Home | History | Annotate | Download | only in gold
      1 // expression.cc -- expressions in linker scripts for gold
      2 
      3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
      4 // Written by Ian Lance Taylor <iant (at) google.com>.
      5 
      6 // This file is part of gold.
      7 
      8 // This program is free software; you can redistribute it and/or modify
      9 // it under the terms of the GNU General Public License as published by
     10 // the Free Software Foundation; either version 3 of the License, or
     11 // (at your option) any later version.
     12 
     13 // This program is distributed in the hope that it will be useful,
     14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 // GNU General Public License for more details.
     17 
     18 // You should have received a copy of the GNU General Public License
     19 // along with this program; if not, write to the Free Software
     20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     21 // MA 02110-1301, USA.
     22 
     23 #include "gold.h"
     24 
     25 #include <string>
     26 
     27 #include "elfcpp.h"
     28 #include "parameters.h"
     29 #include "symtab.h"
     30 #include "layout.h"
     31 #include "output.h"
     32 #include "script.h"
     33 #include "script-c.h"
     34 
     35 namespace gold
     36 {
     37 
     38 // This file holds the code which handles linker expressions.
     39 
     40 // The dot symbol, which linker scripts refer to simply as ".",
     41 // requires special treatment.  The dot symbol is set several times,
     42 // section addresses will refer to it, output sections will change it,
     43 // and it can be set based on the value of other symbols.  We simplify
     44 // the handling by prohibiting setting the dot symbol to the value of
     45 // a non-absolute symbol.
     46 
     47 // When evaluating the value of an expression, we pass in a pointer to
     48 // this struct, so that the expression evaluation can find the
     49 // information it needs.
     50 
     51 struct Expression::Expression_eval_info
     52 {
     53   // The symbol table.
     54   const Symbol_table* symtab;
     55   // The layout--we use this to get section information.
     56   const Layout* layout;
     57   // Whether to check assertions.
     58   bool check_assertions;
     59   // Whether expressions can refer to the dot symbol.  The dot symbol
     60   // is only available within a SECTIONS clause.
     61   bool is_dot_available;
     62   // The current value of the dot symbol.
     63   uint64_t dot_value;
     64   // The section in which the dot symbol is defined; this is NULL if
     65   // it is absolute.
     66   Output_section* dot_section;
     67   // Points to where the section of the result should be stored.
     68   Output_section** result_section_pointer;
     69   // Pointer to where the alignment of the result should be stored.
     70   uint64_t* result_alignment_pointer;
     71   // Pointer to where the type of the symbol on the RHS should be stored.
     72   elfcpp::STT* type_pointer;
     73   // Pointer to where the visibility of the symbol on the RHS should be stored.
     74   elfcpp::STV* vis_pointer;
     75   // Pointer to where the rest of the symbol's st_other field should be stored.
     76   unsigned char* nonvis_pointer;
     77 };
     78 
     79 // Evaluate an expression.
     80 
     81 uint64_t
     82 Expression::eval(const Symbol_table* symtab, const Layout* layout,
     83 		 bool check_assertions)
     84 {
     85   return this->eval_maybe_dot(symtab, layout, check_assertions, false, 0,
     86 			      NULL, NULL, NULL, NULL, NULL, NULL, false);
     87 }
     88 
     89 // Evaluate an expression which may refer to the dot symbol.
     90 
     91 uint64_t
     92 Expression::eval_with_dot(const Symbol_table* symtab, const Layout* layout,
     93 			  bool check_assertions, uint64_t dot_value,
     94 			  Output_section* dot_section,
     95 			  Output_section** result_section_pointer,
     96 			  uint64_t* result_alignment_pointer,
     97 			  bool is_section_dot_assignment)
     98 {
     99   return this->eval_maybe_dot(symtab, layout, check_assertions, true,
    100 			      dot_value, dot_section, result_section_pointer,
    101 			      result_alignment_pointer, NULL, NULL, NULL,
    102 			      is_section_dot_assignment);
    103 }
    104 
    105 // Evaluate an expression which may or may not refer to the dot
    106 // symbol.
    107 
    108 uint64_t
    109 Expression::eval_maybe_dot(const Symbol_table* symtab, const Layout* layout,
    110 			   bool check_assertions, bool is_dot_available,
    111 			   uint64_t dot_value, Output_section* dot_section,
    112 			   Output_section** result_section_pointer,
    113 			   uint64_t* result_alignment_pointer,
    114 			   elfcpp::STT* type_pointer,
    115 			   elfcpp::STV* vis_pointer,
    116 			   unsigned char* nonvis_pointer,
    117 			   bool is_section_dot_assignment)
    118 {
    119   Expression_eval_info eei;
    120   eei.symtab = symtab;
    121   eei.layout = layout;
    122   eei.check_assertions = check_assertions;
    123   eei.is_dot_available = is_dot_available;
    124   eei.dot_value = dot_value;
    125   eei.dot_section = dot_section;
    126 
    127   // We assume the value is absolute, and only set this to a section
    128   // if we find a section-relative reference.
    129   if (result_section_pointer != NULL)
    130     *result_section_pointer = NULL;
    131   eei.result_section_pointer = result_section_pointer;
    132 
    133   // For symbol=symbol assignments, we need to track the type, visibility,
    134   // and remaining st_other bits.
    135   eei.type_pointer = type_pointer;
    136   eei.vis_pointer = vis_pointer;
    137   eei.nonvis_pointer = nonvis_pointer;
    138 
    139   eei.result_alignment_pointer = result_alignment_pointer;
    140 
    141   uint64_t val = this->value(&eei);
    142 
    143   // If this is an assignment to dot within a section, and the value
    144   // is absolute, treat it as a section-relative offset.
