = (int)(s >>> PHASE_SHIFT);
    694         if (phase < 0)
    695             return phase;
    696         if (p == phase)
    697             return root.internalAwaitAdvance(phase, null);
    698         return p;
    699     }
    700 
    701     /**
    702      * Awaits the phase of this phaser to advance from the given phase
    703      * value, throwing {@code InterruptedException} if interrupted
    704      * while waiting, or returning immediately if the current phase is
    705      * not equal to the given phase value or this phaser is
    706      * terminated.
    707      *
    708      * @param phase an arrival phase number, or negative value if
    709      * terminated; this argument is normally the value returned by a
    710      * previous call to {@code arrive} or {@code arriveAndDeregister}.
    711      * @return the next arrival phase number, or the argument if it is
    712      * negative, or the (negative) {@linkplain #getPhase() current phase}
    713      * if terminated
    714      * @throws InterruptedException if thread interrupted while waiting
    715      */
    716     public int awaitAdvanceInterruptibly(int phase)
    717         throws InterruptedException {
    718         final Phaser root = this.root;
    719         long s = (root == this) ? state : reconcileState();
    720         int p = (int)(s >>> PHASE_SHIFT);
    721         if (phase < 0)
    722             return phase;
    723         if (p == phase) {
    724             QNode node = new QNode(this, phase, true, false, 0L);
    725             p = root.internalAwaitAdvance(phase, node);
    726             if (node.wasInterrupted)
    727                 throw new InterruptedException();
    728         }
    729         return p;
    730     }
    731 
    732     /**
    733      * Awaits the phase of this phaser to advance from the given phase
    734      * value or the given timeout to elapse, throwing {@code
    735      * InterruptedException} if interrupted while waiting, or
    736      * returning immediately if the current phase is not equal to the
    737      * given phase value or this phaser is terminated.
    738      *
    739      * @param phase an arrival phase number, or negative value if
    740      * terminated; this argument is normally the value returned by a
    741      * previous call to {@code arrive} or {@code arriveAndDeregister}.
    742      * @param timeout how long to wait before giving up, in units of
    743      *        {@code unit}
    744      * @param unit a {@code TimeUnit} determining how to interpret the
    745      *        {@code timeout} parameter
    746      * @return the next arrival phase number, or the argument if it is
    747      * negative, or the (negative) {@linkplain #getPhase() current phase}
    748      * if terminated
    749      * @throws InterruptedException if thread interrupted while waiting
    750      * @throws TimeoutException if timed out while waiting
    751      */
    752     public int awaitAdvanceInterruptibly(int phase,
    753                                          long timeout, TimeUnit unit)
    754         throws InterruptedException, TimeoutException {
    755         long nanos = unit.toNanos(timeout);
    756         final Phaser root = this.root;
    757         long s = (root == this) ? state : reconcileState();
    758         int p = (int)(s >>> PHASE_SHIFT);
    759         if (phase < 0)
    760             return phase;
    761         if (p == phase) {
    762             QNode node = new QNode(this, phase, true, true, nanos);
    763             p = root.internalAwaitAdvance(phase, node);
    764             if (node.wasInterrupted)
    765                 throw new InterruptedException();
    766             else if (p == phase)
    767                 throw new TimeoutException();
    768         }
    769         return p;
    770     }
    771 
    772     /**
    773      * Forces this phaser to enter termination state.  Counts of
    774      * registered parties are unaffected.  If this phaser is a member
    775      * of a tiered set of phasers, then all of the phasers in the set
    776      * are terminated.  If this phaser is already terminated, this
    777      * method has no effect.  This method may be useful for
    778      * coordinating recovery after one or more tasks encounter
    779      * unexpected exceptions.
