1 /* 2 * Copyright 2012 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #include "SkBitmapProcState.h" 9 #include "SkBitmapProcState_filter.h" 10 #include "SkColorPriv.h" 11 #include "SkFilterProc.h" 12 #include "SkPaint.h" 13 #include "SkShader.h" // for tilemodes 14 #include "SkUtilsArm.h" 15 16 // Required to ensure the table is part of the final binary. 17 extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[]; 18 19 #define NAME_WRAP(x) x ## _neon 20 #include "SkBitmapProcState_filter_neon.h" 21 #include "SkBitmapProcState_procs.h" 22 23 const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[] = { 24 S32_opaque_D32_nofilter_DXDY_neon, 25 S32_alpha_D32_nofilter_DXDY_neon, 26 S32_opaque_D32_nofilter_DX_neon, 27 S32_alpha_D32_nofilter_DX_neon, 28 S32_opaque_D32_filter_DXDY_neon, 29 S32_alpha_D32_filter_DXDY_neon, 30 S32_opaque_D32_filter_DX_neon, 31 S32_alpha_D32_filter_DX_neon, 32 33 S16_opaque_D32_nofilter_DXDY_neon, 34 S16_alpha_D32_nofilter_DXDY_neon, 35 S16_opaque_D32_nofilter_DX_neon, 36 S16_alpha_D32_nofilter_DX_neon, 37 S16_opaque_D32_filter_DXDY_neon, 38 S16_alpha_D32_filter_DXDY_neon, 39 S16_opaque_D32_filter_DX_neon, 40 S16_alpha_D32_filter_DX_neon, 41 42 SI8_opaque_D32_nofilter_DXDY_neon, 43 SI8_alpha_D32_nofilter_DXDY_neon, 44 SI8_opaque_D32_nofilter_DX_neon, 45 SI8_alpha_D32_nofilter_DX_neon, 46 SI8_opaque_D32_filter_DXDY_neon, 47 SI8_alpha_D32_filter_DXDY_neon, 48 SI8_opaque_D32_filter_DX_neon, 49 SI8_alpha_D32_filter_DX_neon, 50 51 S4444_opaque_D32_nofilter_DXDY_neon, 52 S4444_alpha_D32_nofilter_DXDY_neon, 53 S4444_opaque_D32_nofilter_DX_neon, 54 S4444_alpha_D32_nofilter_DX_neon, 55 S4444_opaque_D32_filter_DXDY_neon, 56 S4444_alpha_D32_filter_DXDY_neon, 57 S4444_opaque_D32_filter_DX_neon, 58 S4444_alpha_D32_filter_DX_neon, 59 60 // A8 treats alpha/opauqe the same (equally efficient) 61 SA8_alpha_D32_nofilter_DXDY_neon, 62 SA8_alpha_D32_nofilter_DXDY_neon, 63 SA8_alpha_D32_nofilter_DX_neon, 64 SA8_alpha_D32_nofilter_DX_neon, 65 SA8_alpha_D32_filter_DXDY_neon, 66 SA8_alpha_D32_filter_DXDY_neon, 67 SA8_alpha_D32_filter_DX_neon, 68 SA8_alpha_D32_filter_DX_neon, 69 70 // todo: possibly specialize on opaqueness 71 SG8_alpha_D32_nofilter_DXDY_neon, 72 SG8_alpha_D32_nofilter_DXDY_neon, 73 SG8_alpha_D32_nofilter_DX_neon, 74 SG8_alpha_D32_nofilter_DX_neon, 75 SG8_alpha_D32_filter_DXDY_neon, 76 SG8_alpha_D32_filter_DXDY_neon, 77 SG8_alpha_D32_filter_DX_neon, 78 SG8_alpha_D32_filter_DX_neon, 79 }; 80 81 /////////////////////////////////////////////////////////////////////////////// 82 83 #include <arm_neon.h> 84 #include "SkConvolver.h" 85 86 // Convolves horizontally along a single row. The row data is given in 87 // |srcData| and continues for the numValues() of the filter. 88 void convolveHorizontally_neon(const unsigned char* srcData, 89 const SkConvolutionFilter1D& filter, 90 unsigned char* outRow, 91 bool hasAlpha) { 92 // Loop over each pixel on this row in the output image. 93 int numValues = filter.numValues(); 94 for (int outX = 0; outX < numValues; outX++) { 95 uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); 96 uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); 97 uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); 98 uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); 99 // Get the filter that determines the current output pixel. 100 int filterOffset, filterLength; 101 const SkConvolutionFilter1D::ConvolutionFixed* filterValues = 102 filter.FilterForValue(outX, &filterOffset, &filterLength); 103 104 // Compute the first pixel in this row that the filter affects. It will 105 // touch |filterLength| pixels (4 bytes each) after this. 106 const unsigned char* rowToFilter = &srcData[filterOffset * 4]; 107 108 // Apply the filter to the row to get the destination pixel in |accum|. 109 int32x4_t accum = vdupq_n_s32(0); 110 for (int filterX = 0; filterX < filterLength >> 2; filterX++) { 111 // Load 4 coefficients 112 int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; 113 coeffs = vld1_s16(filterValues); 114 coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); 115 coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); 116 coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); 117 coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); 118 119 // Load pixels and calc 120 uint8x16_t pixels = vld1q_u8(rowToFilter); 121 int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); 122 int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); 123 124 int16x4_t p0_src = vget_low_s16(p01_16); 125 int16x4_t p1_src = vget_high_s16(p01_16); 126 int16x4_t p2_src = vget_low_s16(p23_16); 127 int16x4_t p3_src = vget_high_s16(p23_16); 128 129 