Home | History | Annotate | Download | only in Analysis
      1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the TypeBasedAliasAnalysis pass, which implements
     11 // metadata-based TBAA.
     12 //
     13 // In LLVM IR, memory does not have types, so LLVM's own type system is not
     14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
     15 // a type system of a higher level language. This can be used to implement
     16 // typical C/C++ TBAA, but it can also be used to implement custom alias
     17 // analysis behavior for other languages.
     18 //
     19 // We now support two types of metadata format: scalar TBAA and struct-path
     20 // aware TBAA. After all testing cases are upgraded to use struct-path aware
     21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
     22 // can be dropped.
     23 //
     24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
     25 // three fields, e.g.:
     26 //   !0 = metadata !{ metadata !"an example type tree" }
     27 //   !1 = metadata !{ metadata !"int", metadata !0 }
     28 //   !2 = metadata !{ metadata !"float", metadata !0 }
     29 //   !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
     30 //
     31 // The first field is an identity field. It can be any value, usually
     32 // an MDString, which uniquely identifies the type. The most important
     33 // name in the tree is the name of the root node. Two trees with
     34 // different root node names are entirely disjoint, even if they
     35 // have leaves with common names.
     36 //
     37 // The second field identifies the type's parent node in the tree, or
     38 // is null or omitted for a root node. A type is considered to alias
     39 // all of its descendants and all of its ancestors in the tree. Also,
     40 // a type is considered to alias all types in other trees, so that
     41 // bitcode produced from multiple front-ends is handled conservatively.
     42 //
     43 // If the third field is present, it's an integer which if equal to 1
     44 // indicates that the type is "constant" (meaning pointsToConstantMemory
     45 // should return true; see
     46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
     47 //
     48 // With struct-path aware TBAA, the MDNodes attached to an instruction using
     49 // "!tbaa" are called path tag nodes.
     50 //
     51 // The path tag node has 4 fields with the last field being optional.
     52 //
     53 // The first field is the base type node, it can be a struct type node
     54 // or a scalar type node. The second field is the access type node, it
     55 // must be a scalar type node. The third field is the offset into the base type.
     56 // The last field has the same meaning as the last field of our scalar TBAA:
     57 // it's an integer which if equal to 1 indicates that the access is "constant".
     58 //
     59 // The struct type node has a name and a list of pairs, one pair for each member
     60 // of the struct. The first element of each pair is a type node (a struct type
     61 // node or a sclar type node), specifying the type of the member, the second
     62 // element of each pair is the offset of the member.
     63 //
     64 // Given an example
     65 // typedef struct {
     66 //   short s;
     67 // } A;
     68 // typedef struct {
     69 //   uint16_t s;
     70 //   A a;
     71 // } B;
     72 //
     73 // For an acess to B.a.s, we attach !5 (a path tag node) to the load/store
     74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
     75 // type short) and the offset is 4.
     76 //
     77 // !0 = metadata !{metadata !"Simple C/C++ TBAA"}
     78 // !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node
     79 // !2 = metadata !{metadata !"short", metadata !1}           // Scalar type node
     80 // !3 = metadata !{metadata !"A", metadata !2, i64 0}        // Struct type node
     81 // !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4}
     82 //                                                           // Struct type node
     83 // !5 = metadata !{metadata !4, metadata !2, i64 4}          // Path tag node
     84 //
     85 // The struct type nodes and the scalar type nodes form a type DAG.
     86 //         Root (!0)
     87 //         char (!1)  -- edge to Root
     88 //         short (!2) -- edge to char
     89 //         A (!3) -- edge with offset 0 to short
     90 //         B (!4) -- edge with offset 0 to short and edge with offset 4 to A
     91 //
     92 // To check if two tags (tagX and tagY) can alias, we start from the base type
     93 // of tagX, follow the edge with the correct offset in the type DAG and adjust
     94 // the offset until we reach the base type of tagY or until we reach the Root
     95 // node.
     96 // If we reach the base type of tagY, compare the adjusted offset with
     97 // offset of tagY, return Alias if the offsets are the same, return NoAlias
     98 // otherwise.
     99 // If we reach the Root node, perform the above starting from base type of tagY
    100 // to see if we reach base type of tagX.
    101 //
    102 // If they have different roots, they're part of different potentially
    103 // unrelated type systems, so we return Alias to be conservative.
    104 // If neither node is an ancestor of the other and they have the same root,
    105 // then we say NoAlias.
