Home | History | Annotate | Download | only in Object
      1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file declares the COFFObjectFile class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Object/COFF.h"
     15 #include "llvm/ADT/ArrayRef.h"
     16 #include "llvm/ADT/SmallString.h"
     17 #include "llvm/ADT/StringSwitch.h"
     18 #include "llvm/ADT/Triple.h"
     19 #include "llvm/ADT/iterator_range.h"
     20 #include "llvm/Support/COFF.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 #include <cctype>
     24 #include <limits>
     25 
     26 using namespace llvm;
     27 using namespace object;
     28 
     29 using support::ulittle16_t;
     30 using support::ulittle32_t;
     31 using support::ulittle64_t;
     32 using support::little16_t;
     33 
     34 // Returns false if size is greater than the buffer size. And sets ec.
     35 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) {
     36   if (M.getBufferSize() < Size) {
     37     EC = object_error::unexpected_eof;
     38     return false;
     39   }
     40   return true;
     41 }
     42 
     43 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr,
     44                                    const uint64_t Size) {
     45   if (Addr + Size < Addr || Addr + Size < Size ||
     46       Addr + Size > uintptr_t(M.getBufferEnd()) ||
     47       Addr < uintptr_t(M.getBufferStart())) {
     48     return object_error::unexpected_eof;
     49   }
     50   return std::error_code();
     51 }
     52 
     53 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m.
     54 // Returns unexpected_eof if error.
     55 template <typename T>
     56 static std::error_code getObject(const T *&Obj, MemoryBufferRef M,
     57                                  const void *Ptr,
     58                                  const uint64_t Size = sizeof(T)) {
     59   uintptr_t Addr = uintptr_t(Ptr);
     60   if (std::error_code EC = checkOffset(M, Addr, Size))
     61     return EC;
     62   Obj = reinterpret_cast<const T *>(Addr);
     63   return std::error_code();
     64 }
     65 
     66 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without
     67 // prefixed slashes.
     68 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) {
     69   assert(Str.size() <= 6 && "String too long, possible overflow.");
     70   if (Str.size() > 6)
     71     return true;
     72 
     73   uint64_t Value = 0;
     74   while (!Str.empty()) {
     75     unsigned CharVal;
     76     if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25
     77       CharVal = Str[0] - 'A';
     78     else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51
     79       CharVal = Str[0] - 'a' + 26;
     80     else if (Str[0] >= '0' && Str[0] <= '9') // 52..61
     81       CharVal = Str[0] - '0' + 52;
     82     else if (Str[0] == '+') // 62
     83       CharVal = 62;
     84     else if (Str[0] == '/') // 63
     85       CharVal = 63;
     86     else
     87       return true;
     88 
     89     Value = (Value * 64) + CharVal;
     90     Str = Str.substr(1);
     91   }
     92 
     93   if (Value > std::numeric_limits<uint32_t>::max())
     94     return true;
     95 
     96   Result = static_cast<uint32_t>(Value);
     97   return false;
     98 }
     99 
    100 template <typename coff_symbol_type>
    101 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const {
    102   const coff_symbol_type *Addr =
    103       reinterpret_cast<const coff_symbol_type *>(Ref.p);
    104 
    105   assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr)));
    106 #ifndef NDEBUG
    107   // Verify that the symbol points to a valid entry in the symbol table.
    108   uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base());
    109 
    110   assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 &&
    111          "Symbol did not point to the beginning of a symbol");
    112 #endif
    113 
    114   return Addr;
    115 }
    116 
    117 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const {
    118   const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p);
    119 
    120 # ifndef NDEBUG
    121   // Verify that the section points to a valid entry in the section table.
    122   if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections()))
    123     report_fatal_error("Section was outside of section table.");
    124 
    125   uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable);
    126   assert(Offset % sizeof(coff_section) == 0 &&
    127          "Section did not point to the beginning of a section");
    128 # endif
    129 
    130   return Addr;
    131 }
    132 
    133 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const {
    134   auto End = reinterpret_cast<uintptr_t>(StringTable);
    135   if (SymbolTable16) {
    136     const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref);
    137     Symb += 1 + Symb->NumberOfAuxSymbols;
    138     Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
    139   } else if (SymbolTable32) {
    140     const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref);
    141     Symb += 1 + Symb->NumberOfAuxSymbols;
    142     Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End);
    143   } else {
    144     llvm_unreachable("no symbol table pointer!");
    145   }
    146 }
    147 
    148 ErrorOr<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const {
    149   COFFSymbolRef Symb = getCOFFSymbol(Ref);
    150   StringRef Result;
    151   std::error_code EC = getSymbolName(Symb, Result);
    152   if (EC)
    153     return EC;
    154   return Result;
    155 }
    156 
    157 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const {
    158   return getCOFFSymbol(Ref).getValue();
    159 }
    160 
    161 ErrorOr<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const {
    162   uint64_t Result = getSymbolValue(Ref);
    163   COFFSymbolRef Symb = getCOFFSymbol(Ref);
    164   int32_t SectionNumber = Symb.getSectionNumber();
    165 
    166   if (Symb.isAnyUndefined() || Symb.isCommon() ||
    167       COFF::isReservedSectionNumber(SectionNumber))
    168     return Result;
    169 
    170   const coff_section *Section = nullptr;
    171   if (std::error_code EC = getSection(SectionNumber, Section))
    172     return EC;
    173   Result += Section->VirtualAddress;
    174 
    175   // The section VirtualAddress does not include ImageBase, and we want to
    176   // return virtual addresses.
