Home | History | Annotate | Download | only in Lex
      1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the NumericLiteralParser, CharLiteralParser, and
     11 // StringLiteralParser interfaces.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/Lex/LiteralSupport.h"
     16 #include "clang/Basic/CharInfo.h"
     17 #include "clang/Basic/TargetInfo.h"
     18 #include "clang/Lex/LexDiagnostic.h"
     19 #include "clang/Lex/Preprocessor.h"
     20 #include "llvm/ADT/StringExtras.h"
     21 #include "llvm/Support/ConvertUTF.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 
     24 using namespace clang;
     25 
     26 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
     27   switch (kind) {
     28   default: llvm_unreachable("Unknown token type!");
     29   case tok::char_constant:
     30   case tok::string_literal:
     31   case tok::utf8_char_constant:
     32   case tok::utf8_string_literal:
     33     return Target.getCharWidth();
     34   case tok::wide_char_constant:
     35   case tok::wide_string_literal:
     36     return Target.getWCharWidth();
     37   case tok::utf16_char_constant:
     38   case tok::utf16_string_literal:
     39     return Target.getChar16Width();
     40   case tok::utf32_char_constant:
     41   case tok::utf32_string_literal:
     42     return Target.getChar32Width();
     43   }
     44 }
     45 
     46 static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
     47                                            FullSourceLoc TokLoc,
     48                                            const char *TokBegin,
     49                                            const char *TokRangeBegin,
     50                                            const char *TokRangeEnd) {
     51   SourceLocation Begin =
     52     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
     53                                    TokLoc.getManager(), Features);
     54   SourceLocation End =
     55     Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
     56                                    TokLoc.getManager(), Features);
     57   return CharSourceRange::getCharRange(Begin, End);
     58 }
     59 
     60 /// \brief Produce a diagnostic highlighting some portion of a literal.
     61 ///
     62 /// Emits the diagnostic \p DiagID, highlighting the range of characters from
     63 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
     64 /// a substring of a spelling buffer for the token beginning at \p TokBegin.
     65 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
     66                               const LangOptions &Features, FullSourceLoc TokLoc,
     67                               const char *TokBegin, const char *TokRangeBegin,
     68                               const char *TokRangeEnd, unsigned DiagID) {
     69   SourceLocation Begin =
     70     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
     71                                    TokLoc.getManager(), Features);
     72   return Diags->Report(Begin, DiagID) <<
     73     MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
     74 }
     75 
     76 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
     77 /// either a character or a string literal.
     78 static unsigned ProcessCharEscape(const char *ThisTokBegin,
     79                                   const char *&ThisTokBuf,
     80                                   const char *ThisTokEnd, bool &HadError,
     81                                   FullSourceLoc Loc, unsigned CharWidth,
     82                                   DiagnosticsEngine *Diags,
     83                                   const LangOptions &Features) {
     84   const char *EscapeBegin = ThisTokBuf;
     85 
     86   // Skip the '\' char.
     87   ++ThisTokBuf;
     88 
     89   // We know that this character can't be off the end of the buffer, because
     90   // that would have been \", which would not have been the end of string.
     91   unsigned ResultChar = *ThisTokBuf++;
     92   switch (ResultChar) {
     93   // These map to themselves.
     94   case '\\': case '\'': case '"': case '?': break;
     95 
     96     // These have fixed mappings.
     97   case 'a':
     98     // TODO: K&R: the meaning of '\\a' is different in traditional C
     99     ResultChar = 7;
    100     break;
    101   case 'b':
    102     ResultChar = 8;
    103     break;
    104   case 'e':
    105     if (Diags)
    106       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    107            diag::ext_nonstandard_escape) << "e";
    108     ResultChar = 27;
    109     break;
    110   case 'E':
    111     if (Diags)
    112       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    113            diag::ext_nonstandard_escape) << "E";
    114     ResultChar = 27;
    115     break;
    116   case 'f':
    117     ResultChar = 12;
    118     break;
    119   case 'n':
    120     ResultChar = 10;
    121     break;
    122   case 'r':
    123     ResultChar = 13;
    124     break;
    125   case 't':
    126     ResultChar = 9;
    127     break;
    128   case 'v':
    129     ResultChar = 11;
    130     break;
    131   case 'x': { // Hex escape.
    132     ResultChar = 0;
    133     if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
    134       if (Diags)
    135         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    136              diag::err_hex_escape_no_digits) << "x";
    137       HadError = 1;
    138       break;
    139     }
    140 
    141     // Hex escapes are a maximal series of hex digits.
    142     bool Overflow = false;
    143     for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
    144       int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
    145       if (CharVal == -1) break;
    146       // About to shift out a digit?
    147       if (ResultChar & 0xF0000000)
    148         Overflow = true;
    149       ResultChar <<= 4;
    150       ResultChar |= CharVal;
    151     }
    152 
    153     // See if any bits will be truncated when evaluated as a character.
    154     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
    155       Overflow = true;
    156       ResultChar &= ~0U >> (32-CharWidth);
    157     }
    158 
    159     // Check for overflow.
    160     if (Overflow && Diags)   // Too many digits to fit in
    161       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    162            diag::err_escape_too_large) << 0;
    163     break;
    164   }
    165   case '0': case '1': case '2': case '3':
    166   case '4': case '5': case '6': case '7': {
    167     // Octal escapes.
    168     --ThisTokBuf;
    169     ResultChar = 0;
    170 
    171     // Octal escapes are a series of octal digits with maximum length 3.
    172     // "\0123" is a two digit sequence equal to "\012" "3".
    173     unsigned NumDigits = 0;
    174     do {
    175       ResultChar <<= 3;
    176       ResultChar |= *ThisTokBuf++ - '0';
    177       ++NumDigits;
    178     } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
    179              ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
    180 
    181     // Check for overflow.  Reject '\777', but not L'\777'.
    182     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
    183       if (Diags)
    184         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    185              diag::err_escape_too_large) << 1;
    186       ResultChar &= ~0U >> (32-CharWidth);
    187     }
    188     break;
    189   }
    190 
    191     // Otherwise, these are not valid escapes.
    192   case '(': case '{': case '[': case '%':
    193     // GCC accepts these as extensions.  We warn about them as such though.
    194     if (Diags)
    195       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    196            diag::ext_nonstandard_escape)
    197         << std::string(1, ResultChar);
    198     break;
    199   default:
    200     if (!Diags)
    201       break;
    202 
    203     if (isPrintable(ResultChar))
    204       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    205            diag::ext_unknown_escape)
    206         << std::string(1, ResultChar);
    207     else
    208       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    209            diag::ext_unknown_escape)
    210         << "x" + llvm::utohexstr(ResultChar);
    211     break;
    212   }
    213 
    214   return ResultChar;
    215 }
    216 
    217 static void appendCodePoint(unsigned Codepoint,
    218                             llvm::SmallVectorImpl<char> &Str) {
    219   char ResultBuf[4];
    220   char *ResultPtr = ResultBuf;
    221   bool Res = llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr);
    222   (void)Res;
    223   assert(Res && "Unexpected conversion failure");
    224   Str.append(ResultBuf, ResultPtr);
    225 }
    226 
    227 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
    228   for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
    229     if (*I != '\\') {
    230       Buf.push_back(*I);
    231       continue;
    232     }
    233 
    234     ++I;
    235     assert(*I == 'u' || *I == 'U');
    236 
    237     unsigned NumHexDigits;
    238     if (*I == 'u')
    239       NumHexDigits = 4;
    240     else
    241       NumHexDigits = 8;
    242 
    243     assert(I + NumHexDigits <= E);
    244 
    245     uint32_t CodePoint = 0;
    246     for (++I; NumHexDigits != 0; ++I, --NumHexDigits) {
    247       unsigned Value = llvm::hexDigitValue(*I);
    248       assert(Value != -1U);
    249 
    250       CodePoint <<= 4;
    251       CodePoint += Value;
    252     }
    253 
    254     appendCodePoint(CodePoint, Buf);
    255     --I;
    256   }
    257 }
    258 
    259 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
    260 /// return the UTF32.