    106 //
    107 // TODO: The current metadata format doesn't support struct
    108 // fields. For example:
    109 //   struct X {
    110 //     double d;
    111 //     int i;
    112 //   };
    113 //   void foo(struct X *x, struct X *y, double *p) {
    114 //     *x = *y;
    115 //     *p = 0.0;
    116 //   }
    117 // Struct X has a double member, so the store to *x can alias the store to *p.
    118 // Currently it's not possible to precisely describe all the things struct X
    119 // aliases, so struct assignments must use conservative TBAA nodes. There's
    120 // no scheme for attaching metadata to @llvm.memcpy yet either.
    121 //
    122 //===----------------------------------------------------------------------===//
    123 
    124 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
    125 #include "llvm/Analysis/TargetLibraryInfo.h"
    126 #include "llvm/ADT/SetVector.h"
    127 #include "llvm/IR/Constants.h"
    128 #include "llvm/IR/LLVMContext.h"
    129 #include "llvm/IR/Module.h"
    130 #include "llvm/Support/CommandLine.h"
    131 using namespace llvm;
    132 
    133 // A handy option for disabling TBAA functionality. The same effect can also be
    134 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
    135 // more convenient.
    136 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
    137 
    138 namespace {
    139 /// TBAANode - This is a simple wrapper around an MDNode which provides a
    140 /// higher-level interface by hiding the details of how alias analysis
    141 /// information is encoded in its operands.
    142 class TBAANode {
    143   const MDNode *Node;
    144 
    145 public:
    146   TBAANode() : Node(nullptr) {}
    147   explicit TBAANode(const MDNode *N) : Node(N) {}
    148 
    149   /// getNode - Get the MDNode for this TBAANode.
    150   const MDNode *getNode() const { return Node; }
    151 
    152   /// getParent - Get this TBAANode's Alias tree parent.
    153   TBAANode getParent() const {
    154     if (Node->getNumOperands() < 2)
    155       return TBAANode();
    156     MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
    157     if (!P)
    158       return TBAANode();
    159     // Ok, this node has a valid parent. Return it.
    160     return TBAANode(P);
    161   }
    162 
    163   /// TypeIsImmutable - Test if this TBAANode represents a type for objects
    164   /// which are not modified (by any means) in the context where this
    165   /// AliasAnalysis is relevant.
    166   bool TypeIsImmutable() const {
    167     if (Node->getNumOperands() < 3)
    168       return false;
    169     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
    170     if (!CI)
    171       return false;
    172     return CI->getValue()[0];
    173   }
    174 };
    175 
    176 /// This is a simple wrapper around an MDNode which provides a
    177 /// higher-level interface by hiding the details of how alias analysis
    178 /// information is encoded in its operands.
    179 class TBAAStructTagNode {
    180   /// This node should be created with createTBAAStructTagNode.
    181   const MDNode *Node;
    182 
    183 public:
    184   explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
    185 
    186   /// Get the MDNode for this TBAAStructTagNode.
    187   const MDNode *getNode() const { return Node; }
    188 
    189   const MDNode *getBaseType() const {
    190     return dyn_cast_or_null<MDNode>(Node->getOperand(0));
    191   }
    192   const MDNode *getAccessType() const {
    193     return dyn_cast_or_null<MDNode>(Node->getOperand(1));
    194   }
    195   uint64_t getOffset() const {
    196     return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
    197   }
    198   /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
    199   /// objects which are not modified (by any means) in the context where this
    200   /// AliasAnalysis is relevant.
    201   bool TypeIsImmutable() const {
    202     if (Node->getNumOperands() < 4)
    203       return false;
    204     ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(3));
    205     if (!CI)
    206       return false;
    207     return CI->getValue()[0];
    208   }
    209 };
    210 
    211 /// This is a simple wrapper around an MDNode which provides a
    212 /// higher-level interface by hiding the details of how alias analysis
    213 /// information is encoded in its operands.
    214 class TBAAStructTypeNode {
    215   /// This node should be created with createTBAAStructTypeNode.
    216   const MDNode *Node;
    217 
    218 public:
    219   TBAAStructTypeNode() : Node(nullptr) {}
    220   explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
    221 
    222   /// Get the MDNode for this TBAAStructTypeNode.
    223   const MDNode *getNode() const { return Node; }
    224 
    225   /// Get this TBAAStructTypeNode's field in the type DAG with
    226   /// given offset. Update the offset to be relative to the field type.
    227   TBAAStructTypeNode getParent(uint64_t &Offset) const {
    228     // Parent can be omitted for the root node.
    229     if (Node->getNumOperands() < 2)
    230       return TBAAStructTypeNode();
    231 
    232     // Fast path for a scalar type node and a struct type node with a single
    233     // field.