    145   if (is_section_dot_assignment && *result_section_pointer == NULL)
    146     {
    147       gold_assert(dot_section != NULL);
    148       val += dot_section->address();
    149       *result_section_pointer = dot_section;
    150     }
    151   return val;
    152 }
    153 
    154 // A number.
    155 
    156 class Integer_expression : public Expression
    157 {
    158  public:
    159   Integer_expression(uint64_t val)
    160     : val_(val)
    161   { }
    162 
    163   uint64_t
    164   value(const Expression_eval_info*)
    165   { return this->val_; }
    166 
    167   void
    168   print(FILE* f) const
    169   { fprintf(f, "0x%llx", static_cast<unsigned long long>(this->val_)); }
    170 
    171  private:
    172   uint64_t val_;
    173 };
    174 
    175 extern "C" Expression*
    176 script_exp_integer(uint64_t val)
    177 {
    178   return new Integer_expression(val);
    179 }
    180 
    181 // An expression whose value is the value of a symbol.
    182 
    183 class Symbol_expression : public Expression
    184 {
    185  public:
    186   Symbol_expression(const char* name, size_t length)
    187     : name_(name, length)
    188   { }
    189 
    190   uint64_t
    191   value(const Expression_eval_info*);
    192 
    193   void
    194   print(FILE* f) const
    195   { fprintf(f, "%s", this->name_.c_str()); }
    196 
    197  private:
    198   std::string name_;
    199 };
    200 
    201 uint64_t
    202 Symbol_expression::value(const Expression_eval_info* eei)
    203 {
    204   Symbol* sym = eei->symtab->lookup(this->name_.c_str());
    205   if (sym == NULL || !sym->is_defined())
    206     {
    207       gold_error(_("undefined symbol '%s' referenced in expression"),
    208 		 this->name_.c_str());
    209       return 0;
    210     }
    211 
    212   if (eei->result_section_pointer != NULL)
    213     *eei->result_section_pointer = sym->output_section();
    214   if (eei->type_pointer != NULL)
    215     *eei->type_pointer = sym->type();
    216   if (eei->vis_pointer != NULL)
    217     *eei->vis_pointer = sym->visibility();
    218   if (eei->nonvis_pointer != NULL)
    219     *eei->nonvis_pointer = sym->nonvis();
    220 
    221   if (parameters->target().get_size() == 32)
    222     return eei->symtab->get_sized_symbol<32>(sym)->value();
    223   else if (parameters->target().get_size() == 64)
    224     return eei->symtab->get_sized_symbol<64>(sym)->value();
    225   else
    226     gold_unreachable();
    227 }
    228 
    229 // An expression whose value is the value of the special symbol ".".
    230 // This is only valid within a SECTIONS clause.
    231 
    232 class Dot_expression : public Expression
    233 {
    234  public:
    235   Dot_expression()
    236   { }
    237 
    238   uint64_t
    239   value(const Expression_eval_info*);
    240 
    241   void
    242   print(FILE* f) const
    243   { fprintf(f, "."); }
    244 };
    245 
    246 uint64_t
    247 Dot_expression::value(const Expression_eval_info* eei)
    248 {
    249   if (!eei->is_dot_available)
    250     {
    251       gold_error(_("invalid reference to dot symbol outside of "
    252 		   "SECTIONS clause"));
    253       return 0;
    254     }
    255   if (eei->result_section_pointer != NULL)
    256     *eei->result_section_pointer = eei->dot_section;
    257   return eei->dot_value;
    258 }
    259 
    260 // A string.  This is either the name of a symbol, or ".".
    261 
    262 extern "C" Expression*
    263 script_exp_string(const char* name, size_t length)
    264 {
    265   if (length == 1 && name[0] == '.')
    266     return new Dot_expression();
    267   else
    268     return new Symbol_expression(name, length);
    269 }
    270 
    271 // A unary expression.
    272 
    273 class Unary_expression : public Expression
    274 {
    275  public:
    276   Unary_expression(Expression* arg)
    277     : arg_(arg)
    278   { }
    279 
    280   ~Unary_expression()
    281   { delete this->arg_; }
    282 
    283  protected:
    284   uint64_t
    285   arg_value(const Expression_eval_info* eei,
    286 	    Output_section** arg_section_pointer) const
    287   {
    288     return this->arg_->eval_maybe_dot(eei->symtab, eei->layout,
    289 				      eei->check_assertions,
    290 				      eei->is_dot_available,
    291 				      eei->dot_value,
    292 				      eei->dot_section,
    293 				      arg_section_pointer,
    294 				      eei->result_alignment_pointer,
    295 				      NULL,
    296 				      NULL,
    297 				      NULL,
    298 				      false);
    299   }
    300 
    301   void
    302   arg_print(FILE* f) const
    303   { this->arg_->print(f); }
    304 
    305  private:
    306   Expression* arg_;
    307 };
    308 
    309 // Handle unary operators.  We use a preprocessor macro as a hack to
    310 // capture the C operator.