    261 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
    262                              const char *ThisTokEnd,
    263                              uint32_t &UcnVal, unsigned short &UcnLen,
    264                              FullSourceLoc Loc, DiagnosticsEngine *Diags,
    265                              const LangOptions &Features,
    266                              bool in_char_string_literal = false) {
    267   const char *UcnBegin = ThisTokBuf;
    268 
    269   // Skip the '\u' char's.
    270   ThisTokBuf += 2;
    271 
    272   if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
    273     if (Diags)
    274       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    275            diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
    276     return false;
    277   }
    278   UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
    279   unsigned short UcnLenSave = UcnLen;
    280   for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
    281     int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
    282     if (CharVal == -1) break;
    283     UcnVal <<= 4;
    284     UcnVal |= CharVal;
    285   }
    286   // If we didn't consume the proper number of digits, there is a problem.
    287   if (UcnLenSave) {
    288     if (Diags)
    289       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    290            diag::err_ucn_escape_incomplete);
    291     return false;
    292   }
    293 
    294   // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
    295   if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
    296       UcnVal > 0x10FFFF) {                      // maximum legal UTF32 value
    297     if (Diags)
    298       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    299            diag::err_ucn_escape_invalid);
    300     return false;
    301   }
    302 
    303   // C++11 allows UCNs that refer to control characters and basic source
    304   // characters inside character and string literals
    305   if (UcnVal < 0xa0 &&
    306       (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) {  // $, @, `
    307     bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
    308     if (Diags) {
    309       char BasicSCSChar = UcnVal;
    310       if (UcnVal >= 0x20 && UcnVal < 0x7f)
    311         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    312              IsError ? diag::err_ucn_escape_basic_scs :
    313                        diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
    314             << StringRef(&BasicSCSChar, 1);
    315       else
    316         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    317              IsError ? diag::err_ucn_control_character :
    318                        diag::warn_cxx98_compat_literal_ucn_control_character);
    319     }
    320     if (IsError)
    321       return false;
    322   }
    323 
    324   if (!Features.CPlusPlus && !Features.C99 && Diags)
    325     Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    326          diag::warn_ucn_not_valid_in_c89_literal);
    327 
    328   return true;
    329 }
    330 
    331 /// MeasureUCNEscape - Determine the number of bytes within the resulting string
    332 /// which this UCN will occupy.
    333 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
    334                             const char *ThisTokEnd, unsigned CharByteWidth,
    335                             const LangOptions &Features, bool &HadError) {
    336   // UTF-32: 4 bytes per escape.
    337   if (CharByteWidth == 4)
    338     return 4;
    339 
    340   uint32_t UcnVal = 0;
    341   unsigned short UcnLen = 0;
    342   FullSourceLoc Loc;
    343 
    344   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
    345                         UcnLen, Loc, nullptr, Features, true)) {
    346     HadError = true;
    347     return 0;
    348   }
    349 
    350   // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
    351   if (CharByteWidth == 2)
    352     return UcnVal <= 0xFFFF ? 2 : 4;
    353 
    354   // UTF-8.
    355   if (UcnVal < 0x80)
    356     return 1;
    357   if (UcnVal < 0x800)
    358     return 2;
    359   if (UcnVal < 0x10000)
    360     return 3;
    361   return 4;
    362 }
    363 
    364 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
    365 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
    366 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
    367 /// we will likely rework our support for UCN's.
    368 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
    369                             const char *ThisTokEnd,
    370                             char *&ResultBuf, bool &HadError,
    371                             FullSourceLoc Loc, unsigned CharByteWidth,
    372                             DiagnosticsEngine *Diags,
    373                             const LangOptions &Features) {
    374   typedef uint32_t UTF32;
    375   UTF32 UcnVal = 0;
    376   unsigned short UcnLen = 0;
    377   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
    378                         Loc, Diags, Features, true)) {
    379     HadError = true;
    380     return;
    381   }
    382 
    383   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
    384          "only character widths of 1, 2, or 4 bytes supported");
    385 
    386   (void)UcnLen;
    387   assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
    388 
    389   if (CharByteWidth == 4) {
    390     // FIXME: Make the type of the result buffer correct instead of
    391     // using reinterpret_cast.
    392     UTF32 *ResultPtr = reinterpret_cast<UTF32*>(ResultBuf);
    393     *ResultPtr = UcnVal;
    394     ResultBuf += 4;
    395     return;
    396   }
    397 
    398   if (CharByteWidth == 2) {
    399     // FIXME: Make the type of the result buffer correct instead of
    400     // using reinterpret_cast.
    401     UTF16 *ResultPtr = reinterpret_cast<UTF16*>(ResultBuf);
    402 
    403     if (UcnVal <= (UTF32)0xFFFF) {
    404       *ResultPtr = UcnVal;
    405       ResultBuf += 2;
    406       return;
    407     }
    408 
    409     // Convert to UTF16.
    410     UcnVal -= 0x10000;
    411     *ResultPtr     = 0xD800 + (UcnVal >> 10);
    412     *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
    413     ResultBuf += 4;
    414     return;
    415   }
    416 
    417   assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
    418 
    419   // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
    420   // The conversion below was inspired by:
    421   //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
    422   // First, we determine how many bytes the result will require.
    423   typedef uint8_t UTF8;
    424 
    425   unsigned short bytesToWrite = 0;
    426   if (UcnVal < (UTF32)0x80)
    427     bytesToWrite = 1;
    428   else if (UcnVal < (UTF32)0x800)
    429     bytesToWrite = 2;
    430   else if (UcnVal < (UTF32)0x10000)
    431     bytesToWrite = 3;
    432   else
    433     bytesToWrite = 4;
    434 
    435   const unsigned byteMask = 0xBF;
    436   const unsigned byteMark = 0x80;
    437 
    438   // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
    439   // into the first byte, depending on how many bytes follow.
    440   static const UTF8 firstByteMark[5] = {
    441     0x00, 0x00, 0xC0, 0xE0, 0xF0
    442   };
    443   // Finally, we write the bytes into ResultBuf.
    444   ResultBuf += bytesToWrite;
    445   switch (bytesToWrite) { // note: everything falls through.
    446   case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
    447   case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
    448   case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
    449   case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
    450   }
    451   // Update the buffer.
    452   ResultBuf += bytesToWrite;
    453 }
    454 
    455 
    456 ///       integer-constant: [C99 6.4.4.1]
    457 ///         decimal-constant integer-suffix
    458 ///         octal-constant integer-suffix
    459 ///         hexadecimal-constant integer-suffix
    460 ///         binary-literal integer-suffix [GNU, C++1y]
    461 ///       user-defined-integer-literal: [C++11 lex.ext]
    462 ///         decimal-literal ud-suffix
    463 ///         octal-literal ud-suffix
    464 ///         hexadecimal-literal ud-suffix
    465 ///         binary-literal ud-suffix [GNU, C++1y]
    466 ///       decimal-constant:
    467 ///         nonzero-digit
    468 ///         decimal-constant digit
    469 ///       octal-constant:
    470 ///         0
    471 ///         octal-constant octal-digit
    472 ///       hexadecimal-constant:
    473 ///         hexadecimal-prefix hexadecimal-digit
    474 ///         hexadecimal-constant hexadecimal-digit
    475 ///       hexadecimal-prefix: one of
    476 ///         0x 0X
    477 ///       binary-literal:
    478 ///         0b binary-digit
    479 ///         0B binary-digit
    480 ///         binary-literal binary-digit
    481 ///       integer-suffix:
    482 ///         unsigned-suffix [long-suffix]
    483 ///         unsigned-suffix [long-long-suffix]
    484 ///         long-suffix [unsigned-suffix]
    485 ///         long-long-suffix [unsigned-sufix]
    486 ///       nonzero-digit:
    487 ///         1 2 3 4 5 6 7 8 9
    488 ///       octal-digit:
    489 ///         0 1 2 3 4 5 6 7
    490 ///       hexadecimal-digit:
    491 ///         0 1 2 3 4 5 6 7 8 9
    492 ///         a b c d e f
    493 ///         A B C D E F
    494 ///       binary-digit:
    495 ///         0
    496 ///         1
    497 ///       unsigned-suffix: one of
    498 ///         u U
    499 ///       long-suffix: one of
    500 ///         l L
    501 ///       long-long-suffix: one of
    502 ///         ll LL
    503 ///
    504 ///       floating-constant: [C99 6.4.4.2]
    505 ///         TODO: add rules...
