Home | History | Annotate | Download | only in x87
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions
      6 // are met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the
     14 // distribution.
     15 //
     16 // - Neither the name of Sun Microsystems or the names of contributors may
     17 // be used to endorse or promote products derived from this software without
     18 // specific prior written permission.
     19 //
     20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     31 // OF THE POSSIBILITY OF SUCH DAMAGE.
     32 
     33 // The original source code covered by the above license above has been modified
     34 // significantly by Google Inc.
     35 // Copyright 2012 the V8 project authors. All rights reserved.
     36 
     37 #include "src/x87/assembler-x87.h"
     38 
     39 #if V8_TARGET_ARCH_X87
     40 
     41 #include "src/base/bits.h"
     42 #include "src/base/cpu.h"
     43 #include "src/disassembler.h"
     44 #include "src/macro-assembler.h"
     45 #include "src/v8.h"
     46 
     47 namespace v8 {
     48 namespace internal {
     49 
     50 // -----------------------------------------------------------------------------
     51 // Implementation of CpuFeatures
     52 
     53 void CpuFeatures::ProbeImpl(bool cross_compile) {
     54   base::CPU cpu;
     55 
     56   // Only use statically determined features for cross compile (snapshot).
     57   if (cross_compile) return;
     58 }
     59 
     60 
     61 void CpuFeatures::PrintTarget() { }
     62 void CpuFeatures::PrintFeatures() { }
     63 
     64 
     65 // -----------------------------------------------------------------------------
     66 // Implementation of Displacement
     67 
     68 void Displacement::init(Label* L, Type type) {
     69   DCHECK(!L->is_bound());
     70   int next = 0;
     71   if (L->is_linked()) {
     72     next = L->pos();
     73     DCHECK(next > 0);  // Displacements must be at positions > 0
     74   }
     75   // Ensure that we _never_ overflow the next field.
     76   DCHECK(NextField::is_valid(Assembler::kMaximalBufferSize));
     77   data_ = NextField::encode(next) | TypeField::encode(type);
     78 }
     79 
     80 
     81 // -----------------------------------------------------------------------------
     82 // Implementation of RelocInfo
     83 
     84 
     85 const int RelocInfo::kApplyMask =
     86     RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY |
     87     1 << RelocInfo::INTERNAL_REFERENCE | 1 << RelocInfo::CODE_AGE_SEQUENCE |
     88     RelocInfo::kDebugBreakSlotMask;
     89 
     90 
     91 bool RelocInfo::IsCodedSpecially() {
     92   // The deserializer needs to know whether a pointer is specially coded.  Being
     93   // specially coded on IA32 means that it is a relative address, as used by
     94   // branch instructions.  These are also the ones that need changing when a
     95   // code object moves.
     96   return (1 << rmode_) & kApplyMask;
     97 }
     98 
     99 
    100 bool RelocInfo::IsInConstantPool() {
    101   return false;
    102 }
    103 
    104 Address RelocInfo::wasm_memory_reference() {
    105   DCHECK(IsWasmMemoryReference(rmode_));
    106   return Memory::Address_at(pc_);
    107 }
    108 
    109 Address RelocInfo::wasm_global_reference() {
    110   DCHECK(IsWasmGlobalReference(rmode_));
    111   return Memory::Address_at(pc_);
    112 }
    113 
    114 uint32_t RelocInfo::wasm_memory_size_reference() {
    115   DCHECK(IsWasmMemorySizeReference(rmode_));
    116   return Memory::uint32_at(pc_);
    117 }
    118 
    119 void RelocInfo::unchecked_update_wasm_memory_reference(
    120     Address address, ICacheFlushMode flush_mode) {
    121   Memory::Address_at(pc_) = address;
    122 }
    123 
    124 void RelocInfo::unchecked_update_wasm_memory_size(uint32_t size,
    125                                                   ICacheFlushMode flush_mode) {
    126   Memory::uint32_at(pc_) = size;
    127 }
    128 
    129 // -----------------------------------------------------------------------------
    130 // Implementation of Operand
    131 
    132 Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
    133   // [base + disp/r]
    134   if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
    135     // [base]
    136     set_modrm(0, base);
    137     if (base.is(esp)) set_sib(times_1, esp, base);
    138   } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
    139     // [base + disp8]
    140     set_modrm(1, base);
    141     if (base.is(esp)) set_sib(times_1, esp, base);
    142     set_disp8(disp);
    143   } else {
    144     // [base + disp/r]
    145     set_modrm(2, base);
    146     if (base.is(esp)) set_sib(times_1, esp, base);
    147     set_dispr(disp, rmode);
    148   }
    149 }
    150 
    151 
    152 Operand::Operand(Register base,
    153                  Register index,
    154                  ScaleFactor scale,
    155                  int32_t disp,
    156                  RelocInfo::Mode rmode) {
    157   DCHECK(!index.is(esp));  // illegal addressing mode
    158   // [base + index*scale + disp/r]
    159   if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
    160     // [base + index*scale]
    161     set_modrm(0, esp);
    162     set_sib(scale, index, base);
    163   } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
    164     // [base + index*scale + disp8]
    165     set_modrm(1, esp);
    166     set_sib(scale, index, base);
    167     set_disp8(disp);
    168   } else {
    169     // [base + index*scale + disp/r]
    170     set_modrm(2, esp);
    171     set_sib(scale, index, base);
    172     set_dispr(disp, rmode);
    173   }
    174 }
    175 
    176 
    177 Operand::Operand(Register index,
    178                  ScaleFactor scale,
    179                  int32_t disp,
    180                  RelocInfo::Mode rmode) {
    181   DCHECK(!index.is(esp));  // illegal addressing mode
    182   // [index*scale + disp/r]
    183   set_modrm(0, esp);
    184   set_sib(scale, index, ebp);
    185   set_dispr(disp, rmode);
    186 }
    187 
    188 
    189 bool Operand::is_reg(Register reg) const {
    190   return ((buf_[0] & 0xF8) == 0xC0)  // addressing mode is register only.
    191       && ((buf_[0] & 0x07) == reg.code());  // register codes match.
    192 }
    193 
    194 
    195 bool Operand::is_reg_only() const {
    196   return (buf_[0] & 0xF8) == 0xC0;  // Addressing mode is register only.
    197 }
    198 
    199 
    200 Register Operand::reg() const {
    201   DCHECK(is_reg_only());
    202   return Register::from_code(buf_[0] & 0x07);
    203 }
    204 
    205 
    206 // -----------------------------------------------------------------------------
    207 // Implementation of Assembler.
    208 
    209 // Emit a single byte. Must always be inlined.
    210 #define EMIT(x)                                 \
    211   *pc_++ = (x)
    212 
    213 
    214 #ifdef GENERATED_CODE_COVERAGE
    215 static void InitCoverageLog();
    216 #endif
    217 
    218 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
    219     : AssemblerBase(isolate, buffer, buffer_size),
    220       positions_recorder_(this) {
    221   // Clear the buffer in debug mode unless it was provided by the
    222   // caller in which case we can't be sure it's okay to overwrite
    223   // existing code in it; see CodePatcher::CodePatcher(...).
    224 #ifdef DEBUG
    225   if (own_buffer_) {
    226     memset(buffer_, 0xCC, buffer_size_);  // int3
    227   }
    228 #endif
    229 
    230   reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
    231 
    232 #ifdef GENERATED_CODE_COVERAGE
    233   InitCoverageLog();
    234 #endif
    235 }
    236 
    237 
    238 void Assembler::GetCode(CodeDesc* desc) {
    239   // Finalize code (at this point overflow() may be true, but the gap ensures
    240   // that we are still not overlapping instructions and relocation info).
    241   reloc_info_writer.Finish();
    242   DCHECK(pc_ <= reloc_info_writer.pos());  // No overlap.
    243   // Set up code descriptor.
    244   desc->buffer = buffer_;
    245   desc->buffer_size = buffer_size_;
    246   desc->instr_size = pc_offset();
    247   desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
    248   desc->origin = this;
    249   desc->constant_pool_size = 0;
    250   desc->unwinding_info_size = 0;
    251   desc->unwinding_info = nullptr;
    252 }
    253 
    254 
    255 void Assembler::Align(int m) {
    256   DCHECK(base::bits::IsPowerOfTwo32(m));
    257   int mask = m - 1;
    258   int addr = pc_offset();
    259   Nop((m - (addr & mask)) & mask);
    260 }
    261 
    262 
    263 bool Assembler::IsNop(Address addr) {
    264   Address a = addr;
    265   while (*a == 0x66) a++;
    266   if (*a == 0x90) return true;
    267   if (a[0] == 0xf && a[1] == 0x1f) return true;
    268   return false;
    269 }
    270 
    271 
    272 void Assembler::Nop(int bytes) {
    273   EnsureSpace ensure_space(this);
    274 
    275   // Older CPUs that do not support SSE2 may not support multibyte NOP
    276   // instructions.