    177   Result += getImageBase();
    178 
    179   return Result;
    180 }
    181 
    182 SymbolRef::Type COFFObjectFile::getSymbolType(DataRefImpl Ref) const {
    183   COFFSymbolRef Symb = getCOFFSymbol(Ref);
    184   int32_t SectionNumber = Symb.getSectionNumber();
    185 
    186   if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION)
    187     return SymbolRef::ST_Function;
    188   if (Symb.isAnyUndefined())
    189     return SymbolRef::ST_Unknown;
    190   if (Symb.isCommon())
    191     return SymbolRef::ST_Data;
    192   if (Symb.isFileRecord())
    193     return SymbolRef::ST_File;
    194 
    195   // TODO: perhaps we need a new symbol type ST_Section.
    196   if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition())
    197     return SymbolRef::ST_Debug;
    198 
    199   if (!COFF::isReservedSectionNumber(SectionNumber))
    200     return SymbolRef::ST_Data;
    201 
    202   return SymbolRef::ST_Other;
    203 }
    204 
    205 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const {
    206   COFFSymbolRef Symb = getCOFFSymbol(Ref);
    207   uint32_t Result = SymbolRef::SF_None;
    208 
    209   if (Symb.isExternal() || Symb.isWeakExternal())
    210     Result |= SymbolRef::SF_Global;
    211 
    212   if (Symb.isWeakExternal())
    213     Result |= SymbolRef::SF_Weak;
    214 
    215   if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE)
    216     Result |= SymbolRef::SF_Absolute;
    217 
    218   if (Symb.isFileRecord())
    219     Result |= SymbolRef::SF_FormatSpecific;
    220 
    221   if (Symb.isSectionDefinition())
    222     Result |= SymbolRef::SF_FormatSpecific;
    223 
    224   if (Symb.isCommon())
    225     Result |= SymbolRef::SF_Common;
    226 
    227   if (Symb.isAnyUndefined())
    228     Result |= SymbolRef::SF_Undefined;
    229 
    230   return Result;
    231 }
    232 
    233 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const {
    234   COFFSymbolRef Symb = getCOFFSymbol(Ref);
    235   return Symb.getValue();
    236 }
    237 
    238 ErrorOr<section_iterator>
    239 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const {
    240   COFFSymbolRef Symb = getCOFFSymbol(Ref);
    241   if (COFF::isReservedSectionNumber(Symb.getSectionNumber()))
    242     return section_end();
    243   const coff_section *Sec = nullptr;
    244   if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec))
    245     return EC;
    246   DataRefImpl Ret;
    247   Ret.p = reinterpret_cast<uintptr_t>(Sec);
    248   return section_iterator(SectionRef(Ret, this));
    249 }
    250 
    251 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const {
    252   COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl());
    253   return Symb.getSectionNumber();
    254 }
    255 
    256 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const {
    257   const coff_section *Sec = toSec(Ref);
    258   Sec += 1;
    259   Ref.p = reinterpret_cast<uintptr_t>(Sec);
    260 }
    261 
    262 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref,
    263                                                StringRef &Result) const {
    264   const coff_section *Sec = toSec(Ref);
    265   return getSectionName(Sec, Result);
    266 }
    267 
    268 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const {
    269   const coff_section *Sec = toSec(Ref);
    270   uint64_t Result = Sec->VirtualAddress;
    271 
    272   // The section VirtualAddress does not include ImageBase, and we want to
    273   // return virtual addresses.
    274   Result += getImageBase();
    275   return Result;
    276 }
    277 
    278 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const {
    279   return getSectionSize(toSec(Ref));
    280 }
    281 
    282 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref,
    283                                                    StringRef &Result) const {
    284   const coff_section *Sec = toSec(Ref);
    285   ArrayRef<uint8_t> Res;
    286   std::error_code EC = getSectionContents(Sec, Res);
    287   Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size());
    288   return EC;
    289 }
    290 
    291 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const {
    292   const coff_section *Sec = toSec(Ref);
    293   return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1);
    294 }
    295 
    296 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const {
    297   const coff_section *Sec = toSec(Ref);
    298   return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE;
    299 }
    300 
    301 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const {
    302   const coff_section *Sec = toSec(Ref);
    303   return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA;
    304 }
    305 
    306 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const {
    307   const coff_section *Sec = toSec(Ref);
    308   const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
    309                             COFF::IMAGE_SCN_MEM_READ |
    310                             COFF::IMAGE_SCN_MEM_WRITE;
    311   return (Sec->Characteristics & BssFlags) == BssFlags;
    312 }
    313 
    314 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const {
    315   uintptr_t Offset =
    316       uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable);
    317   assert((Offset % sizeof(coff_section)) == 0);
    318   return (Offset / sizeof(coff_section)) + 1;
    319 }
    320 
    321 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const {
    322   const coff_section *Sec = toSec(Ref);
    323   // In COFF, a virtual section won't have any in-file
    324   // content, so the file pointer to the content will be zero.
    325   return Sec->PointerToRawData == 0;
    326 }
    327 
    328 static uint32_t getNumberOfRelocations(const coff_section *Sec,
    329                                        MemoryBufferRef M, const uint8_t *base) {
    330   // The field for the number of relocations in COFF section table is only
    331   // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to
    332   // NumberOfRelocations field, and the actual relocation count is stored in the
    333   // VirtualAddress field in the first relocation entry.