    506 ///
    507 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
    508                                            SourceLocation TokLoc,
    509                                            Preprocessor &PP)
    510   : PP(PP), ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
    511 
    512   // This routine assumes that the range begin/end matches the regex for integer
    513   // and FP constants (specifically, the 'pp-number' regex), and assumes that
    514   // the byte at "*end" is both valid and not part of the regex.  Because of
    515   // this, it doesn't have to check for 'overscan' in various places.
    516   assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?");
    517 
    518   s = DigitsBegin = ThisTokBegin;
    519   saw_exponent = false;
    520   saw_period = false;
    521   saw_ud_suffix = false;
    522   isLong = false;
    523   isUnsigned = false;
    524   isLongLong = false;
    525   isFloat = false;
    526   isImaginary = false;
    527   MicrosoftInteger = 0;
    528   hadError = false;
    529 
    530   if (*s == '0') { // parse radix
    531     ParseNumberStartingWithZero(TokLoc);
    532     if (hadError)
    533       return;
    534   } else { // the first digit is non-zero
    535     radix = 10;
    536     s = SkipDigits(s);
    537     if (s == ThisTokEnd) {
    538       // Done.
    539     } else if (isHexDigit(*s) && !(*s == 'e' || *s == 'E')) {
    540       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
    541               diag::err_invalid_digit) << StringRef(s, 1) << 0;
    542       hadError = true;
    543       return;
    544     } else if (*s == '.') {
    545       checkSeparator(TokLoc, s, CSK_AfterDigits);
    546       s++;
    547       saw_period = true;
    548       checkSeparator(TokLoc, s, CSK_BeforeDigits);
    549       s = SkipDigits(s);
    550     }
    551     if ((*s == 'e' || *s == 'E')) { // exponent
    552       checkSeparator(TokLoc, s, CSK_AfterDigits);
    553       const char *Exponent = s;
    554       s++;
    555       saw_exponent = true;
    556       if (*s == '+' || *s == '-')  s++; // sign
    557       checkSeparator(TokLoc, s, CSK_BeforeDigits);
    558       const char *first_non_digit = SkipDigits(s);
    559       if (first_non_digit != s) {
    560         s = first_non_digit;
    561       } else {
    562         PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent - ThisTokBegin),
    563                 diag::err_exponent_has_no_digits);
    564         hadError = true;
    565         return;
    566       }
    567     }
    568   }
    569 
    570   SuffixBegin = s;
    571   checkSeparator(TokLoc, s, CSK_AfterDigits);
    572 
    573   // Parse the suffix.  At this point we can classify whether we have an FP or
    574   // integer constant.
    575   bool isFPConstant = isFloatingLiteral();
    576   const char *ImaginarySuffixLoc = nullptr;
    577 
    578   // Loop over all of the characters of the suffix.  If we see something bad,
    579   // we break out of the loop.
    580   for (; s != ThisTokEnd; ++s) {
    581     switch (*s) {
    582     case 'f':      // FP Suffix for "float"
    583     case 'F':
    584       if (!isFPConstant) break;  // Error for integer constant.
    585       if (isFloat || isLong) break; // FF, LF invalid.
    586       isFloat = true;
    587       continue;  // Success.
    588     case 'u':
    589     case 'U':
    590       if (isFPConstant) break;  // Error for floating constant.
    591       if (isUnsigned) break;    // Cannot be repeated.
    592       isUnsigned = true;
    593       continue;  // Success.
    594     case 'l':
    595     case 'L':
    596       if (isLong || isLongLong) break;  // Cannot be repeated.
    597       if (isFloat) break;               // LF invalid.
    598 
    599       // Check for long long.  The L's need to be adjacent and the same case.
    600       if (s[1] == s[0]) {
    601         assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
    602         if (isFPConstant) break;        // long long invalid for floats.
    603         isLongLong = true;
    604         ++s;  // Eat both of them.
    605       } else {
    606         isLong = true;
    607       }
    608       continue;  // Success.
    609     case 'i':
    610     case 'I':
    611       if (PP.getLangOpts().MicrosoftExt) {
    612         if (isLong || isLongLong || MicrosoftInteger)
    613           break;
    614 
    615         if (!isFPConstant) {
    616           // Allow i8, i16, i32, and i64.
    617           switch (s[1]) {
    618           case '8':
    619             s += 2; // i8 suffix
    620             MicrosoftInteger = 8;
    621             break;
    622           case '1':
    623             if (s[2] == '6') {
    624               s += 3; // i16 suffix
    625               MicrosoftInteger = 16;
    626             }
    627             break;
    628           case '3':
    629             if (s[2] == '2') {
    630               s += 3; // i32 suffix
    631               MicrosoftInteger = 32;
    632             }
    633             break;
    634           case '6':
    635             if (s[2] == '4') {
    636               s += 3; // i64 suffix
    637               MicrosoftInteger = 64;
    638             }
    639             break;
    640           default:
    641             break;
    642           }
    643         }
    644         if (MicrosoftInteger) {
    645           assert(s <= ThisTokEnd && "didn't maximally munch?");
    646           break;
    647         }
    648       }
    649       // "i", "if", and "il" are user-defined suffixes in C++1y.
    650       if (*s == 'i' && PP.getLangOpts().CPlusPlus14)
    651         break;
    652       // fall through.
    653     case 'j':
    654     case 'J':
    655       if (isImaginary) break;   // Cannot be repeated.
    656       isImaginary = true;
    657       ImaginarySuffixLoc = s;
    658       continue;  // Success.
    659     }
    660     // If we reached here, there was an error or a ud-suffix.
    661     break;
    662   }
    663 
    664   if (s != ThisTokEnd) {
    665     // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
    666     expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
    667     if (isValidUDSuffix(PP.getLangOpts(), UDSuffixBuf)) {
    668       // Any suffix pieces we might have parsed are actually part of the
    669       // ud-suffix.
    670       isLong = false;
    671       isUnsigned = false;
    672       isLongLong = false;
    673       isFloat = false;
    674       isImaginary = false;
    675       MicrosoftInteger = 0;
    676 
    677       saw_ud_suffix = true;
    678       return;
    679     }
    680 
    681     // Report an error if there are any.
    682     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin - ThisTokBegin),
    683             diag::err_invalid_suffix_constant)
    684       << StringRef(SuffixBegin, ThisTokEnd-SuffixBegin) << isFPConstant;
    685     hadError = true;
    686     return;
    687   }
    688 
    689   if (isImaginary) {
    690     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc,
    691                                        ImaginarySuffixLoc - ThisTokBegin),
    692             diag::ext_imaginary_constant);
    693   }
    694 }
    695 
    696 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
    697 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
    698 /// treat it as an invalid suffix.
