1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/LazyCallGraph.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/IR/CallSite.h" 13 #include "llvm/IR/InstVisitor.h" 14 #include "llvm/IR/Instructions.h" 15 #include "llvm/IR/PassManager.h" 16 #include "llvm/Support/Debug.h" 17 #include "llvm/Support/raw_ostream.h" 18 19 using namespace llvm; 20 21 #define DEBUG_TYPE "lcg" 22 23 static void findCallees( 24 SmallVectorImpl<Constant *> &Worklist, SmallPtrSetImpl<Constant *> &Visited, 25 SmallVectorImpl<PointerUnion<Function *, LazyCallGraph::Node *>> &Callees, 26 DenseMap<Function *, size_t> &CalleeIndexMap) { 27 while (!Worklist.empty()) { 28 Constant *C = Worklist.pop_back_val(); 29 30 if (Function *F = dyn_cast<Function>(C)) { 31 // Note that we consider *any* function with a definition to be a viable 32 // edge. Even if the function's definition is subject to replacement by 33 // some other module (say, a weak definition) there may still be 34 // optimizations which essentially speculate based on the definition and 35 // a way to check that the specific definition is in fact the one being 36 // used. For example, this could be done by moving the weak definition to 37 // a strong (internal) definition and making the weak definition be an 38 // alias. Then a test of the address of the weak function against the new 39 // strong definition's address would be an effective way to determine the 40 // safety of optimizing a direct call edge. 41 if (!F->isDeclaration() && 42 CalleeIndexMap.insert(std::make_pair(F, Callees.size())).second) { 43 DEBUG(dbgs() << " Added callable function: " << F->getName() 44 << "\n"); 45 Callees.push_back(F); 46 } 47 continue; 48 } 49 50 for (Value *Op : C->operand_values()) 51 if (Visited.insert(cast<Constant>(Op)).second) 52 Worklist.push_back(cast<Constant>(Op)); 53 } 54 } 55 56 LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F) 57 : G(&G), F(F), DFSNumber(0), LowLink(0) { 58 DEBUG(dbgs() << " Adding functions called by '" << F.getName() 59 << "' to the graph.\n"); 60 61 SmallVector<Constant *, 16> Worklist; 62 SmallPtrSet<Constant *, 16> Visited; 63 // Find all the potential callees in this function. First walk the 64 // instructions and add every operand which is a constant to the worklist. 65 for (BasicBlock &BB : F) 66 for (Instruction &I : BB) 67 for (Value *Op : I.operand_values()) 68 if (Constant *C = dyn_cast<Constant>(Op)) 69 if (Visited.insert(C).second) 70 Worklist.push_back(C); 71 72 // We've collected all the constant (and thus potentially function or 73 // function containing) operands to all of the instructions in the function. 74 // Process them (recursively) collecting every function found. 75 findCallees(Worklist, Visited, Callees, CalleeIndexMap); 76 } 77 78 void LazyCallGraph::Node::insertEdgeInternal(Function &Callee) { 79 if (Node *N = G->lookup(Callee)) 80 return insertEdgeInternal(*N); 81 82 CalleeIndexMap.insert(std::make_pair(&Callee, Callees.size())); 83 Callees.push_back(&Callee); 84 } 85 86 void LazyCallGraph::Node::insertEdgeInternal(Node &CalleeN) { 87 CalleeIndexMap.insert(std::make_pair(&CalleeN.getFunction(), Callees.size())); 88 Callees.push_back(&CalleeN); 89 } 90 91 void LazyCallGraph::Node::removeEdgeInternal(Function &Callee) { 92 auto IndexMapI = CalleeIndexMap.find(&Callee); 93 assert(IndexMapI != CalleeIndexMap.end() && 94 "Callee not in the callee set for this caller?"); 95 96 Callees[IndexMapI->second] = nullptr; 97 CalleeIndexMap.erase(IndexMapI); 98 } 99 100 LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) { 101 DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() 102 << "\n"); 103 for (Function &F : M) 104 if (!F.isDeclaration() && !F.hasLocalLinkage()) 105 if (EntryIndexMap.insert(std::make_pair(&F, EntryNodes.size())).second) { 106 DEBUG(dbgs() << " Adding '" << F.getName() 107 << "' to entry set of the graph.