    334   if (Sec->hasExtendedRelocations()) {
    335     const coff_relocation *FirstReloc;
    336     if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>(
    337         base + Sec->PointerToRelocations)))
    338       return 0;
    339     // -1 to exclude this first relocation entry.
    340     return FirstReloc->VirtualAddress - 1;
    341   }
    342   return Sec->NumberOfRelocations;
    343 }
    344 
    345 static const coff_relocation *
    346 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) {
    347   uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base);
    348   if (!NumRelocs)
    349     return nullptr;
    350   auto begin = reinterpret_cast<const coff_relocation *>(
    351       Base + Sec->PointerToRelocations);
    352   if (Sec->hasExtendedRelocations()) {
    353     // Skip the first relocation entry repurposed to store the number of
    354     // relocations.
    355     begin++;
    356   }
    357   if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs))
    358     return nullptr;
    359   return begin;
    360 }
    361 
    362 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const {
    363   const coff_section *Sec = toSec(Ref);
    364   const coff_relocation *begin = getFirstReloc(Sec, Data, base());
    365   if (begin && Sec->VirtualAddress != 0)
    366     report_fatal_error("Sections with relocations should have an address of 0");
    367   DataRefImpl Ret;
    368   Ret.p = reinterpret_cast<uintptr_t>(begin);
    369   return relocation_iterator(RelocationRef(Ret, this));
    370 }
    371 
    372 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const {
    373   const coff_section *Sec = toSec(Ref);
    374   const coff_relocation *I = getFirstReloc(Sec, Data, base());
    375   if (I)
    376     I += getNumberOfRelocations(Sec, Data, base());
    377   DataRefImpl Ret;
    378   Ret.p = reinterpret_cast<uintptr_t>(I);
    379   return relocation_iterator(RelocationRef(Ret, this));
    380 }
    381 
    382 // Initialize the pointer to the symbol table.
    383 std::error_code COFFObjectFile::initSymbolTablePtr() {
    384   if (COFFHeader)
    385     if (std::error_code EC = getObject(
    386             SymbolTable16, Data, base() + getPointerToSymbolTable(),
    387             (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
    388       return EC;
    389 
    390   if (COFFBigObjHeader)
    391     if (std::error_code EC = getObject(
    392             SymbolTable32, Data, base() + getPointerToSymbolTable(),
    393             (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize()))
    394       return EC;
    395 
    396   // Find string table. The first four byte of the string table contains the
    397   // total size of the string table, including the size field itself. If the
    398   // string table is empty, the value of the first four byte would be 4.
    399   uint32_t StringTableOffset = getPointerToSymbolTable() +
    400                                getNumberOfSymbols() * getSymbolTableEntrySize();
    401   const uint8_t *StringTableAddr = base() + StringTableOffset;
    402   const ulittle32_t *StringTableSizePtr;
    403   if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr))
    404     return EC;
    405   StringTableSize = *StringTableSizePtr;
    406   if (std::error_code EC =
    407           getObject(StringTable, Data, StringTableAddr, StringTableSize))
    408     return EC;
    409 
    410   // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some
    411   // tools like cvtres write a size of 0 for an empty table instead of 4.
    412   if (StringTableSize < 4)
    413       StringTableSize = 4;
    414 
    415   // Check that the string table is null terminated if has any in it.
    416   if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0)
    417     return  object_error::parse_failed;
    418   return std::error_code();
    419 }
    420 
    421 uint64_t COFFObjectFile::getImageBase() const {
    422   if (PE32Header)
    423     return PE32Header->ImageBase;
    424   else if (PE32PlusHeader)
    425     return PE32PlusHeader->ImageBase;
    426   // This actually comes up in practice.
    427   return 0;
    428 }
    429 
    430 // Returns the file offset for the given VA.
    431 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const {
    432   uint64_t ImageBase = getImageBase();
    433   uint64_t Rva = Addr - ImageBase;
    434   assert(Rva <= UINT32_MAX);
    435   return getRvaPtr((uint32_t)Rva, Res);
    436 }
    437 
    438 // Returns the file offset for the given RVA.
    439 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const {
    440   for (const SectionRef &S : sections()) {
    441     const coff_section *Section = getCOFFSection(S);
    442     uint32_t SectionStart = Section->VirtualAddress;
    443     uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize;
    444     if (SectionStart <= Addr && Addr < SectionEnd) {
    445       uint32_t Offset = Addr - SectionStart;
    446       Res = uintptr_t(base()) + Section->PointerToRawData + Offset;
    447       return std::error_code();
    448     }
    449   }
    450   return object_error::parse_failed;
    451 }
    452 
    453 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name
    454 // table entry.
    455 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint,
    456                                             StringRef &Name) const {
    457   uintptr_t IntPtr = 0;
    458   if (std::error_code EC = getRvaPtr(Rva, IntPtr))
    459     return EC;
    460   const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr);
    461   Hint = *reinterpret_cast<const ulittle16_t *>(Ptr);
    462   Name = StringRef(reinterpret_cast<const char *>(Ptr + 2));
    463   return std::error_code();
    464 }
    465 
    466 // Find the import table.
    467 std::error_code COFFObjectFile::initImportTablePtr() {
    468   // First, we get the RVA of the import table. If the file lacks a pointer to
    469   // the import table, do nothing.
    470   const data_directory *DataEntry;
    471   if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry))
    472     return std::error_code();
    473 
    474   // Do nothing if the pointer to import table is NULL.
    475   if (DataEntry->RelativeVirtualAddress == 0)
    476     return std::error_code();
    477 
    478   uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress;
    479   // -1 because the last entry is the null entry.