    699 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
    700                                            StringRef Suffix) {
    701   if (!LangOpts.CPlusPlus11 || Suffix.empty())
    702     return false;
    703 
    704   // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
    705   if (Suffix[0] == '_')
    706     return true;
    707 
    708   // In C++11, there are no library suffixes.
    709   if (!LangOpts.CPlusPlus14)
    710     return false;
    711 
    712   // In C++1y, "s", "h", "min", "ms", "us", and "ns" are used in the library.
    713   // Per tweaked N3660, "il", "i", and "if" are also used in the library.
    714   return llvm::StringSwitch<bool>(Suffix)
    715       .Cases("h", "min", "s", true)
    716       .Cases("ms", "us", "ns", true)
    717       .Cases("il", "i", "if", true)
    718       .Default(false);
    719 }
    720 
    721 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
    722                                           const char *Pos,
    723                                           CheckSeparatorKind IsAfterDigits) {
    724   if (IsAfterDigits == CSK_AfterDigits) {
    725     if (Pos == ThisTokBegin)
    726       return;
    727     --Pos;
    728   } else if (Pos == ThisTokEnd)
    729     return;
    730 
    731   if (isDigitSeparator(*Pos))
    732     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin),
    733             diag::err_digit_separator_not_between_digits)
    734       << IsAfterDigits;
    735 }
    736 
    737 /// ParseNumberStartingWithZero - This method is called when the first character
    738 /// of the number is found to be a zero.  This means it is either an octal
    739 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
    740 /// a floating point number (01239.123e4).  Eat the prefix, determining the
    741 /// radix etc.
    742 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
    743   assert(s[0] == '0' && "Invalid method call");
    744   s++;
    745 
    746   int c1 = s[0];
    747 
    748   // Handle a hex number like 0x1234.
    749   if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
    750     s++;
    751     assert(s < ThisTokEnd && "didn't maximally munch?");
    752     radix = 16;
    753     DigitsBegin = s;
    754     s = SkipHexDigits(s);
    755     bool noSignificand = (s == DigitsBegin);
    756     if (s == ThisTokEnd) {
    757       // Done.
    758     } else if (*s == '.') {
    759       s++;
    760       saw_period = true;
    761       const char *floatDigitsBegin = s;
    762       checkSeparator(TokLoc, s, CSK_BeforeDigits);
    763       s = SkipHexDigits(s);
    764       noSignificand &= (floatDigitsBegin == s);
    765     }
    766 
    767     if (noSignificand) {
    768       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
    769         diag::err_hexconstant_requires) << 1;
    770       hadError = true;
    771       return;
    772     }
    773 
    774     // A binary exponent can appear with or with a '.'. If dotted, the
    775     // binary exponent is required.
    776     if (*s == 'p' || *s == 'P') {
    777       checkSeparator(TokLoc, s, CSK_AfterDigits);
    778       const char *Exponent = s;
    779       s++;
    780       saw_exponent = true;
    781       if (*s == '+' || *s == '-')  s++; // sign
    782       const char *first_non_digit = SkipDigits(s);
    783       if (first_non_digit == s) {
    784         PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
    785                 diag::err_exponent_has_no_digits);
    786         hadError = true;
    787         return;
    788       }
    789       checkSeparator(TokLoc, s, CSK_BeforeDigits);
    790       s = first_non_digit;
    791 
    792       if (!PP.getLangOpts().HexFloats)
    793         PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
    794     } else if (saw_period) {
    795       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
    796               diag::err_hexconstant_requires) << 0;
    797       hadError = true;
    798     }
    799     return;
    800   }
    801 
    802   // Handle simple binary numbers 0b01010
    803   if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
    804     // 0b101010 is a C++1y / GCC extension.
    805     PP.Diag(TokLoc,
    806             PP.getLangOpts().CPlusPlus14
    807               ? diag::warn_cxx11_compat_binary_literal
    808               : PP.getLangOpts().CPlusPlus
    809                 ? diag::ext_binary_literal_cxx14
    810                 : diag::ext_binary_literal);
    811     ++s;
    812     assert(s < ThisTokEnd && "didn't maximally munch?");
    813     radix = 2;
    814     DigitsBegin = s;
    815     s = SkipBinaryDigits(s);
    816     if (s == ThisTokEnd) {
    817       // Done.
    818     } else if (isHexDigit(*s)) {
    819       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
    820               diag::err_invalid_digit) << StringRef(s, 1) << 2;
    821       hadError = true;
    822     }
    823     // Other suffixes will be diagnosed by the caller.
    824     return;
    825   }
    826 
    827   // For now, the radix is set to 8. If we discover that we have a
    828   // floating point constant, the radix will change to 10. Octal floating
    829   // point constants are not permitted (only decimal and hexadecimal).
    830   radix = 8;
    831   DigitsBegin = s;
    832   s = SkipOctalDigits(s);
    833   if (s == ThisTokEnd)
    834     return; // Done, simple octal number like 01234
    835 
    836   // If we have some other non-octal digit that *is* a decimal digit, see if
    837   // this is part of a floating point number like 094.123 or 09e1.
    838   if (isDigit(*s)) {
    839     const char *EndDecimal = SkipDigits(s);
    840     if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
    841       s = EndDecimal;
    842       radix = 10;
    843     }
    844   }
    845 
    846   // If we have a hex digit other than 'e' (which denotes a FP exponent) then
    847   // the code is using an incorrect base.
    848   if (isHexDigit(*s) && *s != 'e' && *s != 'E') {
    849     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
    850             diag::err_invalid_digit) << StringRef(s, 1) << 1;
    851     hadError = true;
    852     return;
    853   }
    854 
    855   if (*s == '.') {
    856     s++;
    857     radix = 10;
    858     saw_period = true;
    859     checkSeparator(TokLoc, s, CSK_BeforeDigits);
    860     s = SkipDigits(s); // Skip suffix.
    861   }
    862   if (*s == 'e' || *s == 'E') { // exponent
    863     checkSeparator(TokLoc, s, CSK_AfterDigits);
    864     const char *Exponent = s;
    865     s++;
    866     radix = 10;
    867     saw_exponent = true;
    868     if (*s == '+' || *s == '-')  s++; // sign
    869     const char *first_non_digit = SkipDigits(s);
    870     if (first_non_digit != s) {
    871       checkSeparator(TokLoc, s, CSK_BeforeDigits);
    872       s = first_non_digit;
    873     } else {
    874       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
    875               diag::err_exponent_has_no_digits);
    876       hadError = true;
    877       return;
    878     }
    879   }
    880 }
    881 
    882 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
    883   switch (Radix) {
    884   case 2:
    885     return NumDigits <= 64;
    886   case 8:
    887     return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
    888   case 10:
    889     return NumDigits <= 19; // floor(log10(2^64))
    890   case 16:
    891     return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
    892   default:
    893     llvm_unreachable("impossible Radix");
    894   }
    895 }
    896 
    897 /// GetIntegerValue - Convert this numeric literal value to an APInt that
    898 /// matches Val's input width.  If there is an overflow, set Val to the low bits
    899 /// of the result and return true.  Otherwise, return false.
    900 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
    901   // Fast path: Compute a conservative bound on the maximum number of
    902   // bits per digit in this radix. If we can't possibly overflow a
    903   // uint64 based on that bound then do the simple conversion to
    904   // integer. This avoids the expensive overflow checking below, and
    905   // handles the common cases that matter (small decimal integers and
    906   // hex/octal values which don't overflow).