    277   for (; bytes > 0; bytes--) {
    278     EMIT(0x90);
    279   }
    280   return;
    281 }
    282 
    283 
    284 void Assembler::CodeTargetAlign() {
    285   Align(16);  // Preferred alignment of jump targets on ia32.
    286 }
    287 
    288 
    289 void Assembler::cpuid() {
    290   EnsureSpace ensure_space(this);
    291   EMIT(0x0F);
    292   EMIT(0xA2);
    293 }
    294 
    295 
    296 void Assembler::pushad() {
    297   EnsureSpace ensure_space(this);
    298   EMIT(0x60);
    299 }
    300 
    301 
    302 void Assembler::popad() {
    303   EnsureSpace ensure_space(this);
    304   EMIT(0x61);
    305 }
    306 
    307 
    308 void Assembler::pushfd() {
    309   EnsureSpace ensure_space(this);
    310   EMIT(0x9C);
    311 }
    312 
    313 
    314 void Assembler::popfd() {
    315   EnsureSpace ensure_space(this);
    316   EMIT(0x9D);
    317 }
    318 
    319 
    320 void Assembler::push(const Immediate& x) {
    321   EnsureSpace ensure_space(this);
    322   if (x.is_int8()) {
    323     EMIT(0x6a);
    324     EMIT(x.x_);
    325   } else {
    326     EMIT(0x68);
    327     emit(x);
    328   }
    329 }
    330 
    331 
    332 void Assembler::push_imm32(int32_t imm32) {
    333   EnsureSpace ensure_space(this);
    334   EMIT(0x68);
    335   emit(imm32);
    336 }
    337 
    338 
    339 void Assembler::push(Register src) {
    340   EnsureSpace ensure_space(this);
    341   EMIT(0x50 | src.code());
    342 }
    343 
    344 
    345 void Assembler::push(const Operand& src) {
    346   EnsureSpace ensure_space(this);
    347   EMIT(0xFF);
    348   emit_operand(esi, src);
    349 }
    350 
    351 
    352 void Assembler::pop(Register dst) {
    353   DCHECK(reloc_info_writer.last_pc() != NULL);
    354   EnsureSpace ensure_space(this);
    355   EMIT(0x58 | dst.code());
    356 }
    357 
    358 
    359 void Assembler::pop(const Operand& dst) {
    360   EnsureSpace ensure_space(this);
    361   EMIT(0x8F);
    362   emit_operand(eax, dst);
    363 }
    364 
    365 
    366 void Assembler::enter(const Immediate& size) {
    367   EnsureSpace ensure_space(this);
    368   EMIT(0xC8);
    369   emit_w(size);
    370   EMIT(0);
    371 }
    372 
    373 
    374 void Assembler::leave() {
    375   EnsureSpace ensure_space(this);
    376   EMIT(0xC9);
    377 }
    378 
    379 
    380 void Assembler::mov_b(Register dst, const Operand& src) {
    381   CHECK(dst.is_byte_register());
    382   EnsureSpace ensure_space(this);
    383   EMIT(0x8A);
    384   emit_operand(dst, src);
    385 }
    386 
    387 
    388 void Assembler::mov_b(const Operand& dst, const Immediate& src) {
    389   EnsureSpace ensure_space(this);
    390   EMIT(0xC6);
    391   emit_operand(eax, dst);
    392   EMIT(static_cast<int8_t>(src.x_));
    393 }
    394 
    395 
    396 void Assembler::mov_b(const Operand& dst, int8_t imm8) {
    397   EnsureSpace ensure_space(this);
    398   EMIT(0xC6);
    399   emit_operand(eax, dst);
    400   EMIT(imm8);
    401 }
    402 
    403 
    404 void Assembler::mov_b(const Operand& dst, Register src) {
    405   CHECK(src.is_byte_register());
    406   EnsureSpace ensure_space(this);
    407   EMIT(0x88);
    408   emit_operand(src, dst);
    409 }
    410 
    411 
    412 void Assembler::mov_w(Register dst, const Operand& src) {
    413   EnsureSpace ensure_space(this);
    414   EMIT(0x66);
    415   EMIT(0x8B);
    416   emit_operand(dst, src);
    417 }
    418 
    419 
    420 void Assembler::mov_w(const Operand& dst, Register src) {
    421   EnsureSpace ensure_space(this);
    422   EMIT(0x66);
    423   EMIT(0x89);
    424   emit_operand(src, dst);
    425 }
    426 
    427 
    428 void Assembler::mov_w(const Operand& dst, int16_t imm16) {
    429   EnsureSpace ensure_space(this);
    430   EMIT(0x66);
    431   EMIT(0xC7);
    432   emit_operand(eax, dst);
    433   EMIT(static_cast<int8_t>(imm16 & 0xff));
    434   EMIT(static_cast<int8_t>(imm16 >> 8));
    435 }
    436 
    437 
    438 void Assembler::mov_w(const Operand& dst, const Immediate& src) {
    439   EnsureSpace ensure_space(this);
    440   EMIT(0x66);
    441   EMIT(0xC7);
    442   emit_operand(eax, dst);
    443   EMIT(static_cast<int8_t>(src.x_ & 0xff));
    444   EMIT(static_cast<int8_t>(src.x_ >> 8));
    445 }
    446 
    447 
    448 void Assembler::mov(Register dst, int32_t imm32) {
    449   EnsureSpace ensure_space(this);
    450   EMIT(0xB8 | dst.code());
    451   emit(imm32);
    452 }
    453 
    454 
    455 void Assembler::mov(Register dst, const Immediate& x) {
    456   EnsureSpace ensure_space(this);
    457   EMIT(0xB8 | dst.code());
    458   emit(x);
    459 }
    460 
    461 
    462 void Assembler::mov(Register dst, Handle<Object> handle) {
    463   EnsureSpace ensure_space(this);
    464   EMIT(0xB8 | dst.code());
    465   emit(handle);
    466 }
    467 
    468 
    469 void Assembler::mov(Register dst, const Operand& src) {
    470   EnsureSpace ensure_space(this);
    471   EMIT(0x8B);
    472   emit_operand(dst, src);
    473 }
    474 
    475 
    476 void Assembler::mov(Register dst, Register src) {
    477   EnsureSpace ensure_space(this);
    478   EMIT(0x89);
    479   EMIT(0xC0 | src.code() << 3 | dst.code());
    480 }
    481 
    482 
    483 void Assembler::mov(const Operand& dst, const Immediate& x) {
    484   EnsureSpace ensure_space(this);
    485   EMIT(0xC7);
    486   emit_operand(eax, dst);
    487   emit(x);
    488 }
    489 
    490 
    491 void Assembler::mov(const Operand& dst, Handle<Object> handle) {
    492   EnsureSpace ensure_space(this);
    493   EMIT(0xC7);
    494   emit_operand(eax, dst);
    495   emit(handle);
    496 }
    497 
    498 
    499 void Assembler::mov(const Operand& dst, Register src) {
    500   EnsureSpace ensure_space(this);
    501   EMIT(0x89);
    502   emit_operand(src, dst);
    503 }
    504 
    505 
    506 void Assembler::movsx_b(Register dst, const Operand& src) {
    507   EnsureSpace ensure_space(this);
    508   EMIT(0x0F);
    509   EMIT(0xBE);
    510   emit_operand(dst, src);
    511 }
    512 
    513 
    514 void Assembler::movsx_w(Register dst, const Operand& src) {
    515   EnsureSpace ensure_space(this);
    516   EMIT(0x0F);
    517   EMIT(0xBF);
    518   emit_operand(dst, src);
    519 }
    520 
    521 
    522 void Assembler::movzx_b(Register dst, const Operand& src) {
    523   EnsureSpace ensure_space(this);
    524   EMIT(0x0F);
    525   EMIT(0xB6);
    526   emit_operand(dst, src);
    527 }
    528 
    529 
    530 void Assembler::movzx_w(Register dst, const Operand& src) {
    531   EnsureSpace ensure_space(this);
    532   EMIT(0x0F);
    533   EMIT(0xB7);
    534   emit_operand(dst, src);
    535 }
    536 
    537 
    538 void Assembler::cld() {
    539   EnsureSpace ensure_space(this);
    540   EMIT(0xFC);
    541 }
    542 
    543 
    544 void Assembler::rep_movs() {
    545   EnsureSpace ensure_space(this);
    546   EMIT(0xF3);
    547   EMIT(0xA5);
    548 }
    549 
    550 
    551 void Assembler::rep_stos() {
    552   EnsureSpace ensure_space(this);
    553   EMIT(0xF3);
    554   EMIT(0xAB);
    555 }
    556 
    557 
    558 void Assembler::stos() {
    559   EnsureSpace ensure_space(this);
    560   EMIT(0xAB);
    561 }
    562 
    563 
    564 void Assembler::xchg(Register dst, Register src) {
    565   EnsureSpace ensure_space(this);
    566   if (src.is(eax) || dst.is(eax)) {  // Single-byte encoding.