\n"); 108 EntryNodes.push_back(&F); 109 } 110 111 // Now add entry nodes for functions reachable via initializers to globals. 112 SmallVector<Constant *, 16> Worklist; 113 SmallPtrSet<Constant *, 16> Visited; 114 for (GlobalVariable &GV : M.globals()) 115 if (GV.hasInitializer()) 116 if (Visited.insert(GV.getInitializer()).second) 117 Worklist.push_back(GV.getInitializer()); 118 119 DEBUG(dbgs() << " Adding functions referenced by global initializers to the " 120 "entry set.\n"); 121 findCallees(Worklist, Visited, EntryNodes, EntryIndexMap); 122 123 for (auto &Entry : EntryNodes) { 124 assert(!Entry.isNull() && 125 "We can't have removed edges before we finish the constructor!"); 126 if (Function *F = Entry.dyn_cast<Function *>()) 127 SCCEntryNodes.push_back(F); 128 else 129 SCCEntryNodes.push_back(&Entry.get<Node *>()->getFunction()); 130 } 131 } 132 133 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) 134 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), 135 EntryNodes(std::move(G.EntryNodes)), 136 EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)), 137 SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)), 138 DFSStack(std::move(G.DFSStack)), 139 SCCEntryNodes(std::move(G.SCCEntryNodes)), 140 NextDFSNumber(G.NextDFSNumber) { 141 updateGraphPtrs(); 142 } 143 144 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { 145 BPA = std::move(G.BPA); 146 NodeMap = std::move(G.NodeMap); 147 EntryNodes = std::move(G.EntryNodes); 148 EntryIndexMap = std::move(G.EntryIndexMap); 149 SCCBPA = std::move(G.SCCBPA); 150 SCCMap = std::move(G.SCCMap); 151 LeafSCCs = std::move(G.LeafSCCs); 152 DFSStack = std::move(G.DFSStack); 153 SCCEntryNodes = std::move(G.SCCEntryNodes); 154 NextDFSNumber = G.NextDFSNumber; 155 updateGraphPtrs(); 156 return *this; 157 } 158 159 void LazyCallGraph::SCC::insert(Node &N) { 160 N.DFSNumber = N.LowLink = -1; 161 Nodes.push_back(&N); 162 G->SCCMap[&N] = this; 163 } 164 165 bool LazyCallGraph::SCC::isDescendantOf(const SCC &C) const { 166 // Walk up the parents of this SCC and verify that we eventually find C. 167 SmallVector<const SCC *, 4> AncestorWorklist; 168 AncestorWorklist.push_back(this); 169 do { 170 const SCC *AncestorC = AncestorWorklist.pop_back_val(); 171 if (AncestorC->isChildOf(C)) 172 return true; 173 for (const SCC *ParentC : AncestorC->ParentSCCs) 174 AncestorWorklist.push_back(ParentC); 175 } while (!AncestorWorklist.empty()); 176 177 return false; 178 } 179 180 void LazyCallGraph::SCC::insertIntraSCCEdge(Node &CallerN, Node &CalleeN) { 181 // First insert it into the caller. 182 CallerN.insertEdgeInternal(CalleeN); 183 184 assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC."); 185 assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC."); 186 187 // Nothing changes about this SCC or any other. 188 } 189 190 void LazyCallGraph::SCC::insertOutgoingEdge(Node &CallerN, Node &CalleeN) { 191 // First insert it into the caller. 192 CallerN.insertEdgeInternal(CalleeN); 193 194 assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC."); 195 196 SCC &CalleeC = *G->SCCMap.lookup(&CalleeN); 197 assert(&CalleeC != this && "Callee must not be in this SCC."); 198 assert(CalleeC.isDescendantOf(*this) && 199 "Callee must be a descendant of the Caller."); 200 201 // The only change required is to add this SCC to the parent set of the callee. 202 CalleeC.ParentSCCs.insert(this); 203 } 204 205 SmallVector<LazyCallGraph::SCC *, 1> 206 LazyCallGraph::SCC::insertIncomingEdge(Node &CallerN, Node &CalleeN) { 207 // First insert it into the caller. 