    907   const unsigned NumDigits = SuffixBegin - DigitsBegin;
    908   if (alwaysFitsInto64Bits(radix, NumDigits)) {
    909     uint64_t N = 0;
    910     for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
    911       if (!isDigitSeparator(*Ptr))
    912         N = N * radix + llvm::hexDigitValue(*Ptr);
    913 
    914     // This will truncate the value to Val's input width. Simply check
    915     // for overflow by comparing.
    916     Val = N;
    917     return Val.getZExtValue() != N;
    918   }
    919 
    920   Val = 0;
    921   const char *Ptr = DigitsBegin;
    922 
    923   llvm::APInt RadixVal(Val.getBitWidth(), radix);
    924   llvm::APInt CharVal(Val.getBitWidth(), 0);
    925   llvm::APInt OldVal = Val;
    926 
    927   bool OverflowOccurred = false;
    928   while (Ptr < SuffixBegin) {
    929     if (isDigitSeparator(*Ptr)) {
    930       ++Ptr;
    931       continue;
    932     }
    933 
    934     unsigned C = llvm::hexDigitValue(*Ptr++);
    935 
    936     // If this letter is out of bound for this radix, reject it.
    937     assert(C < radix && "NumericLiteralParser ctor should have rejected this");
    938 
    939     CharVal = C;
    940 
    941     // Add the digit to the value in the appropriate radix.  If adding in digits
    942     // made the value smaller, then this overflowed.
    943     OldVal = Val;
    944 
    945     // Multiply by radix, did overflow occur on the multiply?
    946     Val *= RadixVal;
    947     OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
    948 
    949     // Add value, did overflow occur on the value?
    950     //   (a + b) ult b  <=> overflow
    951     Val += CharVal;
    952     OverflowOccurred |= Val.ult(CharVal);
    953   }
    954   return OverflowOccurred;
    955 }
    956 
    957 llvm::APFloat::opStatus
    958 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
    959   using llvm::APFloat;
    960 
    961   unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
    962 
    963   llvm::SmallString<16> Buffer;
    964   StringRef Str(ThisTokBegin, n);
    965   if (Str.find('\'') != StringRef::npos) {
    966     Buffer.reserve(n);
    967     std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
    968                         &isDigitSeparator);
    969     Str = Buffer;
    970   }
    971 
    972   return Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
    973 }
    974 
    975 
    976 /// \verbatim
    977 ///       user-defined-character-literal: [C++11 lex.ext]
    978 ///         character-literal ud-suffix
    979 ///       ud-suffix:
    980 ///         identifier
    981 ///       character-literal: [C++11 lex.ccon]
    982 ///         ' c-char-sequence '
    983 ///         u' c-char-sequence '
    984 ///         U' c-char-sequence '
    985 ///         L' c-char-sequence '
    986 ///       c-char-sequence:
    987 ///         c-char
    988 ///         c-char-sequence c-char
    989 ///       c-char:
    990 ///         any member of the source character set except the single-quote ',
    991 ///           backslash \, or new-line character
    992 ///         escape-sequence
    993 ///         universal-character-name
    994 ///       escape-sequence:
    995 ///         simple-escape-sequence
    996 ///         octal-escape-sequence
    997 ///         hexadecimal-escape-sequence
    998 ///       simple-escape-sequence:
    999 ///         one of \' \" \? \\ \a \b \f \n \r \t \v
   1000 ///       octal-escape-sequence:
   1001 ///         \ octal-digit
   1002 ///         \ octal-digit octal-digit
   1003 ///         \ octal-digit octal-digit octal-digit
   1004 ///       hexadecimal-escape-sequence:
   1005 ///         \x hexadecimal-digit
   1006 ///         hexadecimal-escape-sequence hexadecimal-digit
   1007 ///       universal-character-name: [C++11 lex.charset]
   1008 ///         \u hex-quad
   1009 ///         \U hex-quad hex-quad
   1010 ///       hex-quad:
   1011 ///         hex-digit hex-digit hex-digit hex-digit
   1012 /// \endverbatim
   1013 ///
   1014 CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
   1015                                      SourceLocation Loc, Preprocessor &PP,
   1016                                      tok::TokenKind kind) {
   1017   // At this point we know that the character matches the regex "(L|u|U)?'.*'".
   1018   HadError = false;
   1019 
   1020   Kind = kind;
   1021 
   1022   const char *TokBegin = begin;
   1023 
   1024   // Skip over wide character determinant.
   1025   if (Kind != tok::char_constant)
   1026     ++begin;
   1027   if (Kind == tok::utf8_char_constant)
   1028     ++begin;
   1029 
   1030   // Skip over the entry quote.
   1031   assert(begin[0] == '\'' && "Invalid token lexed");
   1032   ++begin;
   1033 
   1034   // Remove an optional ud-suffix.
   1035   if (end[-1] != '\'') {
   1036     const char *UDSuffixEnd = end;
   1037     do {
   1038       --end;
   1039     } while (end[-1] != '\'');
   1040     // FIXME: Don't bother with this if !tok.hasUCN().
   1041     expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
   1042     UDSuffixOffset = end - TokBegin;
   1043   }
   1044 
   1045   // Trim the ending quote.
   1046   assert(end != begin && "Invalid token lexed");
   1047   --end;
   1048 
   1049   // FIXME: The "Value" is an uint64_t so we can handle char literals of
   1050   // up to 64-bits.
   1051   // FIXME: This extensively assumes that 'char' is 8-bits.
   1052   assert(PP.getTargetInfo().getCharWidth() == 8 &&
   1053          "Assumes char is 8 bits");
   1054   assert(PP.getTargetInfo().getIntWidth() <= 64 &&
   1055          (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
   1056          "Assumes sizeof(int) on target is <= 64 and a multiple of char");
   1057   assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
   1058          "Assumes sizeof(wchar) on target is <= 64");
   1059 
   1060   SmallVector<uint32_t, 4> codepoint_buffer;
   1061   codepoint_buffer.resize(end - begin);
   1062   uint32_t *buffer_begin = &codepoint_buffer.front();
   1063   uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
   1064 
   1065   // Unicode escapes representing characters that cannot be correctly
   1066   // represented in a single code unit are disallowed in character literals
   1067   // by this implementation.
   1068   uint32_t largest_character_for_kind;
   1069   if (tok::wide_char_constant == Kind) {
   1070     largest_character_for_kind =
   1071         0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
   1072   } else if (tok::utf8_char_constant == Kind) {
   1073     largest_character_for_kind = 0x7F;
   1074   } else if (tok::utf16_char_constant == Kind) {
   1075     largest_character_for_kind = 0xFFFF;
   1076   } else if (tok::utf32_char_constant == Kind) {
   1077     largest_character_for_kind = 0x10FFFF;
   1078   } else {
   1079     largest_character_for_kind = 0x7Fu;
   1080   }
   1081 
   1082   while (begin != end) {
   1083     // Is this a span of non-escape characters?
   1084     if (begin[0] != '\\') {
   1085       char const *start = begin;
   1086       do {
   1087         ++begin;
   1088       } while (begin != end && *begin != '\\');
   1089 
   1090       char const *tmp_in_start = start;
   1091       uint32_t *tmp_out_start = buffer_begin;
   1092       ConversionResult res =
   1093           ConvertUTF8toUTF32(reinterpret_cast<UTF8 const **>(&start),
   1094                              reinterpret_cast<UTF8 const *>(begin),
   1095                              &buffer_begin, buffer_end, strictConversion);
   1096       if (res != conversionOK) {
   1097         // If we see bad encoding for unprefixed character literals, warn and
   1098         // simply copy the byte values, for compatibility with gcc and
   1099         // older versions of clang.