    567     EMIT(0x90 | (src.is(eax) ? dst.code() : src.code()));
    568   } else {
    569     EMIT(0x87);
    570     EMIT(0xC0 | src.code() << 3 | dst.code());
    571   }
    572 }
    573 
    574 
    575 void Assembler::xchg(Register dst, const Operand& src) {
    576   EnsureSpace ensure_space(this);
    577   EMIT(0x87);
    578   emit_operand(dst, src);
    579 }
    580 
    581 void Assembler::xchg_b(Register reg, const Operand& op) {
    582   EnsureSpace ensure_space(this);
    583   EMIT(0x86);
    584   emit_operand(reg, op);
    585 }
    586 
    587 void Assembler::xchg_w(Register reg, const Operand& op) {
    588   EnsureSpace ensure_space(this);
    589   EMIT(0x66);
    590   EMIT(0x87);
    591   emit_operand(reg, op);
    592 }
    593 
    594 void Assembler::lock() {
    595   EnsureSpace ensure_space(this);
    596   EMIT(0xF0);
    597 }
    598 
    599 void Assembler::cmpxchg(const Operand& dst, Register src) {
    600   EnsureSpace ensure_space(this);
    601   EMIT(0x0F);
    602   EMIT(0xB1);
    603   emit_operand(src, dst);
    604 }
    605 
    606 void Assembler::cmpxchg_b(const Operand& dst, Register src) {
    607   EnsureSpace ensure_space(this);
    608   EMIT(0x0F);
    609   EMIT(0xB0);
    610   emit_operand(src, dst);
    611 }
    612 
    613 void Assembler::cmpxchg_w(const Operand& dst, Register src) {
    614   EnsureSpace ensure_space(this);
    615   EMIT(0x66);
    616   EMIT(0x0F);
    617   EMIT(0xB1);
    618   emit_operand(src, dst);
    619 }
    620 
    621 void Assembler::adc(Register dst, int32_t imm32) {
    622   EnsureSpace ensure_space(this);
    623   emit_arith(2, Operand(dst), Immediate(imm32));
    624 }
    625 
    626 
    627 void Assembler::adc(Register dst, const Operand& src) {
    628   EnsureSpace ensure_space(this);
    629   EMIT(0x13);
    630   emit_operand(dst, src);
    631 }
    632 
    633 
    634 void Assembler::add(Register dst, const Operand& src) {
    635   EnsureSpace ensure_space(this);
    636   EMIT(0x03);
    637   emit_operand(dst, src);
    638 }
    639 
    640 
    641 void Assembler::add(const Operand& dst, Register src) {
    642   EnsureSpace ensure_space(this);
    643   EMIT(0x01);
    644   emit_operand(src, dst);
    645 }
    646 
    647 
    648 void Assembler::add(const Operand& dst, const Immediate& x) {
    649   DCHECK(reloc_info_writer.last_pc() != NULL);
    650   EnsureSpace ensure_space(this);
    651   emit_arith(0, dst, x);
    652 }
    653 
    654 
    655 void Assembler::and_(Register dst, int32_t imm32) {
    656   and_(dst, Immediate(imm32));
    657 }
    658 
    659 
    660 void Assembler::and_(Register dst, const Immediate& x) {
    661   EnsureSpace ensure_space(this);
    662   emit_arith(4, Operand(dst), x);
    663 }
    664 
    665 
    666 void Assembler::and_(Register dst, const Operand& src) {
    667   EnsureSpace ensure_space(this);
    668   EMIT(0x23);
    669   emit_operand(dst, src);
    670 }
    671 
    672 
    673 void Assembler::and_(const Operand& dst, const Immediate& x) {
    674   EnsureSpace ensure_space(this);
    675   emit_arith(4, dst, x);
    676 }
    677 
    678 
    679 void Assembler::and_(const Operand& dst, Register src) {
    680   EnsureSpace ensure_space(this);
    681   EMIT(0x21);
    682   emit_operand(src, dst);
    683 }
    684 
    685 void Assembler::cmpb(const Operand& op, Immediate imm8) {
    686   DCHECK(imm8.is_int8() || imm8.is_uint8());
    687   EnsureSpace ensure_space(this);
    688   if (op.is_reg(eax)) {
    689     EMIT(0x3C);
    690   } else {
    691     EMIT(0x80);
    692     emit_operand(edi, op);  // edi == 7
    693   }
    694   emit_b(imm8);
    695 }
    696 
    697 
    698 void Assembler::cmpb(const Operand& op, Register reg) {
    699   CHECK(reg.is_byte_register());
    700   EnsureSpace ensure_space(this);
    701   EMIT(0x38);
    702   emit_operand(reg, op);
    703 }
    704 
    705 
    706 void Assembler::cmpb(Register reg, const Operand& op) {
    707   CHECK(reg.is_byte_register());
    708   EnsureSpace ensure_space(this);
    709   EMIT(0x3A);
    710   emit_operand(reg, op);
    711 }
    712 
    713 
    714 void Assembler::cmpw(const Operand& op, Immediate imm16) {
    715   DCHECK(imm16.is_int16());
    716   EnsureSpace ensure_space(this);
    717   EMIT(0x66);
    718   EMIT(0x81);
    719   emit_operand(edi, op);
    720   emit_w(imm16);
    721 }
    722 
    723 void Assembler::cmpw(Register reg, const Operand& op) {
    724   EnsureSpace ensure_space(this);
    725   EMIT(0x66);
    726   EMIT(0x39);
    727   emit_operand(reg, op);
    728 }
    729 
    730 void Assembler::cmpw(const Operand& op, Register reg) {
    731   EnsureSpace ensure_space(this);
    732   EMIT(0x66);
    733   EMIT(0x3B);
    734   emit_operand(reg, op);
    735 }
    736 
    737 void Assembler::cmp(Register reg, int32_t imm32) {
    738   EnsureSpace ensure_space(this);
    739   emit_arith(7, Operand(reg), Immediate(imm32));
    740 }
    741 
    742 
    743 void Assembler::cmp(Register reg, Handle<Object> handle) {
    744   EnsureSpace ensure_space(this);
    745   emit_arith(7, Operand(reg), Immediate(handle));
    746 }
    747 
    748 
    749 void Assembler::cmp(Register reg, const Operand& op) {
    750   EnsureSpace ensure_space(this);
    751   EMIT(0x3B);
    752   emit_operand(reg, op);
    753 }
    754 
    755 void Assembler::cmp(const Operand& op, Register reg) {
    756   EnsureSpace ensure_space(this);
    757   EMIT(0x39);
    758   emit_operand(reg, op);
    759 }
    760 
    761 void Assembler::cmp(const Operand& op, const Immediate& imm) {
    762   EnsureSpace ensure_space(this);
    763   emit_arith(7, op, imm);
    764 }
    765 
    766 
    767 void Assembler::cmp(const Operand& op, Handle<Object> handle) {
    768   EnsureSpace ensure_space(this);
    769   emit_arith(7, op, Immediate(handle));
    770 }
    771 
    772 
    773 void Assembler::cmpb_al(const Operand& op) {
    774   EnsureSpace ensure_space(this);
    775   EMIT(0x38);  // CMP r/m8, r8
    776   emit_operand(eax, op);  // eax has same code as register al.
    777 }
    778 
    779 
    780 void Assembler::cmpw_ax(const Operand& op) {
    781   EnsureSpace ensure_space(this);
    782   EMIT(0x66);
    783   EMIT(0x39);  // CMP r/m16, r16
    784   emit_operand(eax, op);  // eax has same code as register ax.
    785 }
    786 
    787 
    788 void Assembler::dec_b(Register dst) {
    789   CHECK(dst.is_byte_register());
    790   EnsureSpace ensure_space(this);
    791   EMIT(0xFE);
    792   EMIT(0xC8 | dst.code());
    793 }
    794 
    795 
    796 void Assembler::dec_b(const Operand& dst) {
    797   EnsureSpace ensure_space(this);
    798   EMIT(0xFE);
    799   emit_operand(ecx, dst);
    800 }
    801 
    802 
    803 void Assembler::dec(Register dst) {
    804   EnsureSpace ensure_space(this);
    805   EMIT(0x48 | dst.code());
    806 }
    807 
    808 
    809 void Assembler::dec(const Operand& dst) {
    810   EnsureSpace ensure_space(this);
    811   EMIT(0xFF);
    812   emit_operand(ecx, dst);
    813 }
    814 
    815 
    816 void Assembler::cdq() {
    817   EnsureSpace ensure_space(this);
    818   EMIT(0x99);
    819 }
    820 
    821 
    822 void Assembler::idiv(const Operand& src) {
    823   EnsureSpace ensure_space(this);
    824   EMIT(0xF7);
    825   emit_operand(edi, src);
    826 }
    827 
    828 
    829 void Assembler::div(const Operand& src) {
    830   EnsureSpace ensure_space(this);
    831   EMIT(0xF7);
    832   emit_operand(esi, src);
    833 }
    834 
    835 
    836 void Assembler::imul(Register reg) {
    837   EnsureSpace ensure_space(this);
    838   EMIT(0xF7);
    839   EMIT(0xE8 | reg.code());
    840 }
    841 
    842 
    843 void Assembler::imul(Register dst, const Operand& src) {
    844   EnsureSpace ensure_space(this);
    845   EMIT(0x0F);
    846   EMIT(0xAF);
    847   emit_operand(dst, src);
    848 }
    849 
    850 
    851 void Assembler::imul(Register dst, Register src, int32_t imm32) {
    852   imul(dst, Operand(src), imm32);
    853 }
    854 
    855 
    856 void Assembler::imul(Register dst, const Operand& src, int32_t imm32) {
    857   EnsureSpace ensure_space(this);
    858   if (is_int8(imm32)) {
    859     EMIT(0x6B);
    860     emit_operand(dst, src);
    861     EMIT(imm32);
    862   } else {
    863     EMIT(0x69);
    864     emit_operand(dst, src);
    865     emit(imm32);