    234     if (Node->getNumOperands() <= 3) {
    235       uint64_t Cur = Node->getNumOperands() == 2
    236                          ? 0
    237                          : mdconst::extract<ConstantInt>(Node->getOperand(2))
    238                                ->getZExtValue();
    239       Offset -= Cur;
    240       MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
    241       if (!P)
    242         return TBAAStructTypeNode();
    243       return TBAAStructTypeNode(P);
    244     }
    245 
    246     // Assume the offsets are in order. We return the previous field if
    247     // the current offset is bigger than the given offset.
    248     unsigned TheIdx = 0;
    249     for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
    250       uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
    251                          ->getZExtValue();
    252       if (Cur > Offset) {
    253         assert(Idx >= 3 &&
    254                "TBAAStructTypeNode::getParent should have an offset match!");
    255         TheIdx = Idx - 2;
    256         break;
    257       }
    258     }
    259     // Move along the last field.
    260     if (TheIdx == 0)
    261       TheIdx = Node->getNumOperands() - 2;
    262     uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
    263                        ->getZExtValue();
    264     Offset -= Cur;
    265     MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
    266     if (!P)
    267       return TBAAStructTypeNode();
    268     return TBAAStructTypeNode(P);
    269   }
    270 };
    271 }
    272 
    273 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
    274 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
    275 /// format.
    276 static bool isStructPathTBAA(const MDNode *MD) {
    277   // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
    278   // a TBAA tag.
    279   return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
    280 }
    281 
    282 AliasResult TypeBasedAAResult::alias(const MemoryLocation &LocA,
    283                                      const MemoryLocation &LocB) {
    284   if (!EnableTBAA)
    285     return AAResultBase::alias(LocA, LocB);
    286 
    287   // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
    288   // be conservative.
    289   const MDNode *AM = LocA.AATags.TBAA;
    290   if (!AM)
    291     return AAResultBase::alias(LocA, LocB);
    292   const MDNode *BM = LocB.AATags.TBAA;
    293   if (!BM)
    294     return AAResultBase::alias(LocA, LocB);
    295 
    296   // If they may alias, chain to the next AliasAnalysis.
    297   if (Aliases(AM, BM))
    298     return AAResultBase::alias(LocA, LocB);
    299 
    300   // Otherwise return a definitive result.
    301   return NoAlias;
    302 }
    303 
    304 bool TypeBasedAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
    305                                                bool OrLocal) {
    306   if (!EnableTBAA)
    307     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    308 
    309   const MDNode *M = Loc.AATags.TBAA;
    310   if (!M)
    311     return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    312 
    313   // If this is an "immutable" type, we can assume the pointer is pointing
    314   // to constant memory.
    315   if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
    316       (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
    317     return true;
    318 
    319   return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    320 }
    321 
    322 FunctionModRefBehavior
    323 TypeBasedAAResult::getModRefBehavior(ImmutableCallSite CS) {
    324   if (!EnableTBAA)
    325     return AAResultBase::getModRefBehavior(CS);
    326 
    327   FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;
    328 
    329   // If this is an "immutable" type, we can assume the call doesn't write
    330   // to memory.
    331   if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    332     if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
    333         (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
    334       Min = FMRB_OnlyReadsMemory;
    335 
    336   return FunctionModRefBehavior(AAResultBase::getModRefBehavior(CS) & Min);
    337 }
    338 
    339 FunctionModRefBehavior TypeBasedAAResult::getModRefBehavior(const Function *F) {
    340   // Functions don't have metadata. Just chain to the next implementation.
    341   return AAResultBase::getModRefBehavior(F);
    342 }
    343 
    344 ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS,
    345                                             const MemoryLocation &Loc) {
    346   if (!EnableTBAA)
    347     return AAResultBase::getModRefInfo(CS, Loc);
    348 
    349   if (const MDNode *L = Loc.AATags.TBAA)
    350     if (const MDNode *M =
    351             CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    352       if (!Aliases(L, M))
    353         return MRI_NoModRef;
    354 
    355   return AAResultBase::getModRefInfo(CS, Loc);
    356 }
    357 
    358 ModRefInfo TypeBasedAAResult::getModRefInfo(ImmutableCallSite CS1,
    359                                             ImmutableCallSite CS2) {
    360   if (!EnableTBAA)
    361     return AAResultBase::getModRefInfo(CS1, CS2);
    362 
    363   if (const MDNode *M1 =
    364           CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    365     if (const MDNode *M2 =
    366             CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    367       if (!Aliases(M1, M2))
    368         return MRI_NoModRef;
    369 
    370   return AAResultBase::getModRefInfo(CS1, CS2);
    371 }
    372 
    373 bool MDNode::isTBAAVtableAccess() const {
    374   if (!isStructPathTBAA(this)) {
    375     if (getNumOperands() < 1)
    376       return false;
    377     if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
    378       if (Tag1->getString() == "vtable pointer")
    379         return true;
    380     }
    381     return false;
    382   }
    383 
    384   // For struct-path aware TBAA, we use the access type of the tag.