    480   NumberOfImportDirectory = DataEntry->Size /
    481       sizeof(import_directory_table_entry) - 1;
    482 
    483   // Find the section that contains the RVA. This is needed because the RVA is
    484   // the import table's memory address which is different from its file offset.
    485   uintptr_t IntPtr = 0;
    486   if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr))
    487     return EC;
    488   ImportDirectory = reinterpret_cast<
    489       const import_directory_table_entry *>(IntPtr);
    490   return std::error_code();
    491 }
    492 
    493 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory.
    494 std::error_code COFFObjectFile::initDelayImportTablePtr() {
    495   const data_directory *DataEntry;
    496   if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry))
    497     return std::error_code();
    498   if (DataEntry->RelativeVirtualAddress == 0)
    499     return std::error_code();
    500 
    501   uint32_t RVA = DataEntry->RelativeVirtualAddress;
    502   NumberOfDelayImportDirectory = DataEntry->Size /
    503       sizeof(delay_import_directory_table_entry) - 1;
    504 
    505   uintptr_t IntPtr = 0;
    506   if (std::error_code EC = getRvaPtr(RVA, IntPtr))
    507     return EC;
    508   DelayImportDirectory = reinterpret_cast<
    509       const delay_import_directory_table_entry *>(IntPtr);
    510   return std::error_code();
    511 }
    512 
    513 // Find the export table.
    514 std::error_code COFFObjectFile::initExportTablePtr() {
    515   // First, we get the RVA of the export table. If the file lacks a pointer to
    516   // the export table, do nothing.
    517   const data_directory *DataEntry;
    518   if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry))
    519     return std::error_code();
    520 
    521   // Do nothing if the pointer to export table is NULL.
    522   if (DataEntry->RelativeVirtualAddress == 0)
    523     return std::error_code();
    524 
    525   uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress;
    526   uintptr_t IntPtr = 0;
    527   if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr))
    528     return EC;
    529   ExportDirectory =
    530       reinterpret_cast<const export_directory_table_entry *>(IntPtr);
    531   return std::error_code();
    532 }
    533 
    534 std::error_code COFFObjectFile::initBaseRelocPtr() {
    535   const data_directory *DataEntry;
    536   if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry))
    537     return std::error_code();
    538   if (DataEntry->RelativeVirtualAddress == 0)
    539     return std::error_code();
    540 
    541   uintptr_t IntPtr = 0;
    542   if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr))
    543     return EC;
    544   BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>(
    545       IntPtr);
    546   BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>(
    547       IntPtr + DataEntry->Size);
    548   return std::error_code();
    549 }
    550 
    551 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC)
    552     : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr),
    553       COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr),
    554       DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr),
    555       SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0),
    556       ImportDirectory(nullptr), NumberOfImportDirectory(0),
    557       DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0),
    558       ExportDirectory(nullptr), BaseRelocHeader(nullptr),
    559       BaseRelocEnd(nullptr) {
    560   // Check that we at least have enough room for a header.
    561   if (!checkSize(Data, EC, sizeof(coff_file_header)))
    562     return;
    563 
    564   // The current location in the file where we are looking at.
    565   uint64_t CurPtr = 0;
    566 
    567   // PE header is optional and is present only in executables. If it exists,
    568   // it is placed right after COFF header.
    569   bool HasPEHeader = false;
    570 
    571   // Check if this is a PE/COFF file.
    572   if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) {
    573     // PE/COFF, seek through MS-DOS compatibility stub and 4-byte
    574     // PE signature to find 'normal' COFF header.
    575     const auto *DH = reinterpret_cast<const dos_header *>(base());
    576     if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') {
    577       CurPtr = DH->AddressOfNewExeHeader;
    578       // Check the PE magic bytes. ("PE\0\0")
    579       if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) {
    580         EC = object_error::parse_failed;
    581         return;
    582       }
    583       CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes.
    584       HasPEHeader = true;
    585     }
    586   }
    587 
    588   if ((EC = getObject(COFFHeader, Data, base() + CurPtr)))
    589     return;
    590 
    591   // It might be a bigobj file, let's check.  Note that COFF bigobj and COFF
    592   // import libraries share a common prefix but bigobj is more restrictive.
    593   if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN &&
    594       COFFHeader->NumberOfSections == uint16_t(0xffff) &&
    595       checkSize(Data, EC, sizeof(coff_bigobj_file_header))) {
    596     if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr)))
    597       return;
    598 
    599     // Verify that we are dealing with bigobj.
    600     if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion &&
    601         std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic,
    602                     sizeof(COFF::BigObjMagic)) == 0) {
    603       COFFHeader = nullptr;
    604       CurPtr += sizeof(coff_bigobj_file_header);
    605     } else {
    606       // It's not a bigobj.
    607       COFFBigObjHeader = nullptr;
    608     }
    609   }
    610   if (COFFHeader) {
    611     // The prior checkSize call may have failed.  This isn't a hard error
    612     // because we were just trying to sniff out bigobj.
    613     EC = std::error_code();
    614     CurPtr += sizeof(coff_file_header);
    615 
    616     if (COFFHeader->isImportLibrary())
    617       return;
    618   }
    619 
    620   if (HasPEHeader) {
    621     const pe32_header *Header;
    622     if ((EC = getObject(Header, Data, base() + CurPtr)))
    623       return;
    624 
    625     const uint8_t *DataDirAddr;
    626     uint64_t DataDirSize;
    627     if (Header->Magic == COFF::PE32Header::PE32) {
    628       PE32Header = Header;
    629       DataDirAddr = base() + CurPtr + sizeof(pe32_header);
    630       DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize;
    631     } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) {
    632       PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header);
    633       DataDirAddr = base() + CurPtr + sizeof(pe32plus_header);
    634       DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize;
    635     } else {
    636       // It's neither PE32 nor PE32+.