    311 
    312 #define UNARY_EXPRESSION(NAME, OPERATOR)				\
    313   class Unary_ ## NAME : public Unary_expression			\
    314   {									\
    315   public:								\
    316     Unary_ ## NAME(Expression* arg)					\
    317       : Unary_expression(arg)						\
    318     { }									\
    319     									\
    320     uint64_t								\
    321     value(const Expression_eval_info* eei)				\
    322     {									\
    323       Output_section* arg_section;					\
    324       uint64_t ret = OPERATOR this->arg_value(eei, &arg_section);	\
    325       if (arg_section != NULL && parameters->options().relocatable())	\
    326 	gold_warning(_("unary " #NAME " applied to section "		\
    327 		       "relative value"));				\
    328       return ret;							\
    329     }									\
    330 									\
    331     void								\
    332     print(FILE* f) const						\
    333     {									\
    334       fprintf(f, "(%s ", #OPERATOR);					\
    335       this->arg_print(f);						\
    336       fprintf(f, ")");							\
    337     }									\
    338   };									\
    339 									\
    340   extern "C" Expression*						\
    341   script_exp_unary_ ## NAME(Expression* arg)				\
    342   {									\
    343       return new Unary_ ## NAME(arg);					\
    344   }
    345 
    346 UNARY_EXPRESSION(minus, -)
    347 UNARY_EXPRESSION(logical_not, !)
    348 UNARY_EXPRESSION(bitwise_not, ~)
    349 
    350 // A binary expression.
    351 
    352 class Binary_expression : public Expression
    353 {
    354  public:
    355   Binary_expression(Expression* left, Expression* right)
    356     : left_(left), right_(right)
    357   { }
    358 
    359   ~Binary_expression()
    360   {
    361     delete this->left_;
    362     delete this->right_;
    363   }
    364 
    365  protected:
    366   uint64_t
    367   left_value(const Expression_eval_info* eei,
    368 	     Output_section** section_pointer,
    369 	     uint64_t* alignment_pointer) const
    370   {
    371     return this->left_->eval_maybe_dot(eei->symtab, eei->layout,
    372 				       eei->check_assertions,
    373 				       eei->is_dot_available,
    374 				       eei->dot_value,
    375 				       eei->dot_section,
    376 				       section_pointer,
    377 				       alignment_pointer,
    378 				       NULL,
    379 				       NULL,
    380 				       NULL,
    381 				       false);
    382   }
    383 
    384   uint64_t
    385   right_value(const Expression_eval_info* eei,
    386 	      Output_section** section_pointer,
    387 	      uint64_t* alignment_pointer) const
    388   {
    389     return this->right_->eval_maybe_dot(eei->symtab, eei->layout,
    390 					eei->check_assertions,
    391 					eei->is_dot_available,
    392 					eei->dot_value,
    393 					eei->dot_section,
    394 					section_pointer,
    395 					alignment_pointer,
    396 					NULL,
    397 					NULL,
    398 					NULL,
    399 					false);
    400   }
    401 
    402   void
    403   left_print(FILE* f) const
    404   { this->left_->print(f); }
    405 
    406   void
    407   right_print(FILE* f) const
    408   { this->right_->print(f); }
    409 
    410   // This is a call to function FUNCTION_NAME.  Print it.  This is for
    411   // debugging.
    412   void
    413   print_function(FILE* f, const char* function_name) const
    414   {
    415     fprintf(f, "%s(", function_name);
    416     this->left_print(f);
    417     fprintf(f, ", ");
    418     this->right_print(f);
    419     fprintf(f, ")");
    420   }
    421 
    422  private:
    423   Expression* left_;
    424   Expression* right_;
    425 };
    426 
    427 // Handle binary operators.  We use a preprocessor macro as a hack to
    428 // capture the C operator.  KEEP_LEFT means that if the left operand
    429 // is section relative and the right operand is not, the result uses
    430 // the same section as the left operand.  KEEP_RIGHT is the same with
    431 // left and right swapped.  IS_DIV means that we need to give an error
    432 // if the right operand is zero.  WARN means that we should warn if
    433 // used on section relative values in a relocatable link.  We always
    434 // warn if used on values in different sections in a relocatable link.
    435 
    436 #define BINARY_EXPRESSION(NAME, OPERATOR, KEEP_LEFT, KEEP_RIGHT, IS_DIV, WARN) \
    437   class Binary_ ## NAME : public Binary_expression			\
    438   {									\
    439   public:								\
    440     Binary_ ## NAME(Expression* left, Expression* right)		\
    441       : Binary_expression(left, right)					\
    442     { }									\
    443 									\
    444     uint64_t								\
    445     value(const Expression_eval_info* eei)				\
    446     {									\
    447       Output_section* left_section;					\
    448       uint64_t left_alignment = 0;					\
    449       uint64_t left = this->left_value(eei, &left_section,		\
    450 				       &left_alignment);		\
    451       Output_section* right_section;					\
    452       uint64_t right_alignment = 0;					\
    453       uint64_t right = this->right_value(eei, &right_section,		\
    454 					 &right_alignment);		\
    455       if (KEEP_RIGHT && left_section == NULL && right_section != NULL)	\
    456 	{								\
    457 	  if (eei->result_section_pointer != NULL)			\
    458 	    *eei->result_section_pointer = right_section;		\
    459 	  if (eei->result_alignment_pointer != NULL			\
    460 	      && right_alignment > *eei->result_alignment_pointer)	\