    385   if (getNumOperands() < 2)
    386     return false;
    387   MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
    388   if (!Tag)
    389     return false;
    390   if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
    391     if (Tag1->getString() == "vtable pointer")
    392       return true;
    393   }
    394   return false;
    395 }
    396 
    397 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
    398   if (!A || !B)
    399     return nullptr;
    400 
    401   if (A == B)
    402     return A;
    403 
    404   // For struct-path aware TBAA, we use the access type of the tag.
    405   bool StructPath = isStructPathTBAA(A) && isStructPathTBAA(B);
    406   if (StructPath) {
    407     A = cast_or_null<MDNode>(A->getOperand(1));
    408     if (!A)
    409       return nullptr;
    410     B = cast_or_null<MDNode>(B->getOperand(1));
    411     if (!B)
    412       return nullptr;
    413   }
    414 
    415   SmallSetVector<MDNode *, 4> PathA;
    416   MDNode *T = A;
    417   while (T) {
    418     if (PathA.count(T))
    419       report_fatal_error("Cycle found in TBAA metadata.");
    420     PathA.insert(T);
    421     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
    422                                  : nullptr;
    423   }
    424 
    425   SmallSetVector<MDNode *, 4> PathB;
    426   T = B;
    427   while (T) {
    428     if (PathB.count(T))
    429       report_fatal_error("Cycle found in TBAA metadata.");
    430     PathB.insert(T);
    431     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
    432                                  : nullptr;
    433   }
    434 
    435   int IA = PathA.size() - 1;
    436   int IB = PathB.size() - 1;
    437 
    438   MDNode *Ret = nullptr;
    439   while (IA >= 0 && IB >= 0) {
    440     if (PathA[IA] == PathB[IB])
    441       Ret = PathA[IA];
    442     else
    443       break;
    444     --IA;
    445     --IB;
    446   }
    447   if (!StructPath)
    448     return Ret;
    449 
    450   if (!Ret)
    451     return nullptr;
    452   // We need to convert from a type node to a tag node.
    453   Type *Int64 = IntegerType::get(A->getContext(), 64);
    454   Metadata *Ops[3] = {Ret, Ret,
    455                       ConstantAsMetadata::get(ConstantInt::get(Int64, 0))};
    456   return MDNode::get(A->getContext(), Ops);
    457 }
    458 
    459 void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
    460   if (Merge)
    461     N.TBAA =
    462         MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
    463   else
    464     N.TBAA = getMetadata(LLVMContext::MD_tbaa);
    465 
    466   if (Merge)
    467     N.Scope = MDNode::getMostGenericAliasScope(
    468         N.Scope, getMetadata(LLVMContext::MD_alias_scope));
    469   else
    470     N.Scope = getMetadata(LLVMContext::MD_alias_scope);
    471 
    472   if (Merge)
    473     N.NoAlias =
    474         MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
    475   else
    476     N.NoAlias = getMetadata(LLVMContext::MD_noalias);
    477 }
    478 
    479 /// Aliases - Test whether the type represented by A may alias the
    480 /// type represented by B.
    481 bool TypeBasedAAResult::Aliases(const MDNode *A, const MDNode *B) const {
    482   // Make sure that both MDNodes are struct-path aware.
    483   if (isStructPathTBAA(A) && isStructPathTBAA(B))
    484     return PathAliases(A, B);
    485 
    486   // Keep track of the root node for A and B.
    487   TBAANode RootA, RootB;
    488 
    489   // Climb the tree from A to see if we reach B.
    490   for (TBAANode T(A);;) {
    491     if (T.getNode() == B)
    492       // B is an ancestor of A.
    493       return true;
    494 
    495     RootA = T;
    496     T = T.getParent();
    497     if (!T.getNode())
    498       break;
    499   }
    500 
    501   // Climb the tree from B to see if we reach A.
    502   for (TBAANode T(B);;) {
    503     if (T.getNode() == A)
    504       // A is an ancestor of B.
    505       return true;
    506 
    507     RootB = T;
    508     T = T.getParent();
    509     if (!T.getNode())
    510       break;
    511   }
    512 
    513   // Neither node is an ancestor of the other.