    780      */
    781     public void forceTermination() {
    782         // Only need to change root state
    783         final Phaser root = this.root;
    784         long s;
    785         while ((s = root.state) >= 0) {
    786             if (U.compareAndSwapLong(root, STATE, s, s | TERMINATION_BIT)) {
    787                 // signal all threads
    788                 releaseWaiters(0); // Waiters on evenQ
    789                 releaseWaiters(1); // Waiters on oddQ
    790                 return;
    791             }
    792         }
    793     }
    794 
    795     /**
    796      * Returns the current phase number. The maximum phase number is
    797      * {@code Integer.MAX_VALUE}, after which it restarts at
    798      * zero. Upon termination, the phase number is negative,
    799      * in which case the prevailing phase prior to termination
    800      * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
    801      *
    802      * @return the phase number, or a negative value if terminated
    803      */
    804     public final int getPhase() {
    805         return (int)(root.state >>> PHASE_SHIFT);
    806     }
    807 
    808     /**
    809      * Returns the number of parties registered at this phaser.
    810      *
    811      * @return the number of parties
    812      */
    813     public int getRegisteredParties() {
    814         return partiesOf(state);
    815     }
    816 
    817     /**
    818      * Returns the number of registered parties that have arrived at
    819      * the current phase of this phaser. If this phaser has terminated,
    820      * the returned value is meaningless and arbitrary.
    821      *
    822      * @return the number of arrived parties
    823      */
    824     public int getArrivedParties() {
    825         return arrivedOf(reconcileState());
    826     }
    827 
    828     /**
    829      * Returns the number of registered parties that have not yet
    830      * arrived at the current phase of this phaser. If this phaser has
    831      * terminated, the returned value is meaningless and arbitrary.
    832      *
    833      * @return the number of unarrived parties
    834      */
    835     public int getUnarrivedParties() {
    836         return unarrivedOf(reconcileState());
    837     }
    838 
    839     /**
    840      * Returns the parent of this phaser, or {@code null} if none.
    841      *
    842      * @return the parent of this phaser, or {@code null} if none
    843      */
    844     public Phaser getParent() {
    845         return parent;
    846     }
    847 
    848     /**
    849      * Returns the root ancestor of this phaser, which is the same as
    850      * this phaser if it has no parent.
    851      *
    852      * @return the root ancestor of this phaser
    853      */
    854     public Phaser getRoot() {
    855         return root;
    856     }
    857 
    858     /**
    859      * Returns {@code true} if this phaser has been terminated.
    860      *
    861      * @return {@code true} if this phaser has been terminated
    862      */
    863     public boolean isTerminated() {
    864         return root.state < 0L;
    865     }
    866 
    867     /**
    868      * Overridable method to perform an action upon impending phase
    869      * advance, and to control termination. This method is invoked
    870      * upon arrival of the party advancing this phaser (when all other
    871      * waiting parties are dormant).  If this method returns {@code
    872      * true}, this phaser will be set to a final termination state
    873      * upon advance, and subsequent calls to {@link #isTerminated}
    874      * will return true. Any (unchecked) Exception or Error thrown by
    875      * an invocation of this method is propagated to the party
    876      * attempting to advance this phaser, in which case no advance
    877      * occurs.
    878      *
    879      * <p>The arguments to this method provide the state of the phaser
    880      * prevailing for the current transition.  The effects of invoking
    881      * arrival, registration, and waiting methods on this phaser from
    882      * within {@code onAdvance} are unspecified and should not be
    883      * relied on.
    884      *
    885      * <p>If this phaser is a member of a tiered set of phasers, then
    886      * {@code onAdvance} is invoked only for its root phaser on each
    887      * advance.
    888      *
    889      * <p>To support the most common use cases, the default
    890      * implementation of this method returns {@code true} when the
    891      * number of registered parties has become zero as the result of a
    892      * party invoking {@code arriveAndDeregister}.  You can disable
    893      * this behavior, thus enabling continuation upon future
    894      * registrations, by overriding this method to always return
    895      * {@code false}:
    896      *
    897      * <pre> {@code
    898      * Phaser phaser = new Phaser() {
    899      *   protected boolean onAdvance(int phase, int parties) { return false; }
    900      * }}</pre>
    901      *
    902      * @param phase the current phase number on entry to this method,
    903      * before this phaser is advanced
    904      * @param registeredParties the current number of registered parties
    905      * @return {@code true} if this phaser should terminate
    906      */
    907     protected boolean onAdvance(int phase, int registeredParties) {
    908         return registeredParties == 0;
    909     }
    910 
    911     /**
    912      * Returns a string identifying this phaser, as well as its
    913      * state.  The state, in brackets, includes the String {@code
    914      * "phase = "} followed by the phase number, {@code "parties = "}
    915      * followed by the number of registered parties, and {@code
    916      * "arrived = "} followed by the number of arrived parties.