    866   }
    867 }
    868 
    869 
    870 void Assembler::inc(Register dst) {
    871   EnsureSpace ensure_space(this);
    872   EMIT(0x40 | dst.code());
    873 }
    874 
    875 
    876 void Assembler::inc(const Operand& dst) {
    877   EnsureSpace ensure_space(this);
    878   EMIT(0xFF);
    879   emit_operand(eax, dst);
    880 }
    881 
    882 
    883 void Assembler::lea(Register dst, const Operand& src) {
    884   EnsureSpace ensure_space(this);
    885   EMIT(0x8D);
    886   emit_operand(dst, src);
    887 }
    888 
    889 
    890 void Assembler::mul(Register src) {
    891   EnsureSpace ensure_space(this);
    892   EMIT(0xF7);
    893   EMIT(0xE0 | src.code());
    894 }
    895 
    896 
    897 void Assembler::neg(Register dst) {
    898   EnsureSpace ensure_space(this);
    899   EMIT(0xF7);
    900   EMIT(0xD8 | dst.code());
    901 }
    902 
    903 
    904 void Assembler::neg(const Operand& dst) {
    905   EnsureSpace ensure_space(this);
    906   EMIT(0xF7);
    907   emit_operand(ebx, dst);
    908 }
    909 
    910 
    911 void Assembler::not_(Register dst) {
    912   EnsureSpace ensure_space(this);
    913   EMIT(0xF7);
    914   EMIT(0xD0 | dst.code());
    915 }
    916 
    917 
    918 void Assembler::not_(const Operand& dst) {
    919   EnsureSpace ensure_space(this);
    920   EMIT(0xF7);
    921   emit_operand(edx, dst);
    922 }
    923 
    924 
    925 void Assembler::or_(Register dst, int32_t imm32) {
    926   EnsureSpace ensure_space(this);
    927   emit_arith(1, Operand(dst), Immediate(imm32));
    928 }
    929 
    930 
    931 void Assembler::or_(Register dst, const Operand& src) {
    932   EnsureSpace ensure_space(this);
    933   EMIT(0x0B);
    934   emit_operand(dst, src);
    935 }
    936 
    937 
    938 void Assembler::or_(const Operand& dst, const Immediate& x) {
    939   EnsureSpace ensure_space(this);
    940   emit_arith(1, dst, x);
    941 }
    942 
    943 
    944 void Assembler::or_(const Operand& dst, Register src) {
    945   EnsureSpace ensure_space(this);
    946   EMIT(0x09);
    947   emit_operand(src, dst);
    948 }
    949 
    950 
    951 void Assembler::rcl(Register dst, uint8_t imm8) {
    952   EnsureSpace ensure_space(this);
    953   DCHECK(is_uint5(imm8));  // illegal shift count
    954   if (imm8 == 1) {
    955     EMIT(0xD1);
    956     EMIT(0xD0 | dst.code());
    957   } else {
    958     EMIT(0xC1);
    959     EMIT(0xD0 | dst.code());
    960     EMIT(imm8);
    961   }
    962 }
    963 
    964 
    965 void Assembler::rcr(Register dst, uint8_t imm8) {
    966   EnsureSpace ensure_space(this);
    967   DCHECK(is_uint5(imm8));  // illegal shift count
    968   if (imm8 == 1) {
    969     EMIT(0xD1);
    970     EMIT(0xD8 | dst.code());
    971   } else {
    972     EMIT(0xC1);
    973     EMIT(0xD8 | dst.code());
    974     EMIT(imm8);
    975   }
    976 }
    977 
    978 
    979 void Assembler::ror(const Operand& dst, uint8_t imm8) {
    980   EnsureSpace ensure_space(this);
    981   DCHECK(is_uint5(imm8));  // illegal shift count
    982   if (imm8 == 1) {
    983     EMIT(0xD1);
    984     emit_operand(ecx, dst);
    985   } else {
    986     EMIT(0xC1);
    987     emit_operand(ecx, dst);
    988     EMIT(imm8);
    989   }
    990 }
    991 
    992 
    993 void Assembler::ror_cl(const Operand& dst) {
    994   EnsureSpace ensure_space(this);
    995   EMIT(0xD3);
    996   emit_operand(ecx, dst);
    997 }
    998 
    999 
   1000 void Assembler::sar(const Operand& dst, uint8_t imm8) {
   1001   EnsureSpace ensure_space(this);
   1002   DCHECK(is_uint5(imm8));  // illegal shift count
   1003   if (imm8 == 1) {
   1004     EMIT(0xD1);
   1005     emit_operand(edi, dst);
   1006   } else {
   1007     EMIT(0xC1);
   1008     emit_operand(edi, dst);
   1009     EMIT(imm8);
   1010   }
   1011 }
   1012 
   1013 
   1014 void Assembler::sar_cl(const Operand& dst) {
   1015   EnsureSpace ensure_space(this);
   1016   EMIT(0xD3);
   1017   emit_operand(edi, dst);
   1018 }
   1019 
   1020 void Assembler::sbb(Register dst, const Operand& src) {
   1021   EnsureSpace ensure_space(this);
   1022   EMIT(0x1B);
   1023   emit_operand(dst, src);
   1024 }
   1025 
   1026 void Assembler::shld(Register dst, Register src, uint8_t shift) {
   1027   DCHECK(is_uint5(shift));
   1028   EnsureSpace ensure_space(this);
   1029   EMIT(0x0F);
   1030   EMIT(0xA4);
   1031   emit_operand(src, Operand(dst));
   1032   EMIT(shift);
   1033 }
   1034 
   1035 void Assembler::shld_cl(Register dst, Register src) {
   1036   EnsureSpace ensure_space(this);
   1037   EMIT(0x0F);
   1038   EMIT(0xA5);
   1039   emit_operand(src, Operand(dst));
   1040 }
   1041 
   1042 
   1043 void Assembler::shl(const Operand& dst, uint8_t imm8) {
   1044   EnsureSpace ensure_space(this);
   1045   DCHECK(is_uint5(imm8));  // illegal shift count
   1046   if (imm8 == 1) {
   1047     EMIT(0xD1);
   1048     emit_operand(esp, dst);
   1049   } else {
   1050     EMIT(0xC1);
   1051     emit_operand(esp, dst);
   1052     EMIT(imm8);
   1053   }
   1054 }
   1055 
   1056 
   1057 void Assembler::shl_cl(const Operand& dst) {
   1058   EnsureSpace ensure_space(this);
   1059   EMIT(0xD3);
   1060   emit_operand(esp, dst);
   1061 }
   1062 
   1063 void Assembler::shr(const Operand& dst, uint8_t imm8) {
   1064   EnsureSpace ensure_space(this);
   1065   DCHECK(is_uint5(imm8));  // illegal shift count
   1066   if (imm8 == 1) {
   1067     EMIT(0xD1);
   1068     emit_operand(ebp, dst);
   1069   } else {
   1070     EMIT(0xC1);
   1071     emit_operand(ebp, dst);
   1072     EMIT(imm8);
   1073   }
   1074 }
   1075 
   1076 
   1077 void Assembler::shr_cl(const Operand& dst) {
   1078   EnsureSpace ensure_space(this);
   1079   EMIT(0xD3);
   1080   emit_operand(ebp, dst);
   1081 }
   1082 
   1083 void Assembler::shrd(Register dst, Register src, uint8_t shift) {
   1084   DCHECK(is_uint5(shift));
   1085   EnsureSpace ensure_space(this);
   1086   EMIT(0x0F);
   1087   EMIT(0xAC);
   1088   emit_operand(dst, Operand(src));
   1089   EMIT(shift);
   1090 }
   1091 
   1092 void Assembler::shrd_cl(const Operand& dst, Register src) {
   1093   EnsureSpace ensure_space(this);
   1094   EMIT(0x0F);
   1095   EMIT(0xAD);
   1096   emit_operand(src, dst);
   1097 }
   1098 
   1099 void Assembler::sub(const Operand& dst, const Immediate& x) {
   1100   EnsureSpace ensure_space(this);
   1101   emit_arith(5, dst, x);
   1102 }
   1103 
   1104 
   1105 void Assembler::sub(Register dst, const Operand& src) {
   1106   EnsureSpace ensure_space(this);
   1107   EMIT(0x2B);
   1108   emit_operand(dst, src);
   1109 }
   1110 
   1111 
   1112 void Assembler::sub(const Operand& dst, Register src) {
   1113   EnsureSpace ensure_space(this);
   1114   EMIT(0x29);
   1115   emit_operand(src, dst);
   1116 }
   1117 
   1118 
   1119 void Assembler::test(Register reg, const Immediate& imm) {
   1120   if (imm.is_uint8()) {
   1121     test_b(reg, imm);
   1122     return;
   1123   }
   1124 
   1125   EnsureSpace ensure_space(this);
   1126   // This is not using emit_arith because test doesn't support
   1127   // sign-extension of 8-bit operands.
   1128   if (reg.is(eax)) {
   1129     EMIT(0xA9);
   1130   } else {
   1131     EMIT(0xF7);
   1132     EMIT(0xC0 | reg.code());
   1133   }
   1134   emit(imm);
   1135 }
   1136 
   1137 
   1138 void Assembler::test(Register reg, const Operand& op) {
   1139   EnsureSpace ensure_space(this);
   1140   EMIT(0x85);
   1141   emit_operand(reg, op);
   1142 }
   1143 
   1144 
   1145 void Assembler::test_b(Register reg, const Operand& op) {
   1146   CHECK(reg.is_byte_register());
   1147   EnsureSpace ensure_space(this);
   1148   EMIT(0x84);
   1149   emit_operand(reg, op);
   1150 }
   1151 
   1152 
   1153 void Assembler::test(const Operand& op, const Immediate& imm) {
   1154   if (op.is_reg_only()) {
   1155     test(op.reg(), imm);
   1156     return;
   1157   }
   1158   if (imm.is_uint8()) {
   1159     return test_b(op, imm);
   1160   }
   1161   EnsureSpace ensure_space(this);
   1162   EMIT(0xF7);
   1163   emit_operand(eax, op);
   1164   emit(imm);
   1165 }
   1166 
   1167 void Assembler::test_b(Register reg, Immediate imm8) {
   1168   DCHECK(imm8.is_uint8());
   1169   EnsureSpace ensure_space(this);
   1170   // Only use test against byte for registers that have a byte
   1171   // variant: eax, ebx, ecx, and edx.