208 CallerN.insertEdgeInternal(CalleeN); 209 210 assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC."); 211 212 SCC &CallerC = *G->SCCMap.lookup(&CallerN); 213 assert(&CallerC != this && "Caller must not be in this SCC."); 214 assert(CallerC.isDescendantOf(*this) && 215 "Caller must be a descendant of the Callee."); 216 217 // The algorithm we use for merging SCCs based on the cycle introduced here 218 // is to walk the SCC inverted DAG formed by the parent SCC sets. The inverse 219 // graph has the same cycle properties as the actual DAG of the SCCs, and 220 // when forming SCCs lazily by a DFS, the bottom of the graph won't exist in 221 // many cases which should prune the search space. 222 // 223 // FIXME: We can get this pruning behavior even after the incremental SCC 224 // formation by leaving behind (conservative) DFS numberings in the nodes, 225 // and pruning the search with them. These would need to be cleverly updated 226 // during the removal of intra-SCC edges, but could be preserved 227 // conservatively. 228 229 // The set of SCCs that are connected to the caller, and thus will 230 // participate in the merged connected component. 231 SmallPtrSet<SCC *, 8> ConnectedSCCs; 232 ConnectedSCCs.insert(this); 233 ConnectedSCCs.insert(&CallerC); 234 235 // We build up a DFS stack of the parents chains. 236 SmallVector<std::pair<SCC *, SCC::parent_iterator>, 8> DFSSCCs; 237 SmallPtrSet<SCC *, 8> VisitedSCCs; 238 int ConnectedDepth = -1; 239 SCC *C = this; 240 parent_iterator I = parent_begin(), E = parent_end(); 241 for (;;) { 242 while (I != E) { 243 SCC &ParentSCC = *I++; 244 245 // If we have already processed this parent SCC, skip it, and remember 246 // whether it was connected so we don't have to check the rest of the 247 // stack. This also handles when we reach a child of the 'this' SCC (the 248 // callee) which terminates the search. 249 if (ConnectedSCCs.count(&ParentSCC)) { 250 ConnectedDepth = std::max<int>(ConnectedDepth, DFSSCCs.size()); 251 continue; 252 } 253 if (VisitedSCCs.count(&ParentSCC)) 254 continue; 255 256 // We fully explore the depth-first space, adding nodes to the connected 257 // set only as we pop them off, so "recurse" by rotating to the parent. 258 DFSSCCs.push_back(std::make_pair(C, I)); 259 C = &ParentSCC; 260 I = ParentSCC.parent_begin(); 261 E = ParentSCC.parent_end(); 262 } 263 264 // If we've found a connection anywhere below this point on the stack (and 265 // thus up the parent graph from the caller), the current node needs to be 266 // added to the connected set now that we've processed all of its parents. 267 if ((int)DFSSCCs.size() == ConnectedDepth) { 268 --ConnectedDepth; // We're finished with this connection. 269 ConnectedSCCs.insert(C); 270 } else { 271 // Otherwise remember that its parents don't ever connect. 272 assert(ConnectedDepth < (int)DFSSCCs.size() && 273 "Cannot have a connected depth greater than the DFS depth!"); 274 VisitedSCCs.insert(C); 275 } 276 277 if (DFSSCCs.empty()) 278 break; // We've walked all the parents of the caller transitively. 279 280 // Pop off the prior node and position to unwind the depth first recursion. 281 std::tie(C, I) = DFSSCCs.pop_back_val(); 282 E = C->parent_end(); 283 } 284 285 // Now that we have identified all of the SCCs which need to be merged into 286 // a connected set with the inserted edge, merge all of them into this SCC. 287 // FIXME: This operation currently creates ordering stability problems 288 // because we don't use stably ordered containers for the parent SCCs or the 289 // connected SCCs. 290 unsigned NewNodeBeginIdx = Nodes.size(); 291 for (SCC *C : ConnectedSCCs) { 292 if (C == this) 293 continue; 294 for (SCC *ParentC : C->ParentSCCs) 295 if (!ConnectedSCCs.count(ParentC)) 