    917      *
    918      * @return a string identifying this phaser, as well as its state
    919      */
    920     public String toString() {
    921         return stateToString(reconcileState());
    922     }
    923 
    924     /**
    925      * Implementation of toString and string-based error messages.
    926      */
    927     private String stateToString(long s) {
    928         return super.toString() +
    929             "[phase = " + phaseOf(s) +
    930             " parties = " + partiesOf(s) +
    931             " arrived = " + arrivedOf(s) + "]";
    932     }
    933 
    934     // Waiting mechanics
    935 
    936     /**
    937      * Removes and signals threads from queue for phase.
    938      */
    939     private void releaseWaiters(int phase) {
    940         QNode q;   // first element of queue
    941         Thread t;  // its thread
    942         AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
    943         while ((q = head.get()) != null &&
    944                q.phase != (int)(root.state >>> PHASE_SHIFT)) {
    945             if (head.compareAndSet(q, q.next) &&
    946                 (t = q.thread) != null) {
    947                 q.thread = null;
    948                 LockSupport.unpark(t);
    949             }
    950         }
    951     }
    952 
    953     /**
    954      * Variant of releaseWaiters that additionally tries to remove any
    955      * nodes no longer waiting for advance due to timeout or
    956      * interrupt. Currently, nodes are removed only if they are at
    957      * head of queue, which suffices to reduce memory footprint in
    958      * most usages.
    959      *
    960      * @return current phase on exit
    961      */
    962     private int abortWait(int phase) {
    963         AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
    964         for (;;) {
    965             Thread t;
    966             QNode q = head.get();
    967             int p = (int)(root.state >>> PHASE_SHIFT);
    968             if (q == null || ((t = q.thread) != null && q.phase == p))
    969                 return p;
    970             if (head.compareAndSet(q, q.next) && t != null) {
    971                 q.thread = null;
    972                 LockSupport.unpark(t);
    973             }
    974         }
    975     }
    976 
    977     /** The number of CPUs, for spin control */
    978     private static final int NCPU = Runtime.getRuntime().availableProcessors();
    979 
    980     /**
    981      * The number of times to spin before blocking while waiting for
    982      * advance, per arrival while waiting. On multiprocessors, fully
    983      * blocking and waking up a large number of threads all at once is
    984      * usually a very slow process, so we use rechargeable spins to
    985      * avoid it when threads regularly arrive: When a thread in
    986      * internalAwaitAdvance notices another arrival before blocking,
    987      * and there appear to be enough CPUs available, it spins
    988      * SPINS_PER_ARRIVAL more times before blocking. The value trades
    989      * off good-citizenship vs big unnecessary slowdowns.
    990      */
    991     static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
    992 
    993     /**
    994      * Possibly blocks and waits for phase to advance unless aborted.
    995      * Call only on root phaser.