   1100         bool NoErrorOnBadEncoding = isAscii();
   1101         unsigned Msg = diag::err_bad_character_encoding;
   1102         if (NoErrorOnBadEncoding)
   1103           Msg = diag::warn_bad_character_encoding;
   1104         PP.Diag(Loc, Msg);
   1105         if (NoErrorOnBadEncoding) {
   1106           start = tmp_in_start;
   1107           buffer_begin = tmp_out_start;
   1108           for (; start != begin; ++start, ++buffer_begin)
   1109             *buffer_begin = static_cast<uint8_t>(*start);
   1110         } else {
   1111           HadError = true;
   1112         }
   1113       } else {
   1114         for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
   1115           if (*tmp_out_start > largest_character_for_kind) {
   1116             HadError = true;
   1117             PP.Diag(Loc, diag::err_character_too_large);
   1118           }
   1119         }
   1120       }
   1121 
   1122       continue;
   1123     }
   1124     // Is this a Universal Character Name escape?
   1125     if (begin[1] == 'u' || begin[1] == 'U') {
   1126       unsigned short UcnLen = 0;
   1127       if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
   1128                             FullSourceLoc(Loc, PP.getSourceManager()),
   1129                             &PP.getDiagnostics(), PP.getLangOpts(), true)) {
   1130         HadError = true;
   1131       } else if (*buffer_begin > largest_character_for_kind) {
   1132         HadError = true;
   1133         PP.Diag(Loc, diag::err_character_too_large);
   1134       }
   1135 
   1136       ++buffer_begin;
   1137       continue;
   1138     }
   1139     unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
   1140     uint64_t result =
   1141       ProcessCharEscape(TokBegin, begin, end, HadError,
   1142                         FullSourceLoc(Loc,PP.getSourceManager()),
   1143                         CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
   1144     *buffer_begin++ = result;
   1145   }
   1146 
   1147   unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
   1148 
   1149   if (NumCharsSoFar > 1) {
   1150     if (isWide())
   1151       PP.Diag(Loc, diag::warn_extraneous_char_constant);
   1152     else if (isAscii() && NumCharsSoFar == 4)
   1153       PP.Diag(Loc, diag::ext_four_char_character_literal);
   1154     else if (isAscii())
   1155       PP.Diag(Loc, diag::ext_multichar_character_literal);
   1156     else
   1157       PP.Diag(Loc, diag::err_multichar_utf_character_literal);
   1158     IsMultiChar = true;
   1159   } else {
   1160     IsMultiChar = false;
   1161   }
   1162 
   1163   llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
   1164 
   1165   // Narrow character literals act as though their value is concatenated
   1166   // in this implementation, but warn on overflow.
   1167   bool multi_char_too_long = false;
   1168   if (isAscii() && isMultiChar()) {
   1169     LitVal = 0;
   1170     for (size_t i = 0; i < NumCharsSoFar; ++i) {
   1171       // check for enough leading zeros to shift into
   1172       multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
   1173       LitVal <<= 8;
   1174       LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
   1175     }
   1176   } else if (NumCharsSoFar > 0) {
   1177     // otherwise just take the last character
   1178     LitVal = buffer_begin[-1];
   1179   }
   1180 
   1181   if (!HadError && multi_char_too_long) {
   1182     PP.Diag(Loc, diag::warn_char_constant_too_large);
   1183   }
   1184 
   1185   // Transfer the value from APInt to uint64_t
   1186   Value = LitVal.getZExtValue();
   1187 
   1188   // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
   1189   // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
   1190   // character constants are not sign extended in the this implementation:
   1191   // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
   1192   if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
   1193       PP.getLangOpts().CharIsSigned)
   1194     Value = (signed char)Value;
   1195 }
   1196 
   1197 /// \verbatim
   1198 ///       string-literal: [C++0x lex.string]
   1199 ///         encoding-prefix " [s-char-sequence] "
   1200 ///         encoding-prefix R raw-string
   1201 ///       encoding-prefix:
   1202 ///         u8
   1203 ///         u
   1204 ///         U
   1205 ///         L
   1206 ///       s-char-sequence:
   1207 ///         s-char
   1208 ///         s-char-sequence s-char
   1209 ///       s-char:
   1210 ///         any member of the source character set except the double-quote ",
   1211 ///           backslash \, or new-line character
   1212 ///         escape-sequence
   1213 ///         universal-character-name
   1214 ///       raw-string:
   1215 ///         " d-char-sequence ( r-char-sequence ) d-char-sequence "
   1216 ///       r-char-sequence:
   1217 ///         r-char
   1218 ///         r-char-sequence r-char
   1219 ///       r-char:
   1220 ///         any member of the source character set, except a right parenthesis )
   1221 ///           followed by the initial d-char-sequence (which may be empty)
   1222 ///           followed by a double quote ".
   1223 ///       d-char-sequence:
   1224 ///         d-char
   1225 ///         d-char-sequence d-char
   1226 ///       d-char:
   1227 ///         any member of the basic source character set except:
   1228 ///           space, the left parenthesis (, the right parenthesis ),
   1229 ///           the backslash \, and the control characters representing horizontal
   1230 ///           tab, vertical tab, form feed, and newline.
   1231 ///       escape-sequence: [C++0x lex.ccon]
   1232 ///         simple-escape-sequence
   1233 ///         octal-escape-sequence
   1234 ///         hexadecimal-escape-sequence
   1235 ///       simple-escape-sequence:
   1236 ///         one of \' \" \? \\ \a \b \f \n \r \t \v
   1237 ///       octal-escape-sequence:
   1238 ///         \ octal-digit
   1239 ///         \ octal-digit octal-digit
   1240 ///         \ octal-digit octal-digit octal-digit
   1241 ///       hexadecimal-escape-sequence:
   1242 ///         \x hexadecimal-digit
   1243 ///         hexadecimal-escape-sequence hexadecimal-digit
   1244 ///       universal-character-name:
   1245 ///         \u hex-quad
   1246 ///         \U hex-quad hex-quad
   1247 ///       hex-quad:
   1248 ///         hex-digit hex-digit hex-digit hex-digit
   1249 /// \endverbatim
   1250 ///
   1251 StringLiteralParser::
   1252 StringLiteralParser(ArrayRef<Token> StringToks,
   1253                     Preprocessor &PP, bool Complain)
   1254   : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
   1255     Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() :nullptr),
   1256     MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
   1257     ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
   1258   init(StringToks);
   1259 }
   1260 
   1261 void StringLiteralParser::init(ArrayRef<Token> StringToks){
   1262   // The literal token may have come from an invalid source location (e.g. due
   1263   // to a PCH error), in which case the token length will be 0.
   1264   if (StringToks.empty() || StringToks[0].getLength() < 2)
   1265     return DiagnoseLexingError(SourceLocation());
   1266 
   1267   // Scan all of the string portions, remember the max individual token length,
   1268   // computing a bound on the concatenated string length, and see whether any
   1269   // piece is a wide-string.  If any of the string portions is a wide-string
   1270   // literal, the result is a wide-string literal [C99 6.4.5p4].
   1271   assert(!StringToks.empty() && "expected at least one token");
   1272   MaxTokenLength = StringToks[0].getLength();
   1273   assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
   1274   SizeBound = StringToks[0].getLength()-2;  // -2 for "".
   1275   Kind = StringToks[0].getKind();
   1276 
   1277   hadError = false;
   1278 
   1279   // Implement Translation Phase #6: concatenation of string literals
   1280   /// (C99 5.1.1.2p1).  The common case is only one string fragment.
   1281   for (unsigned i = 1; i != StringToks.size(); ++i) {
   1282     if (StringToks[i].getLength() < 2)
   1283       return DiagnoseLexingError(StringToks[i].getLocation());
   1284 
   1285     // The string could be shorter than this if it needs cleaning, but this is a
   1286     // reasonable bound, which is all we need.
   1287     assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
   1288     SizeBound += StringToks[i].getLength()-2;  // -2 for "".
   1289 
   1290     // Remember maximum string piece length.