int32x4_t p0 = vmull_s16(p0_src, coeff0); 130 int32x4_t p1 = vmull_s16(p1_src, coeff1); 131 int32x4_t p2 = vmull_s16(p2_src, coeff2); 132 int32x4_t p3 = vmull_s16(p3_src, coeff3); 133 134 accum += p0; 135 accum += p1; 136 accum += p2; 137 accum += p3; 138 139 // Advance the pointers 140 rowToFilter += 16; 141 filterValues += 4; 142 } 143 int r = filterLength & 3; 144 if (r) { 145 const uint16_t mask[4][4] = { 146 {0, 0, 0, 0}, 147 {0xFFFF, 0, 0, 0}, 148 {0xFFFF, 0xFFFF, 0, 0}, 149 {0xFFFF, 0xFFFF, 0xFFFF, 0} 150 }; 151 uint16x4_t coeffs; 152 int16x4_t coeff0, coeff1, coeff2; 153 coeffs = vld1_u16(reinterpret_cast<const uint16_t*>(filterValues)); 154 coeffs &= vld1_u16(&mask[r][0]); 155 coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask0)); 156 coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask1)); 157 coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask2)); 158 159 // Load pixels and calc 160 uint8x16_t pixels = vld1q_u8(rowToFilter); 161 int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); 162 int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); 163 int32x4_t p0 = vmull_s16(vget_low_s16(p01_16), coeff0); 164 int32x4_t p1 = vmull_s16(vget_high_s16(p01_16), coeff1); 165 int32x4_t p2 = vmull_s16(vget_low_s16(p23_16), coeff2); 166 167 accum += p0; 168 accum += p1; 169 accum += p2; 170 } 171 172 // Bring this value back in range. All of the filter scaling factors 173 // are in fixed point with kShiftBits bits of fractional part. 174 accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); 175 176 // Pack and store the new pixel. 177 int16x4_t accum16 = vqmovn_s32(accum); 178 uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16)); 179 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpret_u32_u8(accum8), 0); 180 outRow += 4; 181 } 182 } 183 184 // Does vertical convolution to produce one output row. The filter values and 185 // length are given in the first two parameters. These are applied to each 186 // of the rows pointed to in the |sourceDataRows| array, with each row 187 // being |pixelWidth| wide. 188 // 189 // The output must have room for |pixelWidth * 4| bytes. 190 template<bool hasAlpha> 191 void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, 192 int filterLength, 193 unsigned char* const* sourceDataRows, 194 int pixelWidth, 195 unsigned char* outRow) { 196 int width = pixelWidth & ~3; 197 198 int32x4_t accum0, accum1, accum2, accum3; 199 int16x4_t coeff16; 200 201 // Output four pixels per iteration (16 bytes). 202 for (int outX = 0; outX < width; outX += 4) { 203 204 // Accumulated result for each pixel. 32 bits per RGBA channel. 205 accum0 = accum1 = accum2 = accum3 = vdupq_n_s32(0); 206 207 // Convolve with one filter coefficient per iteration. 208 for (int filterY = 0; filterY < filterLength; filterY++) { 209 210 // Duplicate the filter coefficient 4 times. 211 // [16] cj cj cj cj 212 coeff16 = vdup_n_s16(filterValues[filterY]); 213 214 // Load four pixels (16 bytes) together. 215 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 216 uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][outX << 2]); 217 218 int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); 219 int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); 220 int16x4_t src16_0 = vget_low_s16(src16_01); 221 int16x4_t src16_1 = vget_high_s16(src16_01); 222 int16x4_t src16_2 = vget_low_s16(src16_23); 223 int16x4_t src16_3 = vget_high_s16(src16_23); 224 225 accum0 += vmull_s16(src16_0, coeff16); 226 accum1 += vmull_s16(src16_1, coeff16); 227 accum2 += vmull_s16(src16_2, coeff16); 228 accum3 += vmull_s16(src16_3, coeff16); 229 } 230 231 // Shift right for fixed point implementation. 232 accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); 233 accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); 234 accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); 235 accum3 = vshrq_n_s32(accum3, SkConvolutionFilter1D::kShiftBits); 236 237 // Packing 32 bits |accum| to 16 bits per channel (signed saturation). 238 // [16] a1 b1 g1 r1 a0 b0 g0 r0 239 int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); 240 // [16] a3 b3 g3 r3 a2 b2 g2 r2 241 int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum3)); 242 243 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). 244 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 245 uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); 246 247 if (hasAlpha) { 248 // Compute the max(ri, gi, bi) for each pixel. 