    637       EC = object_error::parse_failed;
    638       return;
    639     }
    640     if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize)))
    641       return;
    642     CurPtr += COFFHeader->SizeOfOptionalHeader;
    643   }
    644 
    645   if ((EC = getObject(SectionTable, Data, base() + CurPtr,
    646                       (uint64_t)getNumberOfSections() * sizeof(coff_section))))
    647     return;
    648 
    649   // Initialize the pointer to the symbol table.
    650   if (getPointerToSymbolTable() != 0) {
    651     if ((EC = initSymbolTablePtr()))
    652       return;
    653   } else {
    654     // We had better not have any symbols if we don't have a symbol table.
    655     if (getNumberOfSymbols() != 0) {
    656       EC = object_error::parse_failed;
    657       return;
    658     }
    659   }
    660 
    661   // Initialize the pointer to the beginning of the import table.
    662   if ((EC = initImportTablePtr()))
    663     return;
    664   if ((EC = initDelayImportTablePtr()))
    665     return;
    666 
    667   // Initialize the pointer to the export table.
    668   if ((EC = initExportTablePtr()))
    669     return;
    670 
    671   // Initialize the pointer to the base relocation table.
    672   if ((EC = initBaseRelocPtr()))
    673     return;
    674 
    675   EC = std::error_code();
    676 }
    677 
    678 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const {
    679   DataRefImpl Ret;
    680   Ret.p = getSymbolTable();
    681   return basic_symbol_iterator(SymbolRef(Ret, this));
    682 }
    683 
    684 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const {
    685   // The symbol table ends where the string table begins.
    686   DataRefImpl Ret;
    687   Ret.p = reinterpret_cast<uintptr_t>(StringTable);
    688   return basic_symbol_iterator(SymbolRef(Ret, this));
    689 }
    690 
    691 import_directory_iterator COFFObjectFile::import_directory_begin() const {
    692   return import_directory_iterator(
    693       ImportDirectoryEntryRef(ImportDirectory, 0, this));
    694 }
    695 
    696 import_directory_iterator COFFObjectFile::import_directory_end() const {
    697   return import_directory_iterator(
    698       ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this));
    699 }
    700 
    701 delay_import_directory_iterator
    702 COFFObjectFile::delay_import_directory_begin() const {
    703   return delay_import_directory_iterator(
    704       DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this));
    705 }
    706 
    707 delay_import_directory_iterator
    708 COFFObjectFile::delay_import_directory_end() const {
    709   return delay_import_directory_iterator(
    710       DelayImportDirectoryEntryRef(
    711           DelayImportDirectory, NumberOfDelayImportDirectory, this));
    712 }
    713 
    714 export_directory_iterator COFFObjectFile::export_directory_begin() const {
    715   return export_directory_iterator(
    716       ExportDirectoryEntryRef(ExportDirectory, 0, this));
    717 }
    718 
    719 export_directory_iterator COFFObjectFile::export_directory_end() const {
    720   if (!ExportDirectory)
    721     return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this));
    722   ExportDirectoryEntryRef Ref(ExportDirectory,
    723                               ExportDirectory->AddressTableEntries, this);
    724   return export_directory_iterator(Ref);
    725 }
    726 
    727 section_iterator COFFObjectFile::section_begin() const {
    728   DataRefImpl Ret;
    729   Ret.p = reinterpret_cast<uintptr_t>(SectionTable);
    730   return section_iterator(SectionRef(Ret, this));
    731 }
    732 
    733 section_iterator COFFObjectFile::section_end() const {
    734   DataRefImpl Ret;
    735   int NumSections =
    736       COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections();
    737   Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections);
    738   return section_iterator(SectionRef(Ret, this));
    739 }
    740 
    741 base_reloc_iterator COFFObjectFile::base_reloc_begin() const {
    742   return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this));
    743 }
    744 
    745 base_reloc_iterator COFFObjectFile::base_reloc_end() const {
    746   return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this));
    747 }
    748 
    749 uint8_t COFFObjectFile::getBytesInAddress() const {
    750   return getArch() == Triple::x86_64 ? 8 : 4;
    751 }
    752 
    753 StringRef COFFObjectFile::getFileFormatName() const {
    754   switch(getMachine()) {
    755   case COFF::IMAGE_FILE_MACHINE_I386:
    756     return "COFF-i386";
    757   case COFF::IMAGE_FILE_MACHINE_AMD64:
    758     return "COFF-x86-64";
    759   case COFF::IMAGE_FILE_MACHINE_ARMNT:
    760     return "COFF-ARM";
    761   case COFF::IMAGE_FILE_MACHINE_ARM64:
    762     return "COFF-ARM64";
    763   default:
    764     return "COFF-<unknown arch>";
    765   }
    766 }
    767 
    768 unsigned COFFObjectFile::getArch() const {
    769   switch (getMachine()) {
    770   case COFF::IMAGE_FILE_MACHINE_I386:
    771     return Triple::x86;
    772   case COFF::IMAGE_FILE_MACHINE_AMD64:
    773     return Triple::x86_64;
    774   case COFF::IMAGE_FILE_MACHINE_ARMNT:
    775     return Triple::thumb;
    776   case COFF::IMAGE_FILE_MACHINE_ARM64:
    777     return Triple::aarch64;
    778   default:
    779     return Triple::UnknownArch;
    780   }
    781 }
    782 
    783 iterator_range<import_directory_iterator>
    784 COFFObjectFile::import_directories() const {
    785   return make_range(import_directory_begin(), import_directory_end());
    786 }
    787 
    788 iterator_range<delay_import_directory_iterator>
    789 COFFObjectFile::delay_import_directories() const {
    790   return make_range(delay_import_directory_begin(),
    791                     delay_import_directory_end());
    792 }
    793 
    794 iterator_range<export_directory_iterator>
    795 COFFObjectFile::export_directories() const {
    796   return make_range(export_directory_begin(), export_directory_end());
    797 }
    798 
    799 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const {
    800   return make_range(base_reloc_begin(), base_reloc_end());
    801 }
    802 
    803 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const {
    804   Res = PE32Header;
    805   return std::error_code();
    806 }
    807 
    808 std::error_code
    809 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const {
    810   Res = PE32PlusHeader;
    811   return std::error_code();
    812 }
    813 
    814 std::error_code
    815 COFFObjectFile::getDataDirectory(uint32_t Index,
    816                                  const data_directory *&Res) const {
    817   // Error if if there's no data directory or the index is out of range.