296 ParentSCCs.insert(ParentC); 297 C->ParentSCCs.clear(); 298 299 for (Node *N : *C) { 300 for (Node &ChildN : *N) { 301 SCC &ChildC = *G->SCCMap.lookup(&ChildN); 302 if (&ChildC != C) 303 ChildC.ParentSCCs.erase(C); 304 } 305 G->SCCMap[N] = this; 306 Nodes.push_back(N); 307 } 308 C->Nodes.clear(); 309 } 310 for (auto I = Nodes.begin() + NewNodeBeginIdx, E = Nodes.end(); I != E; ++I) 311 for (Node &ChildN : **I) { 312 SCC &ChildC = *G->SCCMap.lookup(&ChildN); 313 if (&ChildC != this) 314 ChildC.ParentSCCs.insert(this); 315 } 316 317 // We return the list of SCCs which were merged so that callers can 318 // invalidate any data they have associated with those SCCs. Note that these 319 // SCCs are no longer in an interesting state (they are totally empty) but 320 // the pointers will remain stable for the life of the graph itself. 321 return SmallVector<SCC *, 1>(ConnectedSCCs.begin(), ConnectedSCCs.end()); 322 } 323 324 void LazyCallGraph::SCC::removeInterSCCEdge(Node &CallerN, Node &CalleeN) { 325 // First remove it from the node. 326 CallerN.removeEdgeInternal(CalleeN.getFunction()); 327 328 assert(G->SCCMap.lookup(&CallerN) == this && 329 "The caller must be a member of this SCC."); 330 331 SCC &CalleeC = *G->SCCMap.lookup(&CalleeN); 332 assert(&CalleeC != this && 333 "This API only supports the rmoval of inter-SCC edges."); 334 335 assert(std::find(G->LeafSCCs.begin(), G->LeafSCCs.end(), this) == 336 G->LeafSCCs.end() && 337 "Cannot have a leaf SCC caller with a different SCC callee."); 338 339 bool HasOtherCallToCalleeC = false; 340 bool HasOtherCallOutsideSCC = false; 341 for (Node *N : *this) { 342 for (Node &OtherCalleeN : *N) { 343 SCC &OtherCalleeC = *G->SCCMap.lookup(&OtherCalleeN); 344 if (&OtherCalleeC == &CalleeC) { 345 HasOtherCallToCalleeC = true; 346 break; 347 } 348 if (&OtherCalleeC != this) 349 HasOtherCallOutsideSCC = true; 350 } 351 if (HasOtherCallToCalleeC) 352 break; 353 } 354 // Because the SCCs form a DAG, deleting such an edge cannot change the set 355 // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making 356 // the caller no longer a parent of the callee. Walk the other call edges 357 // in the caller to tell. 358 if (!HasOtherCallToCalleeC) { 359 bool Removed = CalleeC.ParentSCCs.erase(this); 360 (void)Removed; 361 assert(Removed && 362 "Did not find the caller SCC in the callee SCC's parent list!"); 363 364 // It may orphan an SCC if it is the last edge reaching it, but that does 365 // not violate any invariants of the graph. 366 if (CalleeC.ParentSCCs.empty()) 367 DEBUG(dbgs() << "LCG: Update removing " << CallerN.getFunction().getName() 368 << " -> " << CalleeN.getFunction().getName() 369 << " edge orphaned the callee's SCC!\n"); 370 } 371 372 // It may make the Caller SCC a leaf SCC. 373 if (!HasOtherCallOutsideSCC) 374 G->LeafSCCs.push_back(this); 375 } 376 377 void LazyCallGraph::SCC::internalDFS( 378 SmallVectorImpl<std::pair<Node *, Node::iterator>> &DFSStack, 379 SmallVectorImpl<Node *> &PendingSCCStack, Node *N, 380 SmallVectorImpl<SCC *> &ResultSCCs) { 381 Node::iterator I = N->begin(); 382 N->LowLink = N->DFSNumber = 1; 383 int NextDFSNumber = 2; 384 for (;;) { 385 assert(N->DFSNumber != 0 && "We should always assign a DFS number " 386 "before processing a node."); 387 388 // We simulate recursion by popping out of the nested loop and continuing. 389 Node::iterator E = N->end(); 390 while (I != E) { 391 Node &ChildN = *I; 392 if (SCC *ChildSCC = G->SCCMap.lookup(&ChildN)) { 393 // Check if we have reached a node in the new (known connected) set of 394 // this SCC. If so, the entire stack is necessarily in that set and we 395 // can re-start. 