249 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 250 uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); 251 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 252 uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g 253 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 254 a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); 255 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 256 b = vmaxq_u8(a, b); // Max of r and g and b. 257 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 258 b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); 259 260 // Make sure the value of alpha channel is always larger than maximum 261 // value of color channels. 262 accum8 = vmaxq_u8(b, accum8); 263 } else { 264 // Set value of alpha channels to 0xFF. 265 accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); 266 } 267 268 // Store the convolution result (16 bytes) and advance the pixel pointers. 269 vst1q_u8(outRow, accum8); 270 outRow += 16; 271 } 272 273 // Process the leftovers when the width of the output is not divisible 274 // by 4, that is at most 3 pixels. 275 int r = pixelWidth & 3; 276 if (r) { 277 278 accum0 = accum1 = accum2 = vdupq_n_s32(0); 279 280 for (int filterY = 0; filterY < filterLength; ++filterY) { 281 coeff16 = vdup_n_s16(filterValues[filterY]); 282 283 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 284 uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][width << 2]); 285 286 int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); 287 int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); 288 int16x4_t src16_0 = vget_low_s16(src16_01); 289 int16x4_t src16_1 = vget_high_s16(src16_01); 290 int16x4_t src16_2 = vget_low_s16(src16_23); 291 292 accum0 += vmull_s16(src16_0, coeff16); 293 accum1 += vmull_s16(src16_1, coeff16); 294 accum2 += vmull_s16(src16_2, coeff16); 295 } 296 297 accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); 298 accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); 299 accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); 300 301 int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); 302 int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum2)); 303 304 uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); 305 306 if (hasAlpha) { 307 // Compute the max(ri, gi, bi) for each pixel. 308 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 309 uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); 310 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 311 uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g 312 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 313 a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); 314 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 315 b = vmaxq_u8(a, b); // Max of r and g and b. 316 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 317 b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); 318 319 // Make sure the value of alpha channel is always larger than maximum 320 // value of color channels. 321 accum8 = vmaxq_u8(b, accum8); 322 } else { 323 // Set value of alpha channels to 0xFF. 324 accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); 325 } 326 327 switch(r) { 328 case 1: 329 vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpretq_u32_u8(accum8), 0); 330 break; 331 case 2: 332 vst1_u32(reinterpret_cast<uint32_t*>(outRow), 333 vreinterpret_u32_u8(vget_low_u8(accum8))); 334 break; 335 case 3: 336 vst1_u32(reinterpret_cast<uint32_t*>(outRow), 337 vreinterpret_u32_u8(vget_low_u8(accum8))); 338 vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow+8), vreinterpretq_u32_u8(accum8), 2); 339 break; 340 } 341 } 342 } 343 344 void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, 345 int filterLength, 346 unsigned char* const* sourceDataRows, 347 int pixelWidth, 348 unsigned char* outRow, 349 bool sourceHasAlpha) { 350 if (sourceHasAlpha) { 351 convolveVertically_neon<true>(filterValues, filterLength, 352 sourceDataRows, pixelWidth, 353 outRow); 354 } else { 355 convolveVertically_neon<false>(filterValues, filterLength, 356 sourceDataRows, pixelWidth, 357 outRow); 358 } 359 } 360 361 // Convolves horizontally along four rows. The row data is given in 362 // |src_data| and continues for the num_values() of the filter. 363 // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please 364 // refer to that function for detailed comments. 365 void convolve4RowsHorizontally_neon(const unsigned char* srcData[4], 366 const SkConvolutionFilter1D& filter, 367 unsigned char* outRow[4], 368 size_t outRowBytes) { 369 370 uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); 371 uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); 372 uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); 373 uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); 374 int num_values = filter.numValues(); 375 376 int filterOffset, filterLength; 377 // |mask| will be used to decimate all extra filter coefficients that are 378 // loaded by SIMD when |filter_length| is not divisible by 4. 