   1172   if (reg.is(eax)) {
   1173     EMIT(0xA8);
   1174     emit_b(imm8);
   1175   } else if (reg.is_byte_register()) {
   1176     emit_arith_b(0xF6, 0xC0, reg, static_cast<uint8_t>(imm8.x_));
   1177   } else {
   1178     EMIT(0x66);
   1179     EMIT(0xF7);
   1180     EMIT(0xC0 | reg.code());
   1181     emit_w(imm8);
   1182   }
   1183 }
   1184 
   1185 void Assembler::test_b(const Operand& op, Immediate imm8) {
   1186   if (op.is_reg_only()) {
   1187     test_b(op.reg(), imm8);
   1188     return;
   1189   }
   1190   EnsureSpace ensure_space(this);
   1191   EMIT(0xF6);
   1192   emit_operand(eax, op);
   1193   emit_b(imm8);
   1194 }
   1195 
   1196 void Assembler::test_w(Register reg, Immediate imm16) {
   1197   DCHECK(imm16.is_int16() || imm16.is_uint16());
   1198   EnsureSpace ensure_space(this);
   1199   if (reg.is(eax)) {
   1200     EMIT(0xA9);
   1201     emit_w(imm16);
   1202   } else {
   1203     EMIT(0x66);
   1204     EMIT(0xF7);
   1205     EMIT(0xc0 | reg.code());
   1206     emit_w(imm16);
   1207   }
   1208 }
   1209 
   1210 void Assembler::test_w(Register reg, const Operand& op) {
   1211   EnsureSpace ensure_space(this);
   1212   EMIT(0x66);
   1213   EMIT(0x85);
   1214   emit_operand(reg, op);
   1215 }
   1216 
   1217 void Assembler::test_w(const Operand& op, Immediate imm16) {
   1218   DCHECK(imm16.is_int16() || imm16.is_uint16());
   1219   if (op.is_reg_only()) {
   1220     test_w(op.reg(), imm16);
   1221     return;
   1222   }
   1223   EnsureSpace ensure_space(this);
   1224   EMIT(0x66);
   1225   EMIT(0xF7);
   1226   emit_operand(eax, op);
   1227   emit_w(imm16);
   1228 }
   1229 
   1230 void Assembler::xor_(Register dst, int32_t imm32) {
   1231   EnsureSpace ensure_space(this);
   1232   emit_arith(6, Operand(dst), Immediate(imm32));
   1233 }
   1234 
   1235 
   1236 void Assembler::xor_(Register dst, const Operand& src) {
   1237   EnsureSpace ensure_space(this);
   1238   EMIT(0x33);
   1239   emit_operand(dst, src);
   1240 }
   1241 
   1242 
   1243 void Assembler::xor_(const Operand& dst, Register src) {
   1244   EnsureSpace ensure_space(this);
   1245   EMIT(0x31);
   1246   emit_operand(src, dst);
   1247 }
   1248 
   1249 
   1250 void Assembler::xor_(const Operand& dst, const Immediate& x) {
   1251   EnsureSpace ensure_space(this);
   1252   emit_arith(6, dst, x);
   1253 }
   1254 
   1255 
   1256 void Assembler::bt(const Operand& dst, Register src) {
   1257   EnsureSpace ensure_space(this);
   1258   EMIT(0x0F);
   1259   EMIT(0xA3);
   1260   emit_operand(src, dst);
   1261 }
   1262 
   1263 
   1264 void Assembler::bts(const Operand& dst, Register src) {
   1265   EnsureSpace ensure_space(this);
   1266   EMIT(0x0F);
   1267   EMIT(0xAB);
   1268   emit_operand(src, dst);
   1269 }
   1270 
   1271 
   1272 void Assembler::bsr(Register dst, const Operand& src) {
   1273   EnsureSpace ensure_space(this);
   1274   EMIT(0x0F);
   1275   EMIT(0xBD);
   1276   emit_operand(dst, src);
   1277 }
   1278 
   1279 
   1280 void Assembler::bsf(Register dst, const Operand& src) {
   1281   EnsureSpace ensure_space(this);
   1282   EMIT(0x0F);
   1283   EMIT(0xBC);
   1284   emit_operand(dst, src);
   1285 }
   1286 
   1287 
   1288 void Assembler::hlt() {
   1289   EnsureSpace ensure_space(this);
   1290   EMIT(0xF4);
   1291 }
   1292 
   1293 
   1294 void Assembler::int3() {
   1295   EnsureSpace ensure_space(this);
   1296   EMIT(0xCC);
   1297 }
   1298 
   1299 
   1300 void Assembler::nop() {
   1301   EnsureSpace ensure_space(this);
   1302   EMIT(0x90);
   1303 }
   1304 
   1305 
   1306 void Assembler::ret(int imm16) {
   1307   EnsureSpace ensure_space(this);
   1308   DCHECK(is_uint16(imm16));
   1309   if (imm16 == 0) {
   1310     EMIT(0xC3);
   1311   } else {
   1312     EMIT(0xC2);
   1313     EMIT(imm16 & 0xFF);
   1314     EMIT((imm16 >> 8) & 0xFF);
   1315   }
   1316 }
   1317 
   1318 
   1319 void Assembler::ud2() {
   1320   EnsureSpace ensure_space(this);
   1321   EMIT(0x0F);
   1322   EMIT(0x0B);
   1323 }
   1324 
   1325 
   1326 // Labels refer to positions in the (to be) generated code.
   1327 // There are bound, linked, and unused labels.
   1328 //
   1329 // Bound labels refer to known positions in the already
   1330 // generated code. pos() is the position the label refers to.
   1331 //
   1332 // Linked labels refer to unknown positions in the code
   1333 // to be generated; pos() is the position of the 32bit
   1334 // Displacement of the last instruction using the label.
   1335 
   1336 
   1337 void Assembler::print(Label* L) {
   1338   if (L->is_unused()) {
   1339     PrintF("unused label\n");
   1340   } else if (L->is_bound()) {
   1341     PrintF("bound label to %d\n", L->pos());
   1342   } else if (L->is_linked()) {
   1343     Label l = *L;
   1344     PrintF("unbound label");
   1345     while (l.is_linked()) {
   1346       Displacement disp = disp_at(&l);
   1347       PrintF("@ %d ", l.pos());
   1348       disp.print();
   1349       PrintF("\n");
   1350       disp.next(&l);
   1351     }
   1352   } else {
   1353     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
   1354   }
   1355 }
   1356 
   1357 
   1358 void Assembler::bind_to(Label* L, int pos) {
   1359   EnsureSpace ensure_space(this);
   1360   DCHECK(0 <= pos && pos <= pc_offset());  // must have a valid binding position
   1361   while (L->is_linked()) {
   1362     Displacement disp = disp_at(L);
   1363     int fixup_pos = L->pos();
   1364     if (disp.type() == Displacement::CODE_ABSOLUTE) {
   1365       long_at_put(fixup_pos, reinterpret_cast<int>(buffer_ + pos));
   1366       internal_reference_positions_.push_back(fixup_pos);
   1367     } else if (disp.type() == Displacement::CODE_RELATIVE) {
   1368       // Relative to Code* heap object pointer.
   1369       long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag);
   1370     } else {
   1371       if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
   1372         DCHECK(byte_at(fixup_pos - 1) == 0xE9);  // jmp expected
   1373       }
   1374       // Relative address, relative to point after address.
   1375       int imm32 = pos - (fixup_pos + sizeof(int32_t));
   1376       long_at_put(fixup_pos, imm32);
   1377     }
   1378     disp.next(L);
   1379   }
   1380   while (L->is_near_linked()) {
   1381     int fixup_pos = L->near_link_pos();
   1382     int offset_to_next =
   1383         static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos)));
   1384     DCHECK(offset_to_next <= 0);
   1385     // Relative address, relative to point after address.
   1386     int disp = pos - fixup_pos - sizeof(int8_t);
   1387     CHECK(0 <= disp && disp <= 127);
   1388     set_byte_at(fixup_pos, disp);
   1389     if (offset_to_next < 0) {
   1390       L->link_to(fixup_pos + offset_to_next, Label::kNear);
   1391     } else {
   1392       L->UnuseNear();
   1393     }
   1394   }
   1395   L->bind_to(pos);
   1396 }
   1397 
   1398 
   1399 void Assembler::bind(Label* L) {
   1400   EnsureSpace ensure_space(this);
   1401   DCHECK(!L->is_bound());  // label can only be bound once
   1402   bind_to(L, pc_offset());
   1403 }
   1404 
   1405 
   1406 void Assembler::call(Label* L) {
   1407   EnsureSpace ensure_space(this);
   1408   if (L->is_bound()) {
   1409     const int long_size = 5;
   1410     int offs = L->pos() - pc_offset();
   1411     DCHECK(offs <= 0);
   1412     // 1110 1000 #32-bit disp.
   1413     EMIT(0xE8);
   1414     emit(offs - long_size);
   1415   } else {
   1416     // 1110 1000 #32-bit disp.