    461 	    *eei->result_alignment_pointer = right_alignment;		\
    462 	}								\
    463       else if (KEEP_LEFT						\
    464 	       && left_section != NULL					\
    465 	       && right_section == NULL)				\
    466 	{								\
    467 	  if (eei->result_section_pointer != NULL)			\
    468 	    *eei->result_section_pointer = left_section;		\
    469 	  if (eei->result_alignment_pointer != NULL			\
    470 	      && left_alignment > *eei->result_alignment_pointer)	\
    471 	    *eei->result_alignment_pointer = left_alignment;		\
    472 	}								\
    473       else if ((WARN || left_section != right_section)			\
    474 	       && (left_section != NULL || right_section != NULL)	\
    475 	       && parameters->options().relocatable())			\
    476 	gold_warning(_("binary " #NAME " applied to section "		\
    477 		       "relative value"));				\
    478       if (IS_DIV && right == 0)						\
    479 	{								\
    480 	  gold_error(_(#NAME " by zero"));				\
    481 	  return 0;							\
    482 	}								\
    483       return left OPERATOR right;					\
    484     }									\
    485 									\
    486     void								\
    487     print(FILE* f) const						\
    488     {									\
    489       fprintf(f, "(");							\
    490       this->left_print(f);						\
    491       fprintf(f, " %s ", #OPERATOR);					\
    492       this->right_print(f);						\
    493       fprintf(f, ")");							\
    494     }									\
    495   };									\
    496 									\
    497   extern "C" Expression*						\
    498   script_exp_binary_ ## NAME(Expression* left, Expression* right)	\
    499   {									\
    500     return new Binary_ ## NAME(left, right);				\
    501   }
    502 
    503 BINARY_EXPRESSION(mult, *, false, false, false, true)
    504 BINARY_EXPRESSION(div, /, false, false, true, true)
    505 BINARY_EXPRESSION(mod, %, false, false, true, true)
    506 BINARY_EXPRESSION(add, +, true, true, false, true)
    507 BINARY_EXPRESSION(sub, -, true, false, false, false)
    508 BINARY_EXPRESSION(lshift, <<, false, false, false, true)
    509 BINARY_EXPRESSION(rshift, >>, false, false, false, true)
    510 BINARY_EXPRESSION(eq, ==, false, false, false, false)
    511 BINARY_EXPRESSION(ne, !=, false, false, false, false)
    512 BINARY_EXPRESSION(le, <=, false, false, false, false)
    513 BINARY_EXPRESSION(ge, >=, false, false, false, false)
    514 BINARY_EXPRESSION(lt, <, false, false, false, false)
    515 BINARY_EXPRESSION(gt, >, false, false, false, false)
    516 BINARY_EXPRESSION(bitwise_and, &, true, true, false, true)
    517 BINARY_EXPRESSION(bitwise_xor, ^, true, true, false, true)
    518 BINARY_EXPRESSION(bitwise_or, |, true, true, false, true)
    519 BINARY_EXPRESSION(logical_and, &&, false, false, false, true)
    520 BINARY_EXPRESSION(logical_or, ||, false, false, false, true)
    521 
    522 // A trinary expression.
    523 
    524 class Trinary_expression : public Expression
    525 {
    526  public:
    527   Trinary_expression(Expression* arg1, Expression* arg2, Expression* arg3)
    528     : arg1_(arg1), arg2_(arg2), arg3_(arg3)
    529   { }
    530 
    531   ~Trinary_expression()
    532   {
    533     delete this->arg1_;
    534     delete this->arg2_;
    535     delete this->arg3_;
    536   }
    537 
    538  protected:
    539   uint64_t
    540   arg1_value(const Expression_eval_info* eei,
    541 	     Output_section** section_pointer) const
    542   {
    543     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
    544 				       eei->check_assertions,
    545 				       eei->is_dot_available,
    546 				       eei->dot_value,
    547 				       eei->dot_section,
    548 				       section_pointer,
    549 				       NULL,
    550 				       NULL,
    551 				       NULL,
    552 				       NULL,
    553 				       false);
    554   }
    555 
    556   uint64_t
    557   arg2_value(const Expression_eval_info* eei,
    558 	     Output_section** section_pointer,
    559 	     uint64_t* alignment_pointer) const
    560   {
    561     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
    562 				       eei->check_assertions,
    563 				       eei->is_dot_available,
    564 				       eei->dot_value,
    565 				       eei->dot_section,
    566 				       section_pointer,
    567 				       alignment_pointer,
    568 				       NULL,
    569 				       NULL,
    570 				       NULL,
    571 				       false);
    572   }
    573 
    574   uint64_t
    575   arg3_value(const Expression_eval_info* eei,
    576 	     Output_section** section_pointer,
    577 	     uint64_t* alignment_pointer) const
    578   {
    579     return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
    580 				       eei->check_assertions,
    581 				       eei->is_dot_available,
    582 				       eei->dot_value,
    583 				       eei->dot_section,
    584 				       section_pointer,
    585 				       alignment_pointer,
    586 				       NULL,
    587 				       NULL,
    588 				       NULL,
    589 				       false);
    590   }
    591 
    592   void
    593   arg1_print(FILE* f) const
    594   { this->arg1_->print(f); }
    595 
    596   void
    597   arg2_print(FILE* f) const
    598   { this->arg2_->print(f); }
    599 
    600   void
    601   arg3_print(FILE* f) const
    602   { this->arg3_->print(f); }
    603 
    604  private:
    605   Expression* arg1_;
    606   Expression* arg2_;
    607   Expression* arg3_;
    608 };
    609 
    610 // The conditional operator.