379 // mask[0] is not used in following algorithm. 380 const uint16_t mask[4][4] = { 381 {0, 0, 0, 0}, 382 {0xFFFF, 0, 0, 0}, 383 {0xFFFF, 0xFFFF, 0, 0}, 384 {0xFFFF, 0xFFFF, 0xFFFF, 0} 385 }; 386 387 // Output one pixel each iteration, calculating all channels (RGBA) together. 388 for (int outX = 0; outX < num_values; outX++) { 389 390 const SkConvolutionFilter1D::ConvolutionFixed* filterValues = 391 filter.FilterForValue(outX, &filterOffset, &filterLength); 392 393 // four pixels in a column per iteration. 394 int32x4_t accum0 = vdupq_n_s32(0); 395 int32x4_t accum1 = vdupq_n_s32(0); 396 int32x4_t accum2 = vdupq_n_s32(0); 397 int32x4_t accum3 = vdupq_n_s32(0); 398 399 int start = (filterOffset<<2); 400 401 // We will load and accumulate with four coefficients per iteration. 402 for (int filter_x = 0; filter_x < (filterLength >> 2); filter_x++) { 403 int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; 404 405 coeffs = vld1_s16(filterValues); 406 coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); 407 coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); 408 coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); 409 coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); 410 411 uint8x16_t pixels; 412 int16x8_t p01_16, p23_16; 413 int32x4_t p0, p1, p2, p3; 414 415 416 #define ITERATION(src, accum) \ 417 pixels = vld1q_u8(src); \ 418 p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); \ 419 p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); \ 420 p0 = vmull_s16(vget_low_s16(p01_16), coeff0); \ 421 p1 = vmull_s16(vget_high_s16(p01_16), coeff1); \ 422 p2 = vmull_s16(vget_low_s16(p23_16), coeff2); \ 423 p3 = vmull_s16(vget_high_s16(p23_16), coeff3); \ 424 accum += p0; \ 425 accum += p1; \ 426 accum += p2; \ 427 accum += p3 428 429 ITERATION(srcData[0] + start, accum0); 430 ITERATION(srcData[1] + start, accum1); 431 ITERATION(srcData[2] + start, accum2); 432 ITERATION(srcData[3] + start, accum3); 433 434 start += 16; 435 filterValues += 4; 436 } 437 438 int r = filterLength & 3; 439 if (r) { 440 int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; 441 coeffs = vld1_s16(filterValues); 442 coeffs &= vreinterpret_s16_u16(vld1_u16(&mask[r][0])); 443 coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); 444 coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); 445 coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); 446 coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); 447 448 uint8x16_t pixels; 449 int16x8_t p01_16, p23_16; 450 int32x4_t p0, p1, p2, p3; 451 452 ITERATION(srcData[0] + start, accum0); 453 ITERATION(srcData[1] + start, accum1); 454 ITERATION(srcData[2] + start, accum2); 455 ITERATION(srcData[3] + start, accum3); 456 } 457 458 int16x4_t accum16; 459 uint8x8_t res0, res1, res2, res3; 460 461 #define PACK_RESULT(accum, res) \ 462 accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); \ 463 accum16 = vqmovn_s32(accum); \ 464 res = vqmovun_s16(vcombine_s16(accum16, accum16)); 465 466 PACK_RESULT(accum0, res0); 467 PACK_RESULT(accum1, res1); 468 PACK_RESULT(accum2, res2); 469 PACK_RESULT(accum3, res3); 470 471 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[0]), vreinterpret_u32_u8(res0), 0); 472 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[1]), vreinterpret_u32_u8(res1), 0); 473 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[2]), vreinterpret_u32_u8(res2), 0); 474 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[3]), vreinterpret_u32_u8(res3), 0); 475 outRow[0] += 4; 476 outRow[1] += 4; 477 outRow[2] += 4; 478 outRow[3] += 4; 479 } 480 } 481 482 void applySIMDPadding_neon(SkConvolutionFilter1D *filter) { 483 // Padding |paddingCount| of more dummy coefficients after the coefficients 484 // of last filter to prevent SIMD instructions which load 8 or 16 bytes 485 // together to access invalid memory areas. We are not trying to align the 486 // coefficients right now due to the opaqueness of <vector> implementation. 487 // This has to be done after all |AddFilter| calls. 488 for (int i = 0; i < 8; ++i) { 489 filter->addFilterValue(static_cast<SkConvolutionFilter1D::ConvolutionFixed>(0)); 490 } 491 } 492 493 void platformConvolutionProcs_arm_neon(SkConvolutionProcs* procs) { 494 procs->fExtraHorizontalReads = 3; 495 procs->fConvolveVertically = &convolveVertically_neon; 496 procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_neon; 497 procs->fConvolveHorizontally = &convolveHorizontally_neon; 498 procs->fApplySIMDPadding = &applySIMDPadding_neon; 499 } 500