   1417     EMIT(0xE8);
   1418     emit_disp(L, Displacement::OTHER);
   1419   }
   1420 }
   1421 
   1422 
   1423 void Assembler::call(byte* entry, RelocInfo::Mode rmode) {
   1424   EnsureSpace ensure_space(this);
   1425   DCHECK(!RelocInfo::IsCodeTarget(rmode));
   1426   EMIT(0xE8);
   1427   if (RelocInfo::IsRuntimeEntry(rmode)) {
   1428     emit(reinterpret_cast<uint32_t>(entry), rmode);
   1429   } else {
   1430     emit(entry - (pc_ + sizeof(int32_t)), rmode);
   1431   }
   1432 }
   1433 
   1434 
   1435 int Assembler::CallSize(const Operand& adr) {
   1436   // Call size is 1 (opcode) + adr.len_ (operand).
   1437   return 1 + adr.len_;
   1438 }
   1439 
   1440 
   1441 void Assembler::call(const Operand& adr) {
   1442   EnsureSpace ensure_space(this);
   1443   EMIT(0xFF);
   1444   emit_operand(edx, adr);
   1445 }
   1446 
   1447 
   1448 int Assembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode) {
   1449   return 1 /* EMIT */ + sizeof(uint32_t) /* emit */;
   1450 }
   1451 
   1452 
   1453 void Assembler::call(Handle<Code> code,
   1454                      RelocInfo::Mode rmode,
   1455                      TypeFeedbackId ast_id) {
   1456   EnsureSpace ensure_space(this);
   1457   DCHECK(RelocInfo::IsCodeTarget(rmode)
   1458       || rmode == RelocInfo::CODE_AGE_SEQUENCE);
   1459   EMIT(0xE8);
   1460   emit(code, rmode, ast_id);
   1461 }
   1462 
   1463 
   1464 void Assembler::jmp(Label* L, Label::Distance distance) {
   1465   EnsureSpace ensure_space(this);
   1466   if (L->is_bound()) {
   1467     const int short_size = 2;
   1468     const int long_size  = 5;
   1469     int offs = L->pos() - pc_offset();
   1470     DCHECK(offs <= 0);
   1471     if (is_int8(offs - short_size)) {
   1472       // 1110 1011 #8-bit disp.
   1473       EMIT(0xEB);
   1474       EMIT((offs - short_size) & 0xFF);
   1475     } else {
   1476       // 1110 1001 #32-bit disp.
   1477       EMIT(0xE9);
   1478       emit(offs - long_size);
   1479     }
   1480   } else if (distance == Label::kNear) {
   1481     EMIT(0xEB);
   1482     emit_near_disp(L);
   1483   } else {
   1484     // 1110 1001 #32-bit disp.
   1485     EMIT(0xE9);
   1486     emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
   1487   }
   1488 }
   1489 
   1490 
   1491 void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) {
   1492   EnsureSpace ensure_space(this);
   1493   DCHECK(!RelocInfo::IsCodeTarget(rmode));
   1494   EMIT(0xE9);
   1495   if (RelocInfo::IsRuntimeEntry(rmode)) {
   1496     emit(reinterpret_cast<uint32_t>(entry), rmode);
   1497   } else {
   1498     emit(entry - (pc_ + sizeof(int32_t)), rmode);
   1499   }
   1500 }
   1501 
   1502 
   1503 void Assembler::jmp(const Operand& adr) {
   1504   EnsureSpace ensure_space(this);
   1505   EMIT(0xFF);
   1506   emit_operand(esp, adr);
   1507 }
   1508 
   1509 
   1510 void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
   1511   EnsureSpace ensure_space(this);
   1512   DCHECK(RelocInfo::IsCodeTarget(rmode));
   1513   EMIT(0xE9);
   1514   emit(code, rmode);
   1515 }
   1516 
   1517 
   1518 void Assembler::j(Condition cc, Label* L, Label::Distance distance) {
   1519   EnsureSpace ensure_space(this);
   1520   DCHECK(0 <= cc && static_cast<int>(cc) < 16);
   1521   if (L->is_bound()) {
   1522     const int short_size = 2;
   1523     const int long_size  = 6;
   1524     int offs = L->pos() - pc_offset();
   1525     DCHECK(offs <= 0);
   1526     if (is_int8(offs - short_size)) {
   1527       // 0111 tttn #8-bit disp
   1528       EMIT(0x70 | cc);
   1529       EMIT((offs - short_size) & 0xFF);
   1530     } else {
   1531       // 0000 1111 1000 tttn #32-bit disp
   1532       EMIT(0x0F);
   1533       EMIT(0x80 | cc);
   1534       emit(offs - long_size);
   1535     }
   1536   } else if (distance == Label::kNear) {
   1537     EMIT(0x70 | cc);
   1538     emit_near_disp(L);
   1539   } else {
   1540     // 0000 1111 1000 tttn #32-bit disp
   1541     // Note: could eliminate cond. jumps to this jump if condition
   1542     //       is the same however, seems to be rather unlikely case.
   1543     EMIT(0x0F);
   1544     EMIT(0x80 | cc);
   1545     emit_disp(L, Displacement::OTHER);
   1546   }
   1547 }
   1548 
   1549 
   1550 void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode) {
   1551   EnsureSpace ensure_space(this);
   1552   DCHECK((0 <= cc) && (static_cast<int>(cc) < 16));
   1553   // 0000 1111 1000 tttn #32-bit disp.
   1554   EMIT(0x0F);
   1555   EMIT(0x80 | cc);
   1556   if (RelocInfo::IsRuntimeEntry(rmode)) {
   1557     emit(reinterpret_cast<uint32_t>(entry), rmode);
   1558   } else {
   1559     emit(entry - (pc_ + sizeof(int32_t)), rmode);
   1560   }
   1561 }
   1562 
   1563 
   1564 void Assembler::j(Condition cc, Handle<Code> code, RelocInfo::Mode rmode) {
   1565   EnsureSpace ensure_space(this);
   1566   // 0000 1111 1000 tttn #32-bit disp
   1567   EMIT(0x0F);
   1568   EMIT(0x80 | cc);
   1569   emit(code, rmode);
   1570 }
   1571 
   1572 
   1573 // FPU instructions.
   1574 
   1575 void Assembler::fld(int i) {
   1576   EnsureSpace ensure_space(this);
   1577   emit_farith(0xD9, 0xC0, i);
   1578 }
   1579 
   1580 
   1581 void Assembler::fstp(int i) {
   1582   EnsureSpace ensure_space(this);
   1583   emit_farith(0xDD, 0xD8, i);
   1584 }
   1585 
   1586 
   1587 void Assembler::fld1() {
   1588   EnsureSpace ensure_space(this);
   1589   EMIT(0xD9);
   1590   EMIT(0xE8);
   1591 }
   1592 
   1593 
   1594 void Assembler::fldpi() {
   1595   EnsureSpace ensure_space(this);
   1596   EMIT(0xD9);
   1597   EMIT(0xEB);
   1598 }
   1599 
   1600 
   1601 void Assembler::fldz() {
   1602   EnsureSpace ensure_space(this);
   1603   EMIT(0xD9);
   1604   EMIT(0xEE);
   1605 }
   1606 
   1607 
   1608 void Assembler::fldln2() {
   1609   EnsureSpace ensure_space(this);
   1610   EMIT(0xD9);
   1611   EMIT(0xED);
   1612 }
   1613 
   1614 
   1615 void Assembler::fld_s(const Operand& adr) {
   1616   EnsureSpace ensure_space(this);
   1617   EMIT(0xD9);
   1618   emit_operand(eax, adr);
   1619 }
   1620 
   1621 
   1622 void Assembler::fld_d(const Operand& adr) {
   1623   EnsureSpace ensure_space(this);
   1624   EMIT(0xDD);
   1625   emit_operand(eax, adr);
   1626 }
   1627 
   1628 
   1629 void Assembler::fstp_s(const Operand& adr) {
   1630   EnsureSpace ensure_space(this);
   1631   EMIT(0xD9);
   1632   emit_operand(ebx, adr);
   1633 }
   1634 
   1635 
   1636 void Assembler::fst_s(const Operand& adr) {
   1637   EnsureSpace ensure_space(this);
   1638   EMIT(0xD9);
   1639   emit_operand(edx, adr);
   1640 }
   1641 
   1642 
   1643 void Assembler::fldcw(const Operand& adr) {
   1644   EnsureSpace ensure_space(this);
   1645   EMIT(0xD9);
   1646   emit_operand(ebp, adr);
   1647 }
   1648 
   1649 
   1650 void Assembler::fnstcw(const Operand& adr) {
   1651   EnsureSpace ensure_space(this);
   1652   EMIT(0xD9);
   1653   emit_operand(edi, adr);
   1654 }
   1655 
   1656 
   1657 void Assembler::fstp_d(const Operand& adr) {
   1658   EnsureSpace ensure_space(this);
   1659   EMIT(0xDD);
   1660   emit_operand(ebx, adr);
   1661 }
   1662 
   1663 
   1664 void Assembler::fst_d(const Operand& adr) {
   1665   EnsureSpace ensure_space(this);
   1666   EMIT(0xDD);
   1667   emit_operand(edx, adr);
   1668 }
   1669 
   1670 
   1671 void Assembler::fild_s(const Operand& adr) {
   1672   EnsureSpace ensure_space(this);
   1673   EMIT(0xDB);
   1674   emit_operand(eax, adr);
   1675 }
   1676 
   1677 
   1678 void Assembler::fild_d(const Operand& adr) {
   1679   EnsureSpace ensure_space(this);
   1680   EMIT(0xDF);
   1681   emit_operand(ebp, adr);
   1682 }
   1683 
   1684 
   1685 void Assembler::fistp_s(const Operand& adr) {
   1686   EnsureSpace ensure_space(this);
   1687   EMIT(0xDB);
   1688   emit_operand(ebx, adr);
   1689 }
   1690 
   1691 
   1692 void Assembler::fisttp_s(const Operand& adr) {
   1693   DCHECK(IsEnabled(SSE3));
   1694   EnsureSpace ensure_space(this);
   1695   EMIT(0xDB);
   1696   emit_operand(ecx, adr);
   1697 }
   1698 
   1699 
   1700 void Assembler::fisttp_d(const Operand& adr) {
   1701   DCHECK(IsEnabled(SSE3));
   1702   EnsureSpace ensure_space(this);
   1703   EMIT(0xDD);