   1291     if (StringToks[i].getLength() > MaxTokenLength)
   1292       MaxTokenLength = StringToks[i].getLength();
   1293 
   1294     // Remember if we see any wide or utf-8/16/32 strings.
   1295     // Also check for illegal concatenations.
   1296     if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
   1297       if (isAscii()) {
   1298         Kind = StringToks[i].getKind();
   1299       } else {
   1300         if (Diags)
   1301           Diags->Report(StringToks[i].getLocation(),
   1302                         diag::err_unsupported_string_concat);
   1303         hadError = true;
   1304       }
   1305     }
   1306   }
   1307 
   1308   // Include space for the null terminator.
   1309   ++SizeBound;
   1310 
   1311   // TODO: K&R warning: "traditional C rejects string constant concatenation"
   1312 
   1313   // Get the width in bytes of char/wchar_t/char16_t/char32_t
   1314   CharByteWidth = getCharWidth(Kind, Target);
   1315   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
   1316   CharByteWidth /= 8;
   1317 
   1318   // The output buffer size needs to be large enough to hold wide characters.
   1319   // This is a worst-case assumption which basically corresponds to L"" "long".
   1320   SizeBound *= CharByteWidth;
   1321 
   1322   // Size the temporary buffer to hold the result string data.
   1323   ResultBuf.resize(SizeBound);
   1324 
   1325   // Likewise, but for each string piece.
   1326   SmallString<512> TokenBuf;
   1327   TokenBuf.resize(MaxTokenLength);
   1328 
   1329   // Loop over all the strings, getting their spelling, and expanding them to
   1330   // wide strings as appropriate.
   1331   ResultPtr = &ResultBuf[0];   // Next byte to fill in.
   1332 
   1333   Pascal = false;
   1334 
   1335   SourceLocation UDSuffixTokLoc;
   1336 
   1337   for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
   1338     const char *ThisTokBuf = &TokenBuf[0];
   1339     // Get the spelling of the token, which eliminates trigraphs, etc.  We know
   1340     // that ThisTokBuf points to a buffer that is big enough for the whole token
   1341     // and 'spelled' tokens can only shrink.
   1342     bool StringInvalid = false;
   1343     unsigned ThisTokLen =
   1344       Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
   1345                          &StringInvalid);
   1346     if (StringInvalid)
   1347       return DiagnoseLexingError(StringToks[i].getLocation());
   1348 
   1349     const char *ThisTokBegin = ThisTokBuf;
   1350     const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
   1351 
   1352     // Remove an optional ud-suffix.
   1353     if (ThisTokEnd[-1] != '"') {
   1354       const char *UDSuffixEnd = ThisTokEnd;
   1355       do {
   1356         --ThisTokEnd;
   1357       } while (ThisTokEnd[-1] != '"');
   1358 
   1359       StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
   1360 
   1361       if (UDSuffixBuf.empty()) {
   1362         if (StringToks[i].hasUCN())
   1363           expandUCNs(UDSuffixBuf, UDSuffix);
   1364         else
   1365           UDSuffixBuf.assign(UDSuffix);
   1366         UDSuffixToken = i;
   1367         UDSuffixOffset = ThisTokEnd - ThisTokBuf;
   1368         UDSuffixTokLoc = StringToks[i].getLocation();
   1369       } else {
   1370         SmallString<32> ExpandedUDSuffix;
   1371         if (StringToks[i].hasUCN()) {
   1372           expandUCNs(ExpandedUDSuffix, UDSuffix);
   1373           UDSuffix = ExpandedUDSuffix;
   1374         }
   1375 
   1376         // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
   1377         // result of a concatenation involving at least one user-defined-string-
   1378         // literal, all the participating user-defined-string-literals shall
   1379         // have the same ud-suffix.
   1380         if (UDSuffixBuf != UDSuffix) {
   1381           if (Diags) {
   1382             SourceLocation TokLoc = StringToks[i].getLocation();
   1383             Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
   1384               << UDSuffixBuf << UDSuffix
   1385               << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
   1386               << SourceRange(TokLoc, TokLoc);
   1387           }
   1388           hadError = true;
   1389         }
   1390       }
   1391     }
   1392 
   1393     // Strip the end quote.
   1394     --ThisTokEnd;
   1395 
   1396     // TODO: Input character set mapping support.
   1397 
   1398     // Skip marker for wide or unicode strings.
   1399     if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
   1400       ++ThisTokBuf;
   1401       // Skip 8 of u8 marker for utf8 strings.
   1402       if (ThisTokBuf[0] == '8')
   1403         ++ThisTokBuf;
   1404     }
   1405 
   1406     // Check for raw string
   1407     if (ThisTokBuf[0] == 'R') {
   1408       ThisTokBuf += 2; // skip R"
   1409 
   1410       const char *Prefix = ThisTokBuf;
   1411       while (ThisTokBuf[0] != '(')
   1412         ++ThisTokBuf;
   1413       ++ThisTokBuf; // skip '('
   1414 
   1415       // Remove same number of characters from the end
   1416       ThisTokEnd -= ThisTokBuf - Prefix;
   1417       assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal");
   1418 
   1419       // C++14 [lex.string]p4: A source-file new-line in a raw string literal
   1420       // results in a new-line in the resulting execution string-literal.
   1421       StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf);
   1422       while (!RemainingTokenSpan.empty()) {
   1423         // Split the string literal on \r\n boundaries.
   1424         size_t CRLFPos = RemainingTokenSpan.find("\r\n");
   1425         StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos);
   1426         StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos);
   1427 
   1428         // Copy everything before the \r\n sequence into the string literal.
   1429         if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF))
   1430           hadError = true;
   1431 
   1432         // Point into the \n inside the \r\n sequence and operate on the
   1433         // remaining portion of the literal.
   1434         RemainingTokenSpan = AfterCRLF.substr(1);
   1435       }
   1436     } else {
   1437       if (ThisTokBuf[0] != '"') {
   1438         // The file may have come from PCH and then changed after loading the
   1439         // PCH; Fail gracefully.
   1440         return DiagnoseLexingError(StringToks[i].getLocation());
   1441       }
   1442       ++ThisTokBuf; // skip "
   1443 
   1444       // Check if this is a pascal string
   1445       if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
   1446           ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
   1447 
   1448         // If the \p sequence is found in the first token, we have a pascal string
   1449         // Otherwise, if we already have a pascal string, ignore the first \p
   1450         if (i == 0) {
   1451           ++ThisTokBuf;
   1452           Pascal = true;
   1453         } else if (Pascal)
   1454           ThisTokBuf += 2;
   1455       }
   1456 
   1457       while (ThisTokBuf != ThisTokEnd) {
   1458         // Is this a span of non-escape characters?
   1459         if (ThisTokBuf[0] != '\\') {
   1460           const char *InStart = ThisTokBuf;
   1461           do {
   1462             ++ThisTokBuf;
   1463           } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
   1464 
   1465           // Copy the character span over.
   1466           if (CopyStringFragment(StringToks[i], ThisTokBegin,
   1467                                  StringRef(InStart, ThisTokBuf - InStart)))
   1468             hadError = true;
   1469           continue;
   1470         }
   1471         // Is this a Universal Character Name escape?
   1472         if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
   1473           EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
   1474                           ResultPtr, hadError,
   1475                           FullSourceLoc(StringToks[i].getLocation(), SM),
   1476                           CharByteWidth, Diags, Features);
   1477           continue;
   1478         }
   1479         // Otherwise, this is a non-UCN escape character.  Process it.
   1480         unsigned ResultChar =
   1481           ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
   1482                             FullSourceLoc(StringToks[i].getLocation(), SM),
   1483                             CharByteWidth*8, Diags, Features);
   1484 
   1485         if (CharByteWidth == 4) {
   1486           // FIXME: Make the type of the result buffer correct instead of
   1487           // using reinterpret_cast.