    611 
    612 class Trinary_cond : public Trinary_expression
    613 {
    614  public:
    615   Trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
    616     : Trinary_expression(arg1, arg2, arg3)
    617   { }
    618 
    619   uint64_t
    620   value(const Expression_eval_info* eei)
    621   {
    622     Output_section* arg1_section;
    623     uint64_t arg1 = this->arg1_value(eei, &arg1_section);
    624     return (arg1
    625 	    ? this->arg2_value(eei, eei->result_section_pointer,
    626 			       eei->result_alignment_pointer)
    627 	    : this->arg3_value(eei, eei->result_section_pointer,
    628 			       eei->result_alignment_pointer));
    629   }
    630 
    631   void
    632   print(FILE* f) const
    633   {
    634     fprintf(f, "(");
    635     this->arg1_print(f);
    636     fprintf(f, " ? ");
    637     this->arg2_print(f);
    638     fprintf(f, " : ");
    639     this->arg3_print(f);
    640     fprintf(f, ")");
    641   }
    642 };
    643 
    644 extern "C" Expression*
    645 script_exp_trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
    646 {
    647   return new Trinary_cond(arg1, arg2, arg3);
    648 }
    649 
    650 // Max function.
    651 
    652 class Max_expression : public Binary_expression
    653 {
    654  public:
    655   Max_expression(Expression* left, Expression* right)
    656     : Binary_expression(left, right)
    657   { }
    658 
    659   uint64_t
    660   value(const Expression_eval_info* eei)
    661   {
    662     Output_section* left_section;
    663     uint64_t left_alignment;
    664     uint64_t left = this->left_value(eei, &left_section, &left_alignment);
    665     Output_section* right_section;
    666     uint64_t right_alignment;
    667     uint64_t right = this->right_value(eei, &right_section, &right_alignment);
    668     if (left_section == right_section)
    669       {
    670 	if (eei->result_section_pointer != NULL)
    671 	  *eei->result_section_pointer = left_section;
    672       }
    673     else if ((left_section != NULL || right_section != NULL)
    674 	     && parameters->options().relocatable())
    675       gold_warning(_("max applied to section relative value"));
    676     if (eei->result_alignment_pointer != NULL)
    677       {
    678 	uint64_t ra = *eei->result_alignment_pointer;
    679 	if (left > right)
    680 	  ra = std::max(ra, left_alignment);
    681 	else if (right > left)
    682 	  ra = std::max(ra, right_alignment);
    683 	else
    684 	  ra = std::max(ra, std::max(left_alignment, right_alignment));
    685 	*eei->result_alignment_pointer = ra;
    686       }
    687     return std::max(left, right);
    688   }
    689 
    690   void
    691   print(FILE* f) const
    692   { this->print_function(f, "MAX"); }
    693 };
    694 
    695 extern "C" Expression*
    696 script_exp_function_max(Expression* left, Expression* right)
    697 {
    698   return new Max_expression(left, right);
    699 }
    700 
    701 // Min function.
    702 
    703 class Min_expression : public Binary_expression
    704 {
    705  public:
    706   Min_expression(Expression* left, Expression* right)
    707     : Binary_expression(left, right)
    708   { }
    709 
    710   uint64_t
    711   value(const Expression_eval_info* eei)
    712   {
    713     Output_section* left_section;
    714     uint64_t left_alignment;
    715     uint64_t left = this->left_value(eei, &left_section, &left_alignment);
    716     Output_section* right_section;
    717     uint64_t right_alignment;
    718     uint64_t right = this->right_value(eei, &right_section, &right_alignment);
    719     if (left_section == right_section)
    720       {
    721 	if (eei->result_section_pointer != NULL)
    722 	  *eei->result_section_pointer = left_section;
    723       }
    724     else if ((left_section != NULL || right_section != NULL)
    725 	     && parameters->options().relocatable())
    726       gold_warning(_("min applied to section relative value"));
    727     if (eei->result_alignment_pointer != NULL)
    728       {
    729 	uint64_t ra = *eei->result_alignment_pointer;
    730 	if (left < right)
    731 	  ra = std::max(ra, left_alignment);
    732 	else if (right < left)
    733 	  ra = std::max(ra, right_alignment);
    734 	else
    735 	  ra = std::max(ra, std::max(left_alignment, right_alignment));
    736 	*eei->result_alignment_pointer = ra;
    737       }
    738     return std::min(left, right);
    739   }
    740 
    741   void
    742   print(FILE* f) const
    743   { this->print_function(f, "MIN"); }
    744 };
    745 
    746 extern "C" Expression*
    747 script_exp_function_min(Expression* left, Expression* right)
    748 {
    749   return new Min_expression(left, right);
    750 }
    751 
    752 // Class Section_expression.  This is a parent class used for
    753 // functions which take the name of an output section.
    754 
    755 class Section_expression : public Expression
    756 {
    757  public:
    758   Section_expression(const char* section_name, size_t section_name_len)
    759     : section_name_(section_name, section_name_len)
    760   { }
    761 
    762   uint64_t
    763   value(const Expression_eval_info*);
    764 
    765   void
    766   print(FILE* f) const
    767   { fprintf(f, "%s(%s)", this->function_name(), this->section_name_.c_str()); }
    768 
    769  protected:
    770   // The child class must implement this.
    771   virtual uint64_t
    772   value_from_output_section(const Expression_eval_info*,
    773 			    Output_section*) = 0;
    774 
    775   // The child class must implement this.
    776   virtual uint64_t
    777   value_from_script_output_section(uint64_t address, uint64_t load_address,
    778                                    uint64_t addralign, uint64_t size) = 0;
    779 
    780   // The child class must implement this.
