Home | History | Annotate | Download | only in ADT
      1 //===--- ArrayRef.h - Array Reference Wrapper -------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef LLVM_ADT_ARRAYREF_H
     11 #define LLVM_ADT_ARRAYREF_H
     12 
     13 #include "llvm/ADT/Hashing.h"
     14 #include "llvm/ADT/None.h"
     15 #include "llvm/ADT/SmallVector.h"
     16 #include <vector>
     17 
     18 namespace llvm {
     19 
     20   /// ArrayRef - Represent a constant reference to an array (0 or more elements
     21   /// consecutively in memory), i.e. a start pointer and a length.  It allows
     22   /// various APIs to take consecutive elements easily and conveniently.
     23   ///
     24   /// This class does not own the underlying data, it is expected to be used in
     25   /// situations where the data resides in some other buffer, whose lifetime
     26   /// extends past that of the ArrayRef. For this reason, it is not in general
     27   /// safe to store an ArrayRef.
     28   ///
     29   /// This is intended to be trivially copyable, so it should be passed by
     30   /// value.
     31   template<typename T>
     32   class ArrayRef {
     33   public:
     34     typedef const T *iterator;
     35     typedef const T *const_iterator;
     36     typedef size_t size_type;
     37 
     38     typedef std::reverse_iterator<iterator> reverse_iterator;
     39 
     40   private:
     41     /// The start of the array, in an external buffer.
     42     const T *Data;
     43 
     44     /// The number of elements.
     45     size_type Length;
     46 
     47   public:
     48     /// @name Constructors
     49     /// @{
     50 
     51     /// Construct an empty ArrayRef.
     52     /*implicit*/ ArrayRef() : Data(nullptr), Length(0) {}
     53 
     54     /// Construct an empty ArrayRef from None.
     55     /*implicit*/ ArrayRef(NoneType) : Data(nullptr), Length(0) {}
     56 
     57     /// Construct an ArrayRef from a single element.
     58     /*implicit*/ ArrayRef(const T &OneElt)
     59       : Data(&OneElt), Length(1) {}
     60 
     61     /// Construct an ArrayRef from a pointer and length.
     62     /*implicit*/ ArrayRef(const T *data, size_t length)
     63       : Data(data), Length(length) {}
     64 
     65     /// Construct an ArrayRef from a range.
     66     ArrayRef(const T *begin, const T *end)
     67       : Data(begin), Length(end - begin) {}
     68 
     69     /// Construct an ArrayRef from a SmallVector. This is templated in order to
     70     /// avoid instantiating SmallVectorTemplateCommon<T> whenever we
     71     /// copy-construct an ArrayRef.
     72     template<typename U>
     73     /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
     74       : Data(Vec.data()), Length(Vec.size()) {
     75     }
     76 
     77     /// Construct an ArrayRef from a std::vector.
     78     template<typename A>
     79     /*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
     80       : Data(Vec.data()), Length(Vec.size()) {}
     81 
     82     /// Construct an ArrayRef from a C array.
     83     template <size_t N>
     84     /*implicit*/ LLVM_CONSTEXPR ArrayRef(const T (&Arr)[N])
     85       : Data(Arr), Length(N) {}
     86 
     87     /// Construct an ArrayRef from a std::initializer_list.
     88     /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
     89     : Data(Vec.begin() == Vec.end() ? (T*)nullptr : Vec.begin()),
     90       Length(Vec.size()) {}
     91 
     92     /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to
     93     /// ensure that only ArrayRefs of pointers can be converted.
     94     template <typename U>
     95     ArrayRef(const ArrayRef<U *> &A,
     96              typename std::enable_if<
     97                  std::is_convertible<U *const *, T const *>::value>::type* = 0)
     98       : Data(A.data()), Length(A.size()) {}
     99 
    100     /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is
    101     /// templated in order to avoid instantiating SmallVectorTemplateCommon<T>
    102     /// whenever we copy-construct an ArrayRef.
    103     template<typename U, typename DummyT>
    104     /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<U*, DummyT> &Vec,
    105                           typename std::enable_if<
    106                               std::is_convertible<U *const *,
    107                                                   T const *>::value>::type* = 0)
    108       : Data(Vec.data()), Length(Vec.size()) {
    109     }
    110 
    111     /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE
    112     /// to ensure that only vectors of pointers can be converted.