    996      *
    997      * @param phase current phase
    998      * @param node if non-null, the wait node to track interrupt and timeout;
    999      * if null, denotes noninterruptible wait
   1000      * @return current phase
   1001      */
   1002     private int internalAwaitAdvance(int phase, QNode node) {
   1003         // assert root == this;
   1004         releaseWaiters(phase-1);          // ensure old queue clean
   1005         boolean queued = false;           // true when node is enqueued
   1006         int lastUnarrived = 0;            // to increase spins upon change
   1007         int spins = SPINS_PER_ARRIVAL;
   1008         long s;
   1009         int p;
   1010         while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
   1011             if (node == null) {           // spinning in noninterruptible mode
   1012                 int unarrived = (int)s & UNARRIVED_MASK;
   1013                 if (unarrived != lastUnarrived &&
   1014                     (lastUnarrived = unarrived) < NCPU)
   1015                     spins += SPINS_PER_ARRIVAL;
   1016                 boolean interrupted = Thread.interrupted();
   1017                 if (interrupted || --spins < 0) { // need node to record intr
   1018                     node = new QNode(this, phase, false, false, 0L);
   1019                     node.wasInterrupted = interrupted;
   1020                 }
   1021             }
   1022             else if (node.isReleasable()) // done or aborted
   1023                 break;
   1024             else if (!queued) {           // push onto queue
   1025                 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
   1026                 QNode q = node.next = head.get();
   1027                 if ((q == null || q.phase == phase) &&
   1028                     (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
   1029                     queued = head.compareAndSet(q, node);
   1030             }
   1031             else {
   1032                 try {
   1033                     ForkJoinPool.managedBlock(node);
   1034                 } catch (InterruptedException cantHappen) {
   1035                     node.wasInterrupted = true;
   1036                 }
   1037             }
   1038         }
   1039 
   1040         if (node != null) {
   1041             if (node.thread != null)
   1042                 node.thread = null;       // avoid need for unpark()
   1043             if (node.wasInterrupted && !node.interruptible)
   1044                 Thread.currentThread().interrupt();
   1045             if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
   1046                 return abortWait(phase); // possibly clean up on abort
   1047         }
   1048         releaseWaiters(phase);
   1049         return p;
   1050     }
   1051 
   1052     /**
   1053      * Wait nodes for Treiber stack representing wait queue.
   1054      */
   1055     static final class QNode implements ForkJoinPool.ManagedBlocker {
   1056         final Phaser phaser;
   1057         final int phase;
   1058         final boolean interruptible;
   1059         final boolean timed;
   1060         boolean wasInterrupted;
   1061         long nanos;
   1062         final long deadline;
   1063         volatile Thread thread; // nulled to cancel wait
   1064         QNode next;
   1065 
   1066         QNode(Phaser phaser, int phase, boolean interruptible,
   1067               boolean timed, long nanos) {
   1068             this.phaser = phaser;
   1069             this.phase = phase;
   1070             this.interruptible = interruptible;
   1071             this.nanos = nanos;
   1072             this.timed = timed;
   1073             this.deadline = timed ? System.nanoTime() + nanos : 0L;
   1074             thread = Thread.currentThread();
   1075         }
   1076 
   1077         public boolean isReleasable() {
   1078             if (thread == null)
   1079                 return true;
   1080             if (phaser.getPhase() != phase) {
   1081                 thread = null;
   1082                 return true;
   1083             }
   1084             if (Thread.interrupted())
   1085                 wasInterrupted = true;
   1086             if (wasInterrupted && interruptible) {
   1087                 thread = null;
   1088                 return true;
   1089             }
   1090             if (timed &&
   1091                 (nanos <= 0L || (nanos = deadline - System.nanoTime()) <= 0L)) {
   1092                 thread = null;
   1093                 return true;
   1094             }
   1095             return false;
   1096         }
   1097 
   1098         public boolean block() {
   1099             while (!isReleasable()) {
   1100                 if (timed)
   1101                     LockSupport.parkNanos(this, nanos);
   1102                 else
   1103                     LockSupport.park(this);
   1104             }
   1105             return true;
   1106         }
   1107     }
   1108 
   1109     // Unsafe mechanics
   1110 
   1111     private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
   1112     private static final long STATE;
   1113     static {
   1114         try {
   1115             STATE = U.objectFieldOffset
   1116                 (Phaser.class.getDeclaredField("state"));
   1117         } catch (ReflectiveOperationException e) {
   1118             throw new Error(e);
   1119         }
   1120 
   1121         // Reduce the risk of rare disastrous classloading in first call to
   1122         // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
   1123         Class<?> ensureLoaded = LockSupport.class;
   1124     }
   1125 }
   1126