    514 
    515   // If they have different roots, they're part of different potentially
    516   // unrelated type systems, so we must be conservative.
    517   if (RootA.getNode() != RootB.getNode())
    518     return true;
    519 
    520   // If they have the same root, then we've proved there's no alias.
    521   return false;
    522 }
    523 
    524 /// Test whether the struct-path tag represented by A may alias the
    525 /// struct-path tag represented by B.
    526 bool TypeBasedAAResult::PathAliases(const MDNode *A, const MDNode *B) const {
    527   // Verify that both input nodes are struct-path aware.
    528   assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware.");
    529   assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware.");
    530 
    531   // Keep track of the root node for A and B.
    532   TBAAStructTypeNode RootA, RootB;
    533   TBAAStructTagNode TagA(A), TagB(B);
    534 
    535   // TODO: We need to check if AccessType of TagA encloses AccessType of
    536   // TagB to support aggregate AccessType. If yes, return true.
    537 
    538   // Start from the base type of A, follow the edge with the correct offset in
    539   // the type DAG and adjust the offset until we reach the base type of B or
    540   // until we reach the Root node.
    541   // Compare the adjusted offset once we have the same base.
    542 
    543   // Climb the type DAG from base type of A to see if we reach base type of B.
    544   const MDNode *BaseA = TagA.getBaseType();
    545   const MDNode *BaseB = TagB.getBaseType();
    546   uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
    547   for (TBAAStructTypeNode T(BaseA);;) {
    548     if (T.getNode() == BaseB)
    549       // Base type of A encloses base type of B, check if the offsets match.
    550       return OffsetA == OffsetB;
    551 
    552     RootA = T;
    553     // Follow the edge with the correct offset, OffsetA will be adjusted to
    554     // be relative to the field type.
    555     T = T.getParent(OffsetA);
    556     if (!T.getNode())
    557       break;
    558   }
    559 
    560   // Reset OffsetA and climb the type DAG from base type of B to see if we reach
    561   // base type of A.
    562   OffsetA = TagA.getOffset();
    563   for (TBAAStructTypeNode T(BaseB);;) {
    564     if (T.getNode() == BaseA)
    565       // Base type of B encloses base type of A, check if the offsets match.
    566       return OffsetA == OffsetB;
    567 
    568     RootB = T;
    569     // Follow the edge with the correct offset, OffsetB will be adjusted to
    570     // be relative to the field type.
    571     T = T.getParent(OffsetB);
    572     if (!T.getNode())
    573       break;
    574   }
    575 
    576   // Neither node is an ancestor of the other.
    577 
    578   // If they have different roots, they're part of different potentially
    579   // unrelated type systems, so we must be conservative.
    580   if (RootA.getNode() != RootB.getNode())
    581     return true;
    582 
    583   // If they have the same root, then we've proved there's no alias.
    584   return false;
    585 }
    586 
    587 TypeBasedAAResult TypeBasedAA::run(Function &F, AnalysisManager<Function> *AM) {
    588   return TypeBasedAAResult(AM->getResult<TargetLibraryAnalysis>(F));
    589 }
    590 
    591 char TypeBasedAA::PassID;
    592 
    593 char TypeBasedAAWrapperPass::ID = 0;
    594 INITIALIZE_PASS_BEGIN(TypeBasedAAWrapperPass, "tbaa",
    595                       "Type-Based Alias Analysis", false, true)
    596 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    597 INITIALIZE_PASS_END(TypeBasedAAWrapperPass, "tbaa", "Type-Based Alias Analysis",
    598                     false, true)
    599 
    600 ImmutablePass *llvm::createTypeBasedAAWrapperPass() {
    601   return new TypeBasedAAWrapperPass();
    602 }
    603 
    604 TypeBasedAAWrapperPass::TypeBasedAAWrapperPass() : ImmutablePass(ID) {
    605   initializeTypeBasedAAWrapperPassPass(*PassRegistry::getPassRegistry());
    606 }
    607 
    608 bool TypeBasedAAWrapperPass::doInitialization(Module &M) {
    609   Result.reset(new TypeBasedAAResult(
    610       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
    611   return false;
    612 }
    613 
    614 bool TypeBasedAAWrapperPass::doFinalization(Module &M) {
    615   Result.reset();
    616   return false;
    617 }
    618 
    619 void TypeBasedAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
    620   AU.setPreservesAll();
    621   AU.addRequired<TargetLibraryInfoWrapperPass>();
    622 }
    623