    113     template<typename U, typename A>
    114     ArrayRef(const std::vector<U *, A> &Vec,
    115              typename std::enable_if<
    116                  std::is_convertible<U *const *, T const *>::value>::type* = 0)
    117       : Data(Vec.data()), Length(Vec.size()) {}
    118 
    119     /// @}
    120     /// @name Simple Operations
    121     /// @{
    122 
    123     iterator begin() const { return Data; }
    124     iterator end() const { return Data + Length; }
    125 
    126     reverse_iterator rbegin() const { return reverse_iterator(end()); }
    127     reverse_iterator rend() const { return reverse_iterator(begin()); }
    128 
    129     /// empty - Check if the array is empty.
    130     bool empty() const { return Length == 0; }
    131 
    132     const T *data() const { return Data; }
    133 
    134     /// size - Get the array size.
    135     size_t size() const { return Length; }
    136 
    137     /// front - Get the first element.
    138     const T &front() const {
    139       assert(!empty());
    140       return Data[0];
    141     }
    142 
    143     /// back - Get the last element.
    144     const T &back() const {
    145       assert(!empty());
    146       return Data[Length-1];
    147     }
    148 
    149     // copy - Allocate copy in Allocator and return ArrayRef<T> to it.
    150     template <typename Allocator> ArrayRef<T> copy(Allocator &A) {
    151       T *Buff = A.template Allocate<T>(Length);
    152       std::uninitialized_copy(begin(), end(), Buff);
    153       return ArrayRef<T>(Buff, Length);
    154     }
    155 
    156     /// equals - Check for element-wise equality.
    157     bool equals(ArrayRef RHS) const {
    158       if (Length != RHS.Length)
    159         return false;
    160       return std::equal(begin(), end(), RHS.begin());
    161     }
    162 
    163     /// slice(n) - Chop off the first N elements of the array.
    164     ArrayRef<T> slice(unsigned N) const {
    165       assert(N <= size() && "Invalid specifier");
    166       return ArrayRef<T>(data()+N, size()-N);
    167     }
    168 
    169     /// slice(n, m) - Chop off the first N elements of the array, and keep M
    170     /// elements in the array.
    171     ArrayRef<T> slice(unsigned N, unsigned M) const {
    172       assert(N+M <= size() && "Invalid specifier");
    173       return ArrayRef<T>(data()+N, M);
    174     }
    175 
    176     // \brief Drop the last \p N elements of the array.
    177     ArrayRef<T> drop_back(unsigned N = 1) const {
    178       assert(size() >= N && "Dropping more elements than exist");
    179       return slice(0, size() - N);
    180     }
    181 
    182     /// @}
    183     /// @name Operator Overloads
    184     /// @{
    185     const T &operator[](size_t Index) const {
    186       assert(Index < Length && "Invalid index!");
    187       return Data[Index];
    188     }
    189 
    190     /// @}
    191     /// @name Expensive Operations
    192     /// @{
    193     std::vector<T> vec() const {
    194       return std::vector<T>(Data, Data+Length);
    195     }
    196 
    197     /// @}
    198     /// @name Conversion operators
    199     /// @{
    200     operator std::vector<T>() const {
    201       return std::vector<T>(Data, Data+Length);
    202     }
    203 
    204     /// @}
    205   };
    206 
    207   /// MutableArrayRef - Represent a mutable reference to an array (0 or more
    208   /// elements consecutively in memory), i.e. a start pointer and a length.  It
    209   /// allows various APIs to take and modify consecutive elements easily and
    210   /// conveniently.
    211   ///
    212   /// This class does not own the underlying data, it is expected to be used in
    213   /// situations where the data resides in some other buffer, whose lifetime
    214   /// extends past that of the MutableArrayRef. For this reason, it is not in
    215   /// general safe to store a MutableArrayRef.
    216   ///
    217   /// This is intended to be trivially copyable, so it should be passed by
    218   /// value.
    219   template<typename T>
    220   class MutableArrayRef : public ArrayRef<T> {
    221   public:
    222     typedef T *iterator;
    223 
    224     typedef std::reverse_iterator<iterator> reverse_iterator;
    225 
    226     /// Construct an empty MutableArrayRef.
    227     /*implicit*/ MutableArrayRef() : ArrayRef<T>() {}
    228 
    229     /// Construct an empty MutableArrayRef from None.
    230     /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {}
    231 
    232     /// Construct an MutableArrayRef from a single element.
    233     /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {}
    234 
    235     /// Construct an MutableArrayRef from a pointer and length.
    236     /*implicit*/ MutableArrayRef(T *data, size_t length)
    237       : ArrayRef<T>(data, length) {}
    238 
    239     /// Construct an MutableArrayRef from a range.
    240     MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {}
    241 
    242     /// Construct an MutableArrayRef from a SmallVector.