396 if (ChildSCC == this) { 397 insert(*N); 398 while (!PendingSCCStack.empty()) 399 insert(*PendingSCCStack.pop_back_val()); 400 while (!DFSStack.empty()) 401 insert(*DFSStack.pop_back_val().first); 402 return; 403 } 404 405 // If this child isn't currently in this SCC, no need to process it. 406 // However, we do need to remove this SCC from its SCC's parent set. 407 ChildSCC->ParentSCCs.erase(this); 408 ++I; 409 continue; 410 } 411 412 if (ChildN.DFSNumber == 0) { 413 // Mark that we should start at this child when next this node is the 414 // top of the stack. We don't start at the next child to ensure this 415 // child's lowlink is reflected. 416 DFSStack.push_back(std::make_pair(N, I)); 417 418 // Continue, resetting to the child node. 419 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 420 N = &ChildN; 421 I = ChildN.begin(); 422 E = ChildN.end(); 423 continue; 424 } 425 426 // Track the lowest link of the children, if any are still in the stack. 427 // Any child not on the stack will have a LowLink of -1. 428 assert(ChildN.LowLink != 0 && 429 "Low-link must not be zero with a non-zero DFS number."); 430 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) 431 N->LowLink = ChildN.LowLink; 432 ++I; 433 } 434 435 if (N->LowLink == N->DFSNumber) { 436 ResultSCCs.push_back(G->formSCC(N, PendingSCCStack)); 437 if (DFSStack.empty()) 438 return; 439 } else { 440 // At this point we know that N cannot ever be an SCC root. Its low-link 441 // is not its dfs-number, and we've processed all of its children. It is 442 // just sitting here waiting until some node further down the stack gets 443 // low-link == dfs-number and pops it off as well. Move it to the pending 444 // stack which is pulled into the next SCC to be formed. 445 PendingSCCStack.push_back(N); 446 447 assert(!DFSStack.empty() && "We shouldn't have an empty stack!"); 448 } 449 450 N = DFSStack.back().first; 451 I = DFSStack.back().second; 452 DFSStack.pop_back(); 453 } 454 } 455 456 SmallVector<LazyCallGraph::SCC *, 1> 457 LazyCallGraph::SCC::removeIntraSCCEdge(Node &CallerN, 458 Node &CalleeN) { 459 // First remove it from the node. 460 CallerN.removeEdgeInternal(CalleeN.getFunction()); 461 462 // We return a list of the resulting *new* SCCs in postorder. 463 SmallVector<SCC *, 1> ResultSCCs; 464 465 // Direct recursion doesn't impact the SCC graph at all. 466 if (&CallerN == &CalleeN) 467 return ResultSCCs; 468 469 // The worklist is every node in the original SCC. 470 SmallVector<Node *, 1> Worklist; 471 Worklist.swap(Nodes); 472 for (Node *N : Worklist) { 473 // The nodes formerly in this SCC are no longer in any SCC. 474 N->DFSNumber = 0; 475 N->LowLink = 0; 476 G->SCCMap.erase(N); 477 } 478 assert(Worklist.size() > 1 && "We have to have at least two nodes to have an " 479 "edge between them that is within the SCC."); 480 481 // The callee can already reach every node in this SCC (by definition). It is 482 // the only node we know will stay inside this SCC. Everything which 483 // transitively reaches Callee will also remain in the SCC. To model this we 484 // incrementally add any chain of nodes which reaches something in the new 485 // node set to the new node set. This short circuits one side of the Tarjan's 486 // walk. 487 insert(CalleeN); 488 489 // We're going to do a full mini-Tarjan's walk using a local stack here. 490 SmallVector<std::pair<Node *, Node::iterator>, 4> DFSStack; 491 SmallVector<Node *, 4> PendingSCCStack; 492 do { 493 Node *N = Worklist.pop_back_val(); 494 if (N->DFSNumber == 0) 495 internalDFS(DFSStack, PendingSCCStack, N, ResultSCCs); 496 497 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!"); 498 assert(PendingSCCStack.empty() && "Didn't flush all pending SCC nodes!"); 499 } while (!Worklist.empty()); 500 501 // Now we need to reconnect the current SCC to the graph. 