    781   virtual const char*
    782   function_name() const = 0;
    783 
    784  private:
    785   std::string section_name_;
    786 };
    787 
    788 uint64_t
    789 Section_expression::value(const Expression_eval_info* eei)
    790 {
    791   const char* section_name = this->section_name_.c_str();
    792   Output_section* os = eei->layout->find_output_section(section_name);
    793   if (os != NULL)
    794     return this->value_from_output_section(eei, os);
    795 
    796   uint64_t address;
    797   uint64_t load_address;
    798   uint64_t addralign;
    799   uint64_t size;
    800   const Script_options* ss = eei->layout->script_options();
    801   if (ss->saw_sections_clause())
    802     {
    803       if (ss->script_sections()->get_output_section_info(section_name,
    804                                                          &address,
    805                                                          &load_address,
    806                                                          &addralign,
    807                                                          &size))
    808         return this->value_from_script_output_section(address, load_address,
    809                                                       addralign, size);
    810     }
    811 
    812   gold_error("%s called on nonexistent output section '%s'",
    813              this->function_name(), section_name);
    814   return 0;
    815 }
    816 
    817 // ABSOLUTE function.
    818 
    819 class Absolute_expression : public Unary_expression
    820 {
    821  public:
    822   Absolute_expression(Expression* arg)
    823     : Unary_expression(arg)
    824   { }
    825 
    826   uint64_t
    827   value(const Expression_eval_info* eei)
    828   {
    829     uint64_t ret = this->arg_value(eei, NULL);
    830     // Force the value to be absolute.
    831     if (eei->result_section_pointer != NULL)
    832       *eei->result_section_pointer = NULL;
    833     return ret;
    834   }
    835 
    836   void
    837   print(FILE* f) const
    838   {
    839     fprintf(f, "ABSOLUTE(");
    840     this->arg_print(f);
    841     fprintf(f, ")");
    842   }
    843 };
    844 
    845 extern "C" Expression*
    846 script_exp_function_absolute(Expression* arg)
    847 {
    848   return new Absolute_expression(arg);
    849 }
    850 
    851 // ALIGN function.
    852 
    853 class Align_expression : public Binary_expression
    854 {
    855  public:
    856   Align_expression(Expression* left, Expression* right)
    857     : Binary_expression(left, right)
    858   { }
    859 
    860   uint64_t
    861   value(const Expression_eval_info* eei)
    862   {
    863     Output_section* align_section;
    864     uint64_t align = this->right_value(eei, &align_section, NULL);
    865     if (align_section != NULL
    866 	&& parameters->options().relocatable())
    867       gold_warning(_("aligning to section relative value"));
    868 
    869     if (eei->result_alignment_pointer != NULL
    870 	&& align > *eei->result_alignment_pointer)
    871       {
    872 	uint64_t a = align;
    873 	while ((a & (a - 1)) != 0)
    874 	  a &= a - 1;
    875 	*eei->result_alignment_pointer = a;
    876       }
    877 
    878     uint64_t value = this->left_value(eei, eei->result_section_pointer, NULL);
    879     if (align <= 1)
    880       return value;
    881     return ((value + align - 1) / align) * align;
    882   }
    883 
    884   void
    885   print(FILE* f) const
    886   { this->print_function(f, "ALIGN"); }
    887 };
    888 
    889 extern "C" Expression*
    890 script_exp_function_align(Expression* left, Expression* right)
    891 {
    892   return new Align_expression(left, right);
    893 }
    894 
    895 // ASSERT function.
    896 
    897 class Assert_expression : public Unary_expression
    898 {
    899  public:
    900   Assert_expression(Expression* arg, const char* message, size_t length)
    901     : Unary_expression(arg), message_(message, length)
    902   { }
    903 
    904   uint64_t
    905   value(const Expression_eval_info* eei)
    906   {
    907     uint64_t value = this->arg_value(eei, eei->result_section_pointer);
    908     if (!value && eei->check_assertions)
    909       gold_error("%s", this->message_.c_str());
    910     return value;
    911   }
    912 
    913   void
    914   print(FILE* f) const
    915   {
    916     fprintf(f, "ASSERT(");
    917     this->arg_print(f);
    918     fprintf(f, ", %s)", this->message_.c_str());
    919   }
    920 
    921  private:
    922   std::string message_;
    923 };
    924 
    925 extern "C" Expression*
    926 script_exp_function_assert(Expression* expr, const char* message,
    927 			   size_t length)
    928 {
    929   return new Assert_expression(expr, message, length);
    930 }
    931 
    932 // ADDR function.
    933 
    934 class Addr_expression : public Section_expression
    935 {
    936  public:
    937   Addr_expression(const char* section_name, size_t section_name_len)
    938     : Section_expression(section_name, section_name_len)
    939   { }
    940 
    941  protected:
    942   uint64_t
    943   value_from_output_section(const Expression_eval_info* eei,
    944 			    Output_section* os)
    945   {
    946     if (eei->result_section_pointer != NULL)
    947       *eei->result_section_pointer = os;
    948     return os->address();
    949   }
    950 
    951   uint64_t
    952   value_from_script_output_section(uint64_t address, uint64_t, uint64_t,
    953                                    uint64_t)
    954   { return address; }
    955 
    956   const char*
    957   function_name() const
    958   { return "ADDR"; }
    959 };
    960 
    961 extern "C" Expression*
    962 script_exp_function_addr(const char* section_name, size_t section_name_len)
    963 {
    964   return new Addr_expression(section_name, section_name_len);
    965 }
    966 
    967 // ALIGNOF.