   1704   emit_operand(ecx, adr);
   1705 }
   1706 
   1707 
   1708 void Assembler::fist_s(const Operand& adr) {
   1709   EnsureSpace ensure_space(this);
   1710   EMIT(0xDB);
   1711   emit_operand(edx, adr);
   1712 }
   1713 
   1714 
   1715 void Assembler::fistp_d(const Operand& adr) {
   1716   EnsureSpace ensure_space(this);
   1717   EMIT(0xDF);
   1718   emit_operand(edi, adr);
   1719 }
   1720 
   1721 
   1722 void Assembler::fabs() {
   1723   EnsureSpace ensure_space(this);
   1724   EMIT(0xD9);
   1725   EMIT(0xE1);
   1726 }
   1727 
   1728 
   1729 void Assembler::fchs() {
   1730   EnsureSpace ensure_space(this);
   1731   EMIT(0xD9);
   1732   EMIT(0xE0);
   1733 }
   1734 
   1735 
   1736 void Assembler::fsqrt() {
   1737   EnsureSpace ensure_space(this);
   1738   EMIT(0xD9);
   1739   EMIT(0xFA);
   1740 }
   1741 
   1742 
   1743 void Assembler::fcos() {
   1744   EnsureSpace ensure_space(this);
   1745   EMIT(0xD9);
   1746   EMIT(0xFF);
   1747 }
   1748 
   1749 
   1750 void Assembler::fsin() {
   1751   EnsureSpace ensure_space(this);
   1752   EMIT(0xD9);
   1753   EMIT(0xFE);
   1754 }
   1755 
   1756 
   1757 void Assembler::fptan() {
   1758   EnsureSpace ensure_space(this);
   1759   EMIT(0xD9);
   1760   EMIT(0xF2);
   1761 }
   1762 
   1763 
   1764 void Assembler::fyl2x() {
   1765   EnsureSpace ensure_space(this);
   1766   EMIT(0xD9);
   1767   EMIT(0xF1);
   1768 }
   1769 
   1770 
   1771 void Assembler::f2xm1() {
   1772   EnsureSpace ensure_space(this);
   1773   EMIT(0xD9);
   1774   EMIT(0xF0);
   1775 }
   1776 
   1777 
   1778 void Assembler::fscale() {
   1779   EnsureSpace ensure_space(this);
   1780   EMIT(0xD9);
   1781   EMIT(0xFD);
   1782 }
   1783 
   1784 
   1785 void Assembler::fninit() {
   1786   EnsureSpace ensure_space(this);
   1787   EMIT(0xDB);
   1788   EMIT(0xE3);
   1789 }
   1790 
   1791 
   1792 void Assembler::fadd(int i) {
   1793   EnsureSpace ensure_space(this);
   1794   emit_farith(0xDC, 0xC0, i);
   1795 }
   1796 
   1797 
   1798 void Assembler::fadd_i(int i) {
   1799   EnsureSpace ensure_space(this);
   1800   emit_farith(0xD8, 0xC0, i);
   1801 }
   1802 
   1803 
   1804 void Assembler::fadd_d(const Operand& adr) {
   1805   EnsureSpace ensure_space(this);
   1806   EMIT(0xDC);
   1807   emit_operand(eax, adr);
   1808 }
   1809 
   1810 
   1811 void Assembler::fsub(int i) {
   1812   EnsureSpace ensure_space(this);
   1813   emit_farith(0xDC, 0xE8, i);
   1814 }
   1815 
   1816 
   1817 void Assembler::fsub_i(int i) {
   1818   EnsureSpace ensure_space(this);
   1819   emit_farith(0xD8, 0xE0, i);
   1820 }
   1821 
   1822 
   1823 void Assembler::fsubr_d(const Operand& adr) {
   1824   EnsureSpace ensure_space(this);
   1825   EMIT(0xDC);
   1826   emit_operand(ebp, adr);
   1827 }
   1828 
   1829 
   1830 void Assembler::fsub_d(const Operand& adr) {
   1831   EnsureSpace ensure_space(this);
   1832   EMIT(0xDC);
   1833   emit_operand(esp, adr);
   1834 }
   1835 
   1836 
   1837 void Assembler::fisub_s(const Operand& adr) {
   1838   EnsureSpace ensure_space(this);
   1839   EMIT(0xDA);
   1840   emit_operand(esp, adr);
   1841 }
   1842 
   1843 
   1844 void Assembler::fmul_i(int i) {
   1845   EnsureSpace ensure_space(this);
   1846   emit_farith(0xD8, 0xC8, i);
   1847 }
   1848 
   1849 
   1850 void Assembler::fmul(int i) {
   1851   EnsureSpace ensure_space(this);
   1852   emit_farith(0xDC, 0xC8, i);
   1853 }
   1854 
   1855 
   1856 void Assembler::fmul_d(const Operand& adr) {
   1857   EnsureSpace ensure_space(this);
   1858   EMIT(0xDC);
   1859   emit_operand(ecx, adr);
   1860 }
   1861 
   1862 
   1863 void Assembler::fdiv(int i) {
   1864   EnsureSpace ensure_space(this);
   1865   emit_farith(0xDC, 0xF8, i);
   1866 }
   1867 
   1868 
   1869 void Assembler::fdiv_d(const Operand& adr) {
   1870   EnsureSpace ensure_space(this);
   1871   EMIT(0xDC);
   1872   emit_operand(esi, adr);
   1873 }
   1874 
   1875 
   1876 void Assembler::fdivr_d(const Operand& adr) {
   1877   EnsureSpace ensure_space(this);
   1878   EMIT(0xDC);
   1879   emit_operand(edi, adr);
   1880 }
   1881 
   1882 
   1883 void Assembler::fdiv_i(int i) {
   1884   EnsureSpace ensure_space(this);
   1885   emit_farith(0xD8, 0xF0, i);
   1886 }
   1887 
   1888 
   1889 void Assembler::faddp(int i) {
   1890   EnsureSpace ensure_space(this);
   1891   emit_farith(0xDE, 0xC0, i);
   1892 }
   1893 
   1894 
   1895 void Assembler::fsubp(int i) {
   1896   EnsureSpace ensure_space(this);
   1897   emit_farith(0xDE, 0xE8, i);
   1898 }
   1899 
   1900 
   1901 void Assembler::fsubrp(int i) {
   1902   EnsureSpace ensure_space(this);
   1903   emit_farith(0xDE, 0xE0, i);
   1904 }
   1905 
   1906 
   1907 void Assembler::fmulp(int i) {
   1908   EnsureSpace ensure_space(this);
   1909   emit_farith(0xDE, 0xC8, i);
   1910 }
   1911 
   1912 
   1913 void Assembler::fdivp(int i) {
   1914   EnsureSpace ensure_space(this);
   1915   emit_farith(0xDE, 0xF8, i);
   1916 }
   1917 
   1918 
   1919 void Assembler::fprem() {
   1920   EnsureSpace ensure_space(this);
   1921   EMIT(0xD9);
   1922   EMIT(0xF8);
   1923 }
   1924 
   1925 
   1926 void Assembler::fprem1() {
   1927   EnsureSpace ensure_space(this);
   1928   EMIT(0xD9);
   1929   EMIT(0xF5);
   1930 }
   1931 
   1932 
   1933 void Assembler::fxch(int i) {
   1934   EnsureSpace ensure_space(this);
   1935   emit_farith(0xD9, 0xC8, i);
   1936 }
   1937 
   1938 
   1939 void Assembler::fincstp() {
   1940   EnsureSpace ensure_space(this);
   1941   EMIT(0xD9);
   1942   EMIT(0xF7);
   1943 }
   1944 
   1945 
   1946 void Assembler::ffree(int i) {
   1947   EnsureSpace ensure_space(this);
   1948   emit_farith(0xDD, 0xC0, i);
   1949 }
   1950 
   1951 
   1952 void Assembler::ftst() {
   1953   EnsureSpace ensure_space(this);
   1954   EMIT(0xD9);
   1955   EMIT(0xE4);
   1956 }
   1957 
   1958 
   1959 void Assembler::fxam() {
   1960   EnsureSpace ensure_space(this);
   1961   EMIT(0xD9);
   1962   EMIT(0xE5);
   1963 }
   1964 
   1965 
   1966 void Assembler::fucomp(int i) {
   1967   EnsureSpace ensure_space(this);
   1968   emit_farith(0xDD, 0xE8, i);
   1969 }
   1970 
   1971 
   1972 void Assembler::fucompp() {
   1973   EnsureSpace ensure_space(this);
   1974   EMIT(0xDA);
   1975   EMIT(0xE9);
   1976 }
   1977 
   1978 
   1979 void Assembler::fucomi(int i) {
   1980   EnsureSpace ensure_space(this);
   1981   EMIT(0xDB);
   1982   EMIT(0xE8 + i);
   1983 }
   1984 
   1985 
   1986 void Assembler::fucomip() {
   1987   EnsureSpace ensure_space(this);
   1988   EMIT(0xDF);
   1989   EMIT(0xE9);
   1990 }
   1991 
   1992 
   1993 void Assembler::fcompp() {
   1994   EnsureSpace ensure_space(this);
   1995   EMIT(0xDE);
   1996   EMIT(0xD9);
   1997 }
   1998 
   1999 
   2000 void Assembler::fnstsw_ax() {
   2001   EnsureSpace ensure_space(this);
   2002   EMIT(0xDF);
   2003   EMIT(0xE0);
   2004 }
   2005 
   2006 
   2007 void Assembler::fwait() {
   2008   EnsureSpace ensure_space(this);
   2009   EMIT(0x9B);
   2010 }
   2011 
   2012 
   2013 void Assembler::frndint() {
   2014   EnsureSpace ensure_space(this);
   2015   EMIT(0xD9);
   2016   EMIT(0xFC);
   2017 }
   2018 
   2019 
   2020 void Assembler::fnclex() {
   2021   EnsureSpace ensure_space(this);
   2022   EMIT(0xDB);
   2023   EMIT(0xE2);
   2024 }
   2025 
   2026 
   2027 void Assembler::fnsave(const Operand& adr) {
   2028   EnsureSpace ensure_space(this);
   2029   EMIT(0xDD);
   2030   emit_operand(esi, adr);
   2031 }
   2032 
   2033 
   2034 void Assembler::frstor(const Operand& adr) {
   2035   EnsureSpace ensure_space(this);
   2036   EMIT(0xDD);
   2037   emit_operand(esp, adr);
   2038 }
   2039 
   2040 
   2041 void Assembler::sahf() {
   2042   EnsureSpace ensure_space(this);
   2043   EMIT(0x9E);
   2044 }
   2045 
   2046 
   2047 void Assembler::setcc(Condition cc, Register reg) {
   2048   DCHECK(reg.is_byte_register());
   2049   EnsureSpace ensure_space(this);
   2050   EMIT(0x0F);
   2051   EMIT(0x90 | cc);
   2052   EMIT(0xC0 | reg.code());
   2053 }
   2054 
   2055 
   2056 void Assembler::GrowBuffer() {
   2057   DCHECK(buffer_overflow());
   2058   if (!own_buffer_) FATAL("external code buffer is too small");
   2059 
   2060   // Compute new buffer size.