    243     /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec)
    244     : ArrayRef<T>(Vec) {}
    245 
    246     /// Construct a MutableArrayRef from a std::vector.
    247     /*implicit*/ MutableArrayRef(std::vector<T> &Vec)
    248     : ArrayRef<T>(Vec) {}
    249 
    250     /// Construct an MutableArrayRef from a C array.
    251     template <size_t N>
    252     /*implicit*/ LLVM_CONSTEXPR MutableArrayRef(T (&Arr)[N])
    253       : ArrayRef<T>(Arr) {}
    254 
    255     T *data() const { return const_cast<T*>(ArrayRef<T>::data()); }
    256 
    257     iterator begin() const { return data(); }
    258     iterator end() const { return data() + this->size(); }
    259 
    260     reverse_iterator rbegin() const { return reverse_iterator(end()); }
    261     reverse_iterator rend() const { return reverse_iterator(begin()); }
    262 
    263     /// front - Get the first element.
    264     T &front() const {
    265       assert(!this->empty());
    266       return data()[0];
    267     }
    268 
    269     /// back - Get the last element.
    270     T &back() const {
    271       assert(!this->empty());
    272       return data()[this->size()-1];
    273     }
    274 
    275     /// slice(n) - Chop off the first N elements of the array.
    276     MutableArrayRef<T> slice(unsigned N) const {
    277       assert(N <= this->size() && "Invalid specifier");
    278       return MutableArrayRef<T>(data()+N, this->size()-N);
    279     }
    280 
    281     /// slice(n, m) - Chop off the first N elements of the array, and keep M
    282     /// elements in the array.
    283     MutableArrayRef<T> slice(unsigned N, unsigned M) const {
    284       assert(N+M <= this->size() && "Invalid specifier");
    285       return MutableArrayRef<T>(data()+N, M);
    286     }
    287 
    288     MutableArrayRef<T> drop_back(unsigned N) const {
    289       assert(this->size() >= N && "Dropping more elements than exist");
    290       return slice(0, this->size() - N);
    291     }
    292 
    293     /// @}
    294     /// @name Operator Overloads
    295     /// @{
    296     T &operator[](size_t Index) const {
    297       assert(Index < this->size() && "Invalid index!");
    298       return data()[Index];
    299     }
    300   };
    301 
    302   /// @name ArrayRef Convenience constructors
    303   /// @{
    304 
    305   /// Construct an ArrayRef from a single element.
    306   template<typename T>
    307   ArrayRef<T> makeArrayRef(const T &OneElt) {
    308     return OneElt;
    309   }
    310 
    311   /// Construct an ArrayRef from a pointer and length.
    312   template<typename T>
    313   ArrayRef<T> makeArrayRef(const T *data, size_t length) {
    314     return ArrayRef<T>(data, length);
    315   }
    316 
    317   /// Construct an ArrayRef from a range.
    318   template<typename T>
    319   ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
    320     return ArrayRef<T>(begin, end);
    321   }
    322 
    323   /// Construct an ArrayRef from a SmallVector.
    324   template <typename T>
    325   ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
    326     return Vec;
    327   }
    328 
    329   /// Construct an ArrayRef from a SmallVector.
    330   template <typename T, unsigned N>
    331   ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
    332     return Vec;
    333   }
    334 
    335   /// Construct an ArrayRef from a std::vector.
    336   template<typename T>
    337   ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
    338     return Vec;
    339   }
    340 
    341   /// Construct an ArrayRef from an ArrayRef (no-op) (const)
    342   template <typename T> ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) {
    343     return Vec;
    344   }
    345 
    346   /// Construct an ArrayRef from an ArrayRef (no-op)
    347   template <typename T> ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) {
    348     return Vec;
    349   }
    350 
    351   /// Construct an ArrayRef from a C array.
    352   template<typename T, size_t N>
    353   ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
    354     return ArrayRef<T>(Arr);
    355   }
    356 
    357   /// @}
    358   /// @name ArrayRef Comparison Operators
    359   /// @{
    360 
    361   template<typename T>
    362   inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
    363     return LHS.equals(RHS);
    364   }
    365 
    366   template<typename T>
    367   inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
    368     return !(LHS == RHS);
    369   }
    370 
    371   /// @}
    372 
    373   // ArrayRefs can be treated like a POD type.
    374   template <typename T> struct isPodLike;
    375   template <typename T> struct isPodLike<ArrayRef<T> > {
    376     static const bool value = true;
    377   };
    378 
    379   template <typename T> hash_code hash_value(ArrayRef<T> S) {
    380     return hash_combine_range(S.begin(), S.end());
    381   }
    382 }
    383 
    384 #endif
    385