    968 
    969 class Alignof_expression : public Section_expression
    970 {
    971  public:
    972   Alignof_expression(const char* section_name, size_t section_name_len)
    973     : Section_expression(section_name, section_name_len)
    974   { }
    975 
    976  protected:
    977   uint64_t
    978   value_from_output_section(const Expression_eval_info*,
    979 			    Output_section* os)
    980   { return os->addralign(); }
    981 
    982   uint64_t
    983   value_from_script_output_section(uint64_t, uint64_t, uint64_t addralign,
    984                                    uint64_t)
    985   { return addralign; }
    986 
    987   const char*
    988   function_name() const
    989   { return "ALIGNOF"; }
    990 };
    991 
    992 extern "C" Expression*
    993 script_exp_function_alignof(const char* section_name, size_t section_name_len)
    994 {
    995   return new Alignof_expression(section_name, section_name_len);
    996 }
    997 
    998 // CONSTANT.  It would be nice if we could simply evaluate this
    999 // immediately and return an Integer_expression, but unfortunately we
   1000 // don't know the target.
   1001 
   1002 class Constant_expression : public Expression
   1003 {
   1004  public:
   1005   Constant_expression(const char* name, size_t length);
   1006 
   1007   uint64_t
   1008   value(const Expression_eval_info*);
   1009 
   1010   void
   1011   print(FILE* f) const;
   1012 
   1013  private:
   1014   enum Constant_function
   1015   {
   1016     CONSTANT_MAXPAGESIZE,
   1017     CONSTANT_COMMONPAGESIZE
   1018   };
   1019 
   1020   Constant_function function_;
   1021 };
   1022 
   1023 Constant_expression::Constant_expression(const char* name, size_t length)
   1024 {
   1025   if (length == 11 && strncmp(name, "MAXPAGESIZE", length) == 0)
   1026     this->function_ = CONSTANT_MAXPAGESIZE;
   1027   else if (length == 14 && strncmp(name, "COMMONPAGESIZE", length) == 0)
   1028     this->function_ = CONSTANT_COMMONPAGESIZE;
   1029   else
   1030     {
   1031       std::string s(name, length);
   1032       gold_error(_("unknown constant %s"), s.c_str());
   1033       this->function_ = CONSTANT_MAXPAGESIZE;
   1034     }
   1035 }
   1036 
   1037 uint64_t
   1038 Constant_expression::value(const Expression_eval_info*)
   1039 {
   1040   switch (this->function_)
   1041     {
   1042     case CONSTANT_MAXPAGESIZE:
   1043       return parameters->target().abi_pagesize();
   1044     case CONSTANT_COMMONPAGESIZE:
   1045       return parameters->target().common_pagesize();
   1046     default:
   1047       gold_unreachable();
   1048     }
   1049 }
   1050 
   1051 void
   1052 Constant_expression::print(FILE* f) const
   1053 {
   1054   const char* name;
   1055   switch (this->function_)
   1056     {
   1057     case CONSTANT_MAXPAGESIZE:
   1058       name = "MAXPAGESIZE";
   1059       break;
   1060     case CONSTANT_COMMONPAGESIZE:
   1061       name = "COMMONPAGESIZE";
   1062       break;
   1063     default:
   1064       gold_unreachable();
   1065     }
   1066   fprintf(f, "CONSTANT(%s)", name);
   1067 }
   1068 
   1069 extern "C" Expression*
   1070 script_exp_function_constant(const char* name, size_t length)
   1071 {
   1072   return new Constant_expression(name, length);
   1073 }
   1074 
   1075 // DATA_SEGMENT_ALIGN.  FIXME: we don't implement this; we always fall
   1076 // back to the general case.
   1077 
   1078 extern "C" Expression*
   1079 script_exp_function_data_segment_align(Expression* left, Expression*)
   1080 {
   1081   Expression* e1 = script_exp_function_align(script_exp_string(".", 1), left);
   1082   Expression* e2 = script_exp_binary_sub(left, script_exp_integer(1));
   1083   Expression* e3 = script_exp_binary_bitwise_and(script_exp_string(".", 1),
   1084 						 e2);
   1085   return script_exp_binary_add(e1, e3);
   1086 }
   1087 
   1088 // DATA_SEGMENT_RELRO.  FIXME: This is not implemented.
   1089 
   1090 extern "C" Expression*
   1091 script_exp_function_data_segment_relro_end(Expression*, Expression* right)
   1092 {
   1093   return right;
   1094 }
   1095 
   1096 // DATA_SEGMENT_END.  FIXME: This is not implemented.
   1097 
   1098 extern "C" Expression*
   1099 script_exp_function_data_segment_end(Expression* val)
   1100 {
   1101   return val;
   1102 }
   1103 
   1104 // DEFINED function.