   1488           UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultPtr);
   1489           *ResultWidePtr = ResultChar;
   1490           ResultPtr += 4;
   1491         } else if (CharByteWidth == 2) {
   1492           // FIXME: Make the type of the result buffer correct instead of
   1493           // using reinterpret_cast.
   1494           UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultPtr);
   1495           *ResultWidePtr = ResultChar & 0xFFFF;
   1496           ResultPtr += 2;
   1497         } else {
   1498           assert(CharByteWidth == 1 && "Unexpected char width");
   1499           *ResultPtr++ = ResultChar & 0xFF;
   1500         }
   1501       }
   1502     }
   1503   }
   1504 
   1505   if (Pascal) {
   1506     if (CharByteWidth == 4) {
   1507       // FIXME: Make the type of the result buffer correct instead of
   1508       // using reinterpret_cast.
   1509       UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultBuf.data());
   1510       ResultWidePtr[0] = GetNumStringChars() - 1;
   1511     } else if (CharByteWidth == 2) {
   1512       // FIXME: Make the type of the result buffer correct instead of
   1513       // using reinterpret_cast.
   1514       UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultBuf.data());
   1515       ResultWidePtr[0] = GetNumStringChars() - 1;
   1516     } else {
   1517       assert(CharByteWidth == 1 && "Unexpected char width");
   1518       ResultBuf[0] = GetNumStringChars() - 1;
   1519     }
   1520 
   1521     // Verify that pascal strings aren't too large.
   1522     if (GetStringLength() > 256) {
   1523       if (Diags)
   1524         Diags->Report(StringToks.front().getLocation(),
   1525                       diag::err_pascal_string_too_long)
   1526           << SourceRange(StringToks.front().getLocation(),
   1527                          StringToks.back().getLocation());
   1528       hadError = true;
   1529       return;
   1530     }
   1531   } else if (Diags) {
   1532     // Complain if this string literal has too many characters.
   1533     unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
   1534 
   1535     if (GetNumStringChars() > MaxChars)
   1536       Diags->Report(StringToks.front().getLocation(),
   1537                     diag::ext_string_too_long)
   1538         << GetNumStringChars() << MaxChars
   1539         << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
   1540         << SourceRange(StringToks.front().getLocation(),
   1541                        StringToks.back().getLocation());
   1542   }
   1543 }
   1544 
   1545 static const char *resyncUTF8(const char *Err, const char *End) {
   1546   if (Err == End)
   1547     return End;
   1548   End = Err + std::min<unsigned>(getNumBytesForUTF8(*Err), End-Err);
   1549   while (++Err != End && (*Err & 0xC0) == 0x80)
   1550     ;
   1551   return Err;
   1552 }
   1553 
   1554 /// \brief This function copies from Fragment, which is a sequence of bytes
   1555 /// within Tok's contents (which begin at TokBegin) into ResultPtr.
   1556 /// Performs widening for multi-byte characters.
   1557 bool StringLiteralParser::CopyStringFragment(const Token &Tok,
   1558                                              const char *TokBegin,
   1559                                              StringRef Fragment) {
   1560   const UTF8 *ErrorPtrTmp;
   1561   if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
   1562     return false;
   1563 
   1564   // If we see bad encoding for unprefixed string literals, warn and
   1565   // simply copy the byte values, for compatibility with gcc and older
   1566   // versions of clang.
   1567   bool NoErrorOnBadEncoding = isAscii();
   1568   if (NoErrorOnBadEncoding) {
   1569     memcpy(ResultPtr, Fragment.data(), Fragment.size());
   1570     ResultPtr += Fragment.size();
   1571   }
   1572 
   1573   if (Diags) {
   1574     const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
   1575 
   1576     FullSourceLoc SourceLoc(Tok.getLocation(), SM);
   1577     const DiagnosticBuilder &Builder =
   1578       Diag(Diags, Features, SourceLoc, TokBegin,
   1579            ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
   1580            NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
   1581                                 : diag::err_bad_string_encoding);
   1582 
   1583     const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
   1584     StringRef NextFragment(NextStart, Fragment.end()-NextStart);
   1585 
   1586     // Decode into a dummy buffer.
   1587     SmallString<512> Dummy;
   1588     Dummy.reserve(Fragment.size() * CharByteWidth);
   1589     char *Ptr = Dummy.data();
   1590 
   1591     while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
   1592       const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
   1593       NextStart = resyncUTF8(ErrorPtr, Fragment.end());
   1594       Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
   1595                                      ErrorPtr, NextStart);
   1596       NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
   1597     }
   1598   }
   1599   return !NoErrorOnBadEncoding;
   1600 }
   1601 
   1602 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
   1603   hadError = true;
   1604   if (Diags)
   1605     Diags->Report(Loc, diag::err_lexing_string);
   1606 }
   1607 
   1608 /// getOffsetOfStringByte - This function returns the offset of the
   1609 /// specified byte of the string data represented by Token.  This handles
   1610 /// advancing over escape sequences in the string.
   1611 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
   1612                                                     unsigned ByteNo) const {
   1613   // Get the spelling of the token.
   1614   SmallString<32> SpellingBuffer;
   1615   SpellingBuffer.resize(Tok.getLength());
   1616 
   1617   bool StringInvalid = false;
   1618   const char *SpellingPtr = &SpellingBuffer[0];
   1619   unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
   1620                                        &StringInvalid);
   1621   if (StringInvalid)
   1622     return 0;
   1623 
   1624   const char *SpellingStart = SpellingPtr;
   1625   const char *SpellingEnd = SpellingPtr+TokLen;
   1626 
   1627   // Handle UTF-8 strings just like narrow strings.
   1628   if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
   1629     SpellingPtr += 2;
   1630 
   1631   assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
   1632          SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
   1633 
   1634   // For raw string literals, this is easy.
   1635   if (SpellingPtr[0] == 'R') {
   1636     assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
   1637     // Skip 'R"'.
   1638     SpellingPtr += 2;
   1639     while (*SpellingPtr != '(') {
   1640       ++SpellingPtr;
   1641       assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
   1642     }
   1643     // Skip '('.
   1644     ++SpellingPtr;
   1645     return SpellingPtr - SpellingStart + ByteNo;
   1646   }
   1647 
   1648   // Skip over the leading quote
   1649   assert(SpellingPtr[0] == '"' && "Should be a string literal!");
   1650   ++SpellingPtr;
   1651 
   1652   // Skip over bytes until we find the offset we're looking for.
   1653   while (ByteNo) {
   1654     assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
   1655 
   1656     // Step over non-escapes simply.
   1657     if (*SpellingPtr != '\\') {
   1658       ++SpellingPtr;
   1659       --ByteNo;
   1660       continue;
   1661     }
   1662 
   1663     // Otherwise, this is an escape character.  Advance over it.
   1664     bool HadError = false;
   1665     if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
   1666       const char *EscapePtr = SpellingPtr;
   1667       unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
   1668                                       1, Features, HadError);
   1669       if (Len > ByteNo) {
   1670         // ByteNo is somewhere within the escape sequence.
   1671         SpellingPtr = EscapePtr;
   1672         break;
   1673       }
   1674       ByteNo -= Len;
   1675     } else {
   1676       ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
   1677                         FullSourceLoc(Tok.getLocation(), SM),
   1678                         CharByteWidth*8, Diags, Features);
   1679       --ByteNo;
   1680     }
   1681     assert(!HadError && "This method isn't valid on erroneous strings");
   1682   }
   1683 
   1684   return SpellingPtr-SpellingStart;
   1685 }
   1686