    818   if (!DataDirectory) {
    819     Res = nullptr;
    820     return object_error::parse_failed;
    821   }
    822   assert(PE32Header || PE32PlusHeader);
    823   uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize
    824                                : PE32PlusHeader->NumberOfRvaAndSize;
    825   if (Index >= NumEnt) {
    826     Res = nullptr;
    827     return object_error::parse_failed;
    828   }
    829   Res = &DataDirectory[Index];
    830   return std::error_code();
    831 }
    832 
    833 std::error_code COFFObjectFile::getSection(int32_t Index,
    834                                            const coff_section *&Result) const {
    835   Result = nullptr;
    836   if (COFF::isReservedSectionNumber(Index))
    837     return std::error_code();
    838   if (static_cast<uint32_t>(Index) <= getNumberOfSections()) {
    839     // We already verified the section table data, so no need to check again.
    840     Result = SectionTable + (Index - 1);
    841     return std::error_code();
    842   }
    843   return object_error::parse_failed;
    844 }
    845 
    846 std::error_code COFFObjectFile::getString(uint32_t Offset,
    847                                           StringRef &Result) const {
    848   if (StringTableSize <= 4)
    849     // Tried to get a string from an empty string table.
    850     return object_error::parse_failed;
    851   if (Offset >= StringTableSize)
    852     return object_error::unexpected_eof;
    853   Result = StringRef(StringTable + Offset);
    854   return std::error_code();
    855 }
    856 
    857 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol,
    858                                               StringRef &Res) const {
    859   return getSymbolName(Symbol.getGeneric(), Res);
    860 }
    861 
    862 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol,
    863                                               StringRef &Res) const {
    864   // Check for string table entry. First 4 bytes are 0.
    865   if (Symbol->Name.Offset.Zeroes == 0) {
    866     if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res))
    867       return EC;
    868     return std::error_code();
    869   }
    870 
    871   if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0)
    872     // Null terminated, let ::strlen figure out the length.
    873     Res = StringRef(Symbol->Name.ShortName);
    874   else
    875     // Not null terminated, use all 8 bytes.
    876     Res = StringRef(Symbol->Name.ShortName, COFF::NameSize);
    877   return std::error_code();
    878 }
    879 
    880 ArrayRef<uint8_t>
    881 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const {
    882   const uint8_t *Aux = nullptr;
    883 
    884   size_t SymbolSize = getSymbolTableEntrySize();
    885   if (Symbol.getNumberOfAuxSymbols() > 0) {
    886     // AUX data comes immediately after the symbol in COFF
    887     Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize;
    888 # ifndef NDEBUG
    889     // Verify that the Aux symbol points to a valid entry in the symbol table.
    890     uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base());
    891     if (Offset < getPointerToSymbolTable() ||
    892         Offset >=
    893             getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize))
    894       report_fatal_error("Aux Symbol data was outside of symbol table.");
    895 
    896     assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 &&
    897            "Aux Symbol data did not point to the beginning of a symbol");
    898 # endif
    899   }
    900   return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize);
    901 }
    902 
    903 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec,
    904                                                StringRef &Res) const {
    905   StringRef Name;
    906   if (Sec->Name[COFF::NameSize - 1] == 0)
    907     // Null terminated, let ::strlen figure out the length.
    908     Name = Sec->Name;
    909   else
    910     // Not null terminated, use all 8 bytes.
    911     Name = StringRef(Sec->Name, COFF::NameSize);
    912 
    913   // Check for string table entry. First byte is '/'.
    914   if (Name.startswith("/")) {
    915     uint32_t Offset;
    916     if (Name.startswith("//")) {
    917       if (decodeBase64StringEntry(Name.substr(2), Offset))
    918         return object_error::parse_failed;
    919     } else {
    920       if (Name.substr(1).getAsInteger(10, Offset))
    921         return object_error::parse_failed;
    922     }
    923     if (std::error_code EC = getString(Offset, Name))
    924       return EC;
    925   }
    926 
    927   Res = Name;
    928   return std::error_code();
    929 }
    930 
    931 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const {
    932   // SizeOfRawData and VirtualSize change what they represent depending on
    933   // whether or not we have an executable image.