   1105 
   1106 class Defined_expression : public Expression
   1107 {
   1108  public:
   1109   Defined_expression(const char* symbol_name, size_t symbol_name_len)
   1110     : symbol_name_(symbol_name, symbol_name_len)
   1111   { }
   1112 
   1113   uint64_t
   1114   value(const Expression_eval_info* eei)
   1115   {
   1116     Symbol* sym = eei->symtab->lookup(this->symbol_name_.c_str());
   1117     return sym != NULL && sym->is_defined();
   1118   }
   1119 
   1120   void
   1121   print(FILE* f) const
   1122   { fprintf(f, "DEFINED(%s)", this->symbol_name_.c_str()); }
   1123 
   1124  private:
   1125   std::string symbol_name_;
   1126 };
   1127 
   1128 extern "C" Expression*
   1129 script_exp_function_defined(const char* symbol_name, size_t symbol_name_len)
   1130 {
   1131   return new Defined_expression(symbol_name, symbol_name_len);
   1132 }
   1133 
   1134 // LOADADDR function
   1135 
   1136 class Loadaddr_expression : public Section_expression
   1137 {
   1138  public:
   1139   Loadaddr_expression(const char* section_name, size_t section_name_len)
   1140     : Section_expression(section_name, section_name_len)
   1141   { }
   1142 
   1143  protected:
   1144   uint64_t
   1145   value_from_output_section(const Expression_eval_info* eei,
   1146 			    Output_section* os)
   1147   {
   1148     if (os->has_load_address())
   1149       return os->load_address();
   1150     else
   1151       {
   1152 	if (eei->result_section_pointer != NULL)
   1153 	  *eei->result_section_pointer = os;
   1154 	return os->address();
   1155       }
   1156   }
   1157 
   1158   uint64_t
   1159   value_from_script_output_section(uint64_t, uint64_t load_address, uint64_t,
   1160                                    uint64_t)
   1161   { return load_address; }
   1162 
   1163   const char*
   1164   function_name() const
   1165   { return "LOADADDR"; }
   1166 };
   1167 
   1168 extern "C" Expression*
   1169 script_exp_function_loadaddr(const char* section_name, size_t section_name_len)
   1170 {
   1171   return new Loadaddr_expression(section_name, section_name_len);
   1172 }
   1173 
   1174 // SIZEOF function
   1175 
   1176 class Sizeof_expression : public Section_expression
   1177 {
   1178  public:
   1179   Sizeof_expression(const char* section_name, size_t section_name_len)
   1180     : Section_expression(section_name, section_name_len)
   1181   { }
   1182 
   1183  protected:
   1184   uint64_t
   1185   value_from_output_section(const Expression_eval_info*,
   1186 			    Output_section* os)
   1187   {
   1188     // We can not use data_size here, as the size of the section may
   1189     // not have been finalized.  Instead we get whatever the current
   1190     // size is.  This will work correctly for backward references in
   1191     // linker scripts.
   1192     return os->current_data_size();
   1193   }
   1194 
   1195   uint64_t
   1196   value_from_script_output_section(uint64_t, uint64_t, uint64_t,
   1197                                    uint64_t size)
   1198   { return size; }
   1199 
   1200   const char*
   1201   function_name() const
   1202   { return "SIZEOF"; }
   1203 };
   1204 
   1205 extern "C" Expression*
   1206 script_exp_function_sizeof(const char* section_name, size_t section_name_len)
   1207 {
   1208   return new Sizeof_expression(section_name, section_name_len);
   1209 }
   1210 
   1211 // SIZEOF_HEADERS.
   1212 
   1213 class Sizeof_headers_expression : public Expression
   1214 {
   1215  public:
   1216   Sizeof_headers_expression()
   1217   { }
   1218 
   1219   uint64_t
   1220   value(const Expression_eval_info*);
   1221 
   1222   void
   1223   print(FILE* f) const
   1224   { fprintf(f, "SIZEOF_HEADERS"); }
   1225 };
   1226 
   1227 uint64_t
   1228 Sizeof_headers_expression::value(const Expression_eval_info* eei)
   1229 {
   1230   unsigned int ehdr_size;
   1231   unsigned int phdr_size;
   1232   if (parameters->target().get_size() == 32)
   1233     {
   1234       ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
   1235       phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
   1236     }
   1237   else if (parameters->target().get_size() == 64)
   1238     {
   1239       ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
   1240       phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
   1241     }
   1242   else
   1243     gold_unreachable();
   1244 
   1245   return ehdr_size + phdr_size * eei->layout->expected_segment_count();
   1246 }
   1247 
   1248 extern "C" Expression*
   1249 script_exp_function_sizeof_headers()
   1250 {
   1251   return new Sizeof_headers_expression();
   1252 }
   1253 
   1254 // SEGMENT_START.
   1255 
   1256 class Segment_start_expression : public Unary_expression
   1257 {
   1258  public:
   1259   Segment_start_expression(const char* segment_name, size_t segment_name_len,
   1260 			   Expression* default_value)
   1261     : Unary_expression(default_value),
   1262       segment_name_(segment_name, segment_name_len)
   1263   { }
   1264 
   1265   uint64_t
   1266   value(const Expression_eval_info*);
   1267 
   1268   void
   1269   print(FILE* f) const
   1270   {
   1271     fprintf(f, "SEGMENT_START(\"%s\", ", this->segment_name_.c_str());
   1272     this->arg_print(f);
   1273     fprintf(f, ")");
   1274   }
   1275 
   1276  private:
   1277   std::string segment_name_;
   1278 };
   1279 
   1280 uint64_t
   1281 Segment_start_expression::value(const Expression_eval_info* eei)
   1282 {
   1283   // Check for command line overrides.
   1284   if (parameters->options().user_set_Ttext()
   1285       && this->segment_name_ == ".text")
   1286     return parameters->options().Ttext();
   1287   else if (parameters->options().user_set_Tdata()
   1288 	   && this->segment_name_ == ".data")
   1289     return parameters->options().Tdata();
   1290   else if (parameters->options().user_set_Tbss()
   1291 	   && this->segment_name_ == ".bss")
   1292     return parameters->options().Tbss();
   1293   else
   1294     {
   1295       uint64_t ret = this->arg_value(eei, NULL);
   1296       // Force the value to be absolute.
   1297       if (eei->result_section_pointer != NULL)
   1298         *eei->result_section_pointer = NULL;
   1299       return ret;
   1300     }
   1301 }
   1302 
   1303 extern "C" Expression*
   1304 script_exp_function_segment_start(const char* segment_name,
   1305 				  size_t segment_name_len,
   1306 				  Expression* default_value)
   1307 {
   1308   return new Segment_start_expression(segment_name, segment_name_len,
   1309 				      default_value);
   1310 }
   1311 
   1312 } // End namespace gold.
   1313