   2061   CodeDesc desc;  // the new buffer
   2062   desc.buffer_size = 2 * buffer_size_;
   2063 
   2064   // Some internal data structures overflow for very large buffers,
   2065   // they must ensure that kMaximalBufferSize is not too large.
   2066   if ((desc.buffer_size > kMaximalBufferSize) ||
   2067       (desc.buffer_size > isolate()->heap()->MaxOldGenerationSize())) {
   2068     V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
   2069   }
   2070 
   2071   // Set up new buffer.
   2072   desc.buffer = NewArray<byte>(desc.buffer_size);
   2073   desc.origin = this;
   2074   desc.instr_size = pc_offset();
   2075   desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos());
   2076 
   2077   // Clear the buffer in debug mode. Use 'int3' instructions to make
   2078   // sure to get into problems if we ever run uninitialized code.
   2079 #ifdef DEBUG
   2080   memset(desc.buffer, 0xCC, desc.buffer_size);
   2081 #endif
   2082 
   2083   // Copy the data.
   2084   int pc_delta = desc.buffer - buffer_;
   2085   int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
   2086   MemMove(desc.buffer, buffer_, desc.instr_size);
   2087   MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(),
   2088           desc.reloc_size);
   2089 
   2090   DeleteArray(buffer_);
   2091   buffer_ = desc.buffer;
   2092   buffer_size_ = desc.buffer_size;
   2093   pc_ += pc_delta;
   2094   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
   2095                                reloc_info_writer.last_pc() + pc_delta);
   2096 
   2097   // Relocate internal references.
   2098   for (auto pos : internal_reference_positions_) {
   2099     int32_t* p = reinterpret_cast<int32_t*>(buffer_ + pos);
   2100     *p += pc_delta;
   2101   }
   2102 
   2103   DCHECK(!buffer_overflow());
   2104 }
   2105 
   2106 
   2107 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   2108   DCHECK(is_uint8(op1) && is_uint8(op2));  // wrong opcode
   2109   DCHECK(is_uint8(imm8));
   2110   DCHECK((op1 & 0x01) == 0);  // should be 8bit operation
   2111   EMIT(op1);
   2112   EMIT(op2 | dst.code());
   2113   EMIT(imm8);
   2114 }
   2115 
   2116 
   2117 void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
   2118   DCHECK((0 <= sel) && (sel <= 7));
   2119   Register ireg = { sel };
   2120   if (x.is_int8()) {
   2121     EMIT(0x83);  // using a sign-extended 8-bit immediate.
   2122     emit_operand(ireg, dst);
   2123     EMIT(x.x_ & 0xFF);
   2124   } else if (dst.is_reg(eax)) {
   2125     EMIT((sel << 3) | 0x05);  // short form if the destination is eax.
   2126     emit(x);
   2127   } else {
   2128     EMIT(0x81);  // using a literal 32-bit immediate.
   2129     emit_operand(ireg, dst);
   2130     emit(x);
   2131   }
   2132 }
   2133 
   2134 
   2135 void Assembler::emit_operand(Register reg, const Operand& adr) {
   2136   const unsigned length = adr.len_;
   2137   DCHECK(length > 0);
   2138 
   2139   // Emit updated ModRM byte containing the given register.
   2140   pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3);
   2141 
   2142   // Emit the rest of the encoded operand.
   2143   for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
   2144   pc_ += length;
   2145 
   2146   // Emit relocation information if necessary.
   2147   if (length >= sizeof(int32_t) && !RelocInfo::IsNone(adr.rmode_)) {
   2148     pc_ -= sizeof(int32_t);  // pc_ must be *at* disp32
   2149     RecordRelocInfo(adr.rmode_);
   2150     if (adr.rmode_ == RelocInfo::INTERNAL_REFERENCE) {  // Fixup for labels
   2151       emit_label(*reinterpret_cast<Label**>(pc_));
   2152     } else {
   2153       pc_ += sizeof(int32_t);
   2154     }
   2155   }
   2156 }
   2157 
   2158 
   2159 void Assembler::emit_label(Label* label) {
   2160   if (label->is_bound()) {
   2161     internal_reference_positions_.push_back(pc_offset());
   2162     emit(reinterpret_cast<uint32_t>(buffer_ + label->pos()));
   2163   } else {
   2164     emit_disp(label, Displacement::CODE_ABSOLUTE);
   2165   }
   2166 }
   2167 
   2168 
   2169 void Assembler::emit_farith(int b1, int b2, int i) {
   2170   DCHECK(is_uint8(b1) && is_uint8(b2));  // wrong opcode
   2171   DCHECK(0 <= i &&  i < 8);  // illegal stack offset
   2172   EMIT(b1);
   2173   EMIT(b2 + i);
   2174 }
   2175 
   2176 
   2177 void Assembler::db(uint8_t data) {
   2178   EnsureSpace ensure_space(this);
   2179   EMIT(data);
   2180 }
   2181 
   2182 
   2183 void Assembler::dd(uint32_t data) {
   2184   EnsureSpace ensure_space(this);
   2185   emit(data);
   2186 }
   2187 
   2188 
   2189 void Assembler::dq(uint64_t data) {
   2190   EnsureSpace ensure_space(this);
   2191   emit_q(data);
   2192 }
   2193 
   2194 
   2195 void Assembler::dd(Label* label) {
   2196   EnsureSpace ensure_space(this);
   2197   RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
   2198   emit_label(label);
   2199 }
   2200 
   2201 
   2202 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
   2203   DCHECK(!RelocInfo::IsNone(rmode));
   2204   // Don't record external references unless the heap will be serialized.
   2205   if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
   2206       !serializer_enabled() && !emit_debug_code()) {
   2207       return;
   2208   }
   2209   RelocInfo rinfo(isolate(), pc_, rmode, data, NULL);
   2210   reloc_info_writer.Write(&rinfo);
   2211 }
   2212 
   2213 
   2214 #ifdef GENERATED_CODE_COVERAGE
   2215 static FILE* coverage_log = NULL;
   2216 
   2217 
   2218 static void InitCoverageLog() {
   2219   char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
   2220   if (file_name != NULL) {
   2221     coverage_log = fopen(file_name, "aw+");
   2222   }
   2223 }
   2224 
   2225 
   2226 void LogGeneratedCodeCoverage(const char* file_line) {
   2227   const char* return_address = (&file_line)[-1];
   2228   char* push_insn = const_cast<char*>(return_address - 12);
   2229   push_insn[0] = 0xeb;  // Relative branch insn.
   2230   push_insn[1] = 13;    // Skip over coverage insns.
   2231   if (coverage_log != NULL) {
   2232     fprintf(coverage_log, "%s\n", file_line);
   2233     fflush(coverage_log);
   2234   }
   2235 }
   2236 
   2237 #endif
   2238 
   2239 }  // namespace internal
   2240 }  // namespace v8
   2241 
   2242 #endif  // V8_TARGET_ARCH_X87
   2243