    934   //
    935   // For object files, SizeOfRawData contains the size of section's data;
    936   // VirtualSize should be zero but isn't due to buggy COFF writers.
    937   //
    938   // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the
    939   // actual section size is in VirtualSize.  It is possible for VirtualSize to
    940   // be greater than SizeOfRawData; the contents past that point should be
    941   // considered to be zero.
    942   if (getDOSHeader())
    943     return std::min(Sec->VirtualSize, Sec->SizeOfRawData);
    944   return Sec->SizeOfRawData;
    945 }
    946 
    947 std::error_code
    948 COFFObjectFile::getSectionContents(const coff_section *Sec,
    949                                    ArrayRef<uint8_t> &Res) const {
    950   // PointerToRawData and SizeOfRawData won't make sense for BSS sections,
    951   // don't do anything interesting for them.
    952   assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 &&
    953          "BSS sections don't have contents!");
    954   // The only thing that we need to verify is that the contents is contained
    955   // within the file bounds. We don't need to make sure it doesn't cover other
    956   // data, as there's nothing that says that is not allowed.
    957   uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData;
    958   uint32_t SectionSize = getSectionSize(Sec);
    959   if (checkOffset(Data, ConStart, SectionSize))
    960     return object_error::parse_failed;
    961   Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize);
    962   return std::error_code();
    963 }
    964 
    965 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const {
    966   return reinterpret_cast<const coff_relocation*>(Rel.p);
    967 }
    968 
    969 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const {
    970   Rel.p = reinterpret_cast<uintptr_t>(
    971             reinterpret_cast<const coff_relocation*>(Rel.p) + 1);
    972 }
    973 
    974 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const {
    975   const coff_relocation *R = toRel(Rel);
    976   return R->VirtualAddress;
    977 }
    978 
    979 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const {
    980   const coff_relocation *R = toRel(Rel);
    981   DataRefImpl Ref;
    982   if (R->SymbolTableIndex >= getNumberOfSymbols())
    983     return symbol_end();
    984   if (SymbolTable16)
    985     Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex);
    986   else if (SymbolTable32)
    987     Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex);
    988   else
    989     llvm_unreachable("no symbol table pointer!");
    990   return symbol_iterator(SymbolRef(Ref, this));
    991 }
    992 
    993 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const {
    994   const coff_relocation* R = toRel(Rel);
    995   return R->Type;
    996 }
    997 
    998 const coff_section *
    999 COFFObjectFile::getCOFFSection(const SectionRef &Section) const {
   1000   return toSec(Section.getRawDataRefImpl());
   1001 }
   1002 
   1003 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const {
   1004   if (SymbolTable16)
   1005     return toSymb<coff_symbol16>(Ref);
   1006   if (SymbolTable32)
   1007     return toSymb<coff_symbol32>(Ref);
   1008   llvm_unreachable("no symbol table pointer!");
   1009 }
   1010 
   1011 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const {
   1012   return getCOFFSymbol(Symbol.getRawDataRefImpl());
   1013 }
   1014 
   1015 const coff_relocation *
   1016 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const {
   1017   return toRel(Reloc.getRawDataRefImpl());
   1018 }
   1019 
   1020 iterator_range<const coff_relocation *>
   1021 COFFObjectFile::getRelocations(const coff_section *Sec) const {
   1022   const coff_relocation *I = getFirstReloc(Sec, Data, base());
   1023   const coff_relocation *E = I;
   1024   if (I)
   1025     E += getNumberOfRelocations(Sec, Data, base());
   1026   return make_range(I, E);
   1027 }
   1028 
   1029 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type)                           \
   1030   case COFF::reloc_type:                                                       \
   1031     Res = #reloc_type;                                                         \
   1032     break;
   1033 
   1034 void COFFObjectFile::getRelocationTypeName(
   1035     DataRefImpl Rel, SmallVectorImpl<char> &Result) const {
   1036   const coff_relocation *Reloc = toRel(Rel);
   1037   StringRef Res;
   1038   switch (getMachine()) {
   1039   case COFF::IMAGE_FILE_MACHINE_AMD64:
   1040     switch (Reloc->Type) {
   1041     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE);
   1042     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64);
   1043     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32);
   1044     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB);
   1045     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32);
   1046     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1);
   1047     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2);
   1048     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3);
   1049     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4);
   1050     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5);
   1051     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION);
   1052     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL);
   1053     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7);
   1054     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN);
   1055     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32);
   1056     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR);
   1057     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32);
   1058     default:
   1059       Res = "Unknown";
   1060     }
   1061     break;
   1062   case COFF::IMAGE_FILE_MACHINE_ARMNT:
   1063     switch (Reloc->Type) {
   1064     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE);
   1065     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32);
   1066     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB);
   1067     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24);
   1068     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11);
   1069     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN);
   1070     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24);
   1071     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11);
   1072     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION);
   1073     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL);
   1074     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A);
   1075     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T);
   1076     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T);
   1077     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T);