502 bool IsLeafSCC = true; 503 for (Node *N : Nodes) { 504 for (Node &ChildN : *N) { 505 SCC &ChildSCC = *G->SCCMap.lookup(&ChildN); 506 if (&ChildSCC == this) 507 continue; 508 ChildSCC.ParentSCCs.insert(this); 509 IsLeafSCC = false; 510 } 511 } 512 #ifndef NDEBUG 513 if (!ResultSCCs.empty()) 514 assert(!IsLeafSCC && "This SCC cannot be a leaf as we have split out new " 515 "SCCs by removing this edge."); 516 if (!std::any_of(G->LeafSCCs.begin(), G->LeafSCCs.end(), 517 [&](SCC *C) { return C == this; })) 518 assert(!IsLeafSCC && "This SCC cannot be a leaf as it already had child " 519 "SCCs before we removed this edge."); 520 #endif 521 // If this SCC stopped being a leaf through this edge removal, remove it from 522 // the leaf SCC list. 523 if (!IsLeafSCC && !ResultSCCs.empty()) 524 G->LeafSCCs.erase(std::remove(G->LeafSCCs.begin(), G->LeafSCCs.end(), this), 525 G->LeafSCCs.end()); 526 527 // Return the new list of SCCs. 528 return ResultSCCs; 529 } 530 531 void LazyCallGraph::insertEdge(Node &CallerN, Function &Callee) { 532 assert(SCCMap.empty() && DFSStack.empty() && 533 "This method cannot be called after SCCs have been formed!"); 534 535 return CallerN.insertEdgeInternal(Callee); 536 } 537 538 void LazyCallGraph::removeEdge(Node &CallerN, Function &Callee) { 539 assert(SCCMap.empty() && DFSStack.empty() && 540 "This method cannot be called after SCCs have been formed!"); 541 542 return CallerN.removeEdgeInternal(Callee); 543 } 544 545 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { 546 return *new (MappedN = BPA.Allocate()) Node(*this, F); 547 } 548 549 void LazyCallGraph::updateGraphPtrs() { 550 // Process all nodes updating the graph pointers. 551 { 552 SmallVector<Node *, 16> Worklist; 553 for (auto &Entry : EntryNodes) 554 if (Node *EntryN = Entry.dyn_cast<Node *>()) 555 Worklist.push_back(EntryN); 556 557 while (!Worklist.empty()) { 558 Node *N = Worklist.pop_back_val(); 559 N->G = this; 560 for (auto &Callee : N->Callees) 561 if (!Callee.isNull()) 562 if (Node *CalleeN = Callee.dyn_cast<Node *>()) 563 Worklist.push_back(CalleeN); 564 } 565 } 566 567 // Process all SCCs updating the graph pointers. 568 { 569 SmallVector<SCC *, 16> Worklist(LeafSCCs.begin(), LeafSCCs.end()); 570 571 while (!Worklist.empty()) { 572 SCC *C = Worklist.pop_back_val(); 573 C->G = this; 574 Worklist.insert(Worklist.end(), C->ParentSCCs.begin(), 575 C->ParentSCCs.end()); 576 } 577 } 578 } 579 580 LazyCallGraph::SCC *LazyCallGraph::formSCC(Node *RootN, 581 SmallVectorImpl<Node *> &NodeStack) { 582 // The tail of the stack is the new SCC. Allocate the SCC and pop the stack 583 // into it. 584 SCC *NewSCC = new (SCCBPA.Allocate()) SCC(*this); 585 586 while (!NodeStack.empty() && NodeStack.back()->DFSNumber > RootN->DFSNumber) { 587 assert(NodeStack.back()->LowLink >= RootN->LowLink && 588 "We cannot have a low link in an SCC lower than its root on the " 589 "stack!"); 590 NewSCC->insert(*NodeStack.pop_back_val()); 591 } 592 NewSCC->insert(*RootN); 593 594 // A final pass over all edges in the SCC (this remains linear as we only 595 // do this once when we build the SCC) to connect it to the parent sets of 596 // its children. 597 bool IsLeafSCC = true; 598 for (Node *SCCN : NewSCC->Nodes) 599 for (Node &SCCChildN : *SCCN) { 600 SCC &ChildSCC = *SCCMap.lookup(&SCCChildN); 601 if (&ChildSCC == NewSCC) 602 continue; 603 ChildSCC.ParentSCCs.insert(NewSCC); 604 IsLeafSCC = false; 605 } 606 607 // For the SCCs where we fine no child SCCs, add them to the leaf list. 608 if (IsLeafSCC) 609 LeafSCCs.push_back(NewSCC); 610 611 return NewSCC; 612 } 613 614 LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() { 615 Node *N; 616 Node::iterator I; 617 if (!DFSStack.empty()) { 618 N = DFSStack.back().first; 619 I = DFSStack.back().second; 620 DFSStack.pop_back(); 621 } else { 622 // If we've handled all candidate entry nodes to the SCC forest, we're done. 623 do { 624 if (SCCEntryNodes.empty()) 625 return nullptr; 626 627 N = &get(*SCCEntryNodes.pop_back_val()); 628 } while (N->DFSNumber != 0); 629 I = N->begin(); 630 N->LowLink = N->DFSNumber = 1; 631 NextDFSNumber = 2; 632 } 633 634 for (;;) { 635 assert(N->DFSNumber != 0 && "We should always assign a DFS number " 636 "before placing a node onto the stack."); 637 638 Node::iterator E = N->end(); 639 while (I != E) { 640 Node &ChildN = *I; 641 if (ChildN.DFSNumber == 0) { 642 // Mark that we should start at this child when next this node is the 643 // top of the stack. We don't start at the next child to ensure this 644 // child's lowlink is reflected. 645 DFSStack.push_back(std::make_pair(N, N->begin())); 646 647 // Recurse onto this node via a tail call. 648 assert(!SCCMap.count(&ChildN) && 649 "Found a node with 0 DFS number but already in an SCC!"); 650 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; 651 N = &ChildN; 652 I = ChildN.begin(); 653 E = ChildN.end(); 654 continue; 655 } 656 657 // Track the lowest link of the children, if any are still in the stack. 658 assert(ChildN.LowLink != 0 && 659 "Low-link must not be zero with a non-zero DFS number."); 660 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) 661 N->LowLink = ChildN.LowLink; 662 ++I; 663 } 664 665 if (N->LowLink == N->DFSNumber) 666 // Form the new SCC out of the top of the DFS stack. 667 return formSCC(N, PendingSCCStack); 668 669 // At this point we know that N cannot ever be an SCC root. Its low-link 670 // is not its dfs-number, and we've processed all of its children. It is 671 // just sitting here waiting until some node further down the stack gets 672 // low-link == dfs-number and pops it off as well. Move it to the pending 673 // stack which is pulled into the next SCC to be formed. 674 PendingSCCStack.push_back(N); 675 676 assert(!DFSStack.empty() && "We never found a viable root!"); 677 N = DFSStack.back().first; 678 I = DFSStack.back().second; 679 DFSStack.pop_back(); 680 } 681 } 682 683 char LazyCallGraphAnalysis::PassID; 684 685 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} 686 687 static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N, 688 SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) { 689 // Recurse depth first through the nodes. 690 for (LazyCallGraph::Node &ChildN : N) 691 if (Printed.insert(&ChildN).second) 692 printNodes(OS, ChildN, Printed); 693 694 OS << " Call edges in function: " << N.getFunction().getName() << "\n"; 695 for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I) 696 OS << " -> " << I->getFunction().getName() << "\n"; 697 698 OS << "\n"; 699 } 700 701 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) { 702 ptrdiff_t SCCSize = std::distance(SCC.begin(), SCC.end()); 703 OS << " SCC with " << SCCSize << " functions:\n"; 704 705 for (LazyCallGraph::Node *N : SCC) 706 OS << " " << N->getFunction().getName() << "\n"; 707 708 OS << "\n"; 709 } 710 711 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, 712 ModuleAnalysisManager *AM) { 713 LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M); 714 715 OS << "Printing the call graph for module: " << M.getModuleIdentifier() 716 << "\n\n"; 717 718 SmallPtrSet<LazyCallGraph::Node *, 16> Printed; 719 for (LazyCallGraph::Node &N : G) 720 if (Printed.insert(&N).second) 721 printNodes(OS, N, Printed); 722 723 for (LazyCallGraph::SCC &SCC : G.postorder_sccs()) 724 printSCC(OS, SCC); 725 726 return PreservedAnalyses::all(); 727 } 728