   1078     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T);
   1079     default:
   1080       Res = "Unknown";
   1081     }
   1082     break;
   1083   case COFF::IMAGE_FILE_MACHINE_I386:
   1084     switch (Reloc->Type) {
   1085     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE);
   1086     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16);
   1087     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16);
   1088     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32);
   1089     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB);
   1090     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12);
   1091     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION);
   1092     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL);
   1093     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN);
   1094     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7);
   1095     LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32);
   1096     default:
   1097       Res = "Unknown";
   1098     }
   1099     break;
   1100   default:
   1101     Res = "Unknown";
   1102   }
   1103   Result.append(Res.begin(), Res.end());
   1104 }
   1105 
   1106 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME
   1107 
   1108 bool COFFObjectFile::isRelocatableObject() const {
   1109   return !DataDirectory;
   1110 }
   1111 
   1112 bool ImportDirectoryEntryRef::
   1113 operator==(const ImportDirectoryEntryRef &Other) const {
   1114   return ImportTable == Other.ImportTable && Index == Other.Index;
   1115 }
   1116 
   1117 void ImportDirectoryEntryRef::moveNext() {
   1118   ++Index;
   1119 }
   1120 
   1121 std::error_code ImportDirectoryEntryRef::getImportTableEntry(
   1122     const import_directory_table_entry *&Result) const {
   1123   Result = ImportTable + Index;
   1124   return std::error_code();
   1125 }
   1126 
   1127 static imported_symbol_iterator
   1128 makeImportedSymbolIterator(const COFFObjectFile *Object,
   1129                            uintptr_t Ptr, int Index) {
   1130   if (Object->getBytesInAddress() == 4) {
   1131     auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr);
   1132     return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
   1133   }
   1134   auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr);
   1135   return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object));
   1136 }
   1137 
   1138 static imported_symbol_iterator
   1139 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) {
   1140   uintptr_t IntPtr = 0;
   1141   Object->getRvaPtr(RVA, IntPtr);
   1142   return makeImportedSymbolIterator(Object, IntPtr, 0);
   1143 }
   1144 
   1145 static imported_symbol_iterator
   1146 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) {
   1147   uintptr_t IntPtr = 0;
   1148   Object->getRvaPtr(RVA, IntPtr);
   1149   // Forward the pointer to the last entry which is null.
   1150   int Index = 0;
   1151   if (Object->getBytesInAddress() == 4) {
   1152     auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr);
   1153     while (*Entry++)
   1154       ++Index;
   1155   } else {
   1156     auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr);
   1157     while (*Entry++)
   1158       ++Index;
   1159   }
   1160   return makeImportedSymbolIterator(Object, IntPtr, Index);
   1161 }
   1162 
   1163 imported_symbol_iterator
   1164 ImportDirectoryEntryRef::imported_symbol_begin() const {
   1165   return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA,
   1166                              OwningObject);
   1167 }
   1168 
   1169 imported_symbol_iterator
   1170 ImportDirectoryEntryRef::imported_symbol_end() const {
   1171   return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA,
   1172                            OwningObject);
   1173 }
   1174 
   1175 iterator_range<imported_symbol_iterator>
   1176 ImportDirectoryEntryRef::imported_symbols() const {
   1177   return make_range(imported_symbol_begin(), imported_symbol_end());
   1178 }
   1179 
   1180 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const {
   1181   uintptr_t IntPtr = 0;
   1182   if (std::error_code EC =
   1183           OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr))
   1184     return EC;
   1185   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
   1186   return std::error_code();
   1187 }
   1188 
   1189 std::error_code
   1190 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t  &Result) const {
   1191   Result = ImportTable[Index].ImportLookupTableRVA;
   1192   return std::error_code();
   1193 }
   1194 
   1195 std::error_code
   1196 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const {
   1197   Result = ImportTable[Index].ImportAddressTableRVA;
   1198   return std::error_code();
   1199 }
   1200 
   1201 std::error_code ImportDirectoryEntryRef::getImportLookupEntry(
   1202     const import_lookup_table_entry32 *&Result) const {
   1203   uintptr_t IntPtr = 0;
   1204   uint32_t RVA = ImportTable[Index].ImportLookupTableRVA;
   1205   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
   1206     return EC;
   1207   Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr);
   1208   return std::error_code();
   1209 }
   1210 
   1211 bool DelayImportDirectoryEntryRef::
   1212 operator==(const DelayImportDirectoryEntryRef &Other) const {
   1213   return Table == Other.Table && Index == Other.Index;
   1214 }
   1215 
   1216 void DelayImportDirectoryEntryRef::moveNext() {
   1217   ++Index;
   1218 }
   1219 
   1220 imported_symbol_iterator
   1221 DelayImportDirectoryEntryRef::imported_symbol_begin() const {
   1222   return importedSymbolBegin(Table[Index].DelayImportNameTable,
   1223                              OwningObject);
   1224 }
   1225 
   1226 imported_symbol_iterator
   1227 DelayImportDirectoryEntryRef::imported_symbol_end() const {
   1228   return importedSymbolEnd(Table[Index].DelayImportNameTable,
   1229                            OwningObject);
   1230 }
   1231 
   1232 iterator_range<imported_symbol_iterator>
   1233 DelayImportDirectoryEntryRef::imported_symbols() const {
   1234   return make_range(imported_symbol_begin(), imported_symbol_end());
   1235 }
   1236 
   1237 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const {
   1238   uintptr_t IntPtr = 0;
   1239   if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr))
   1240     return EC;
   1241   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
   1242   return std::error_code();
   1243 }
   1244 
   1245 std::error_code DelayImportDirectoryEntryRef::
   1246 getDelayImportTable(const delay_import_directory_table_entry *&Result) const {
   1247   Result = Table;
   1248   return std::error_code();
   1249 }
   1250 
   1251 std::error_code DelayImportDirectoryEntryRef::
   1252 getImportAddress(int AddrIndex, uint64_t &Result) const {
   1253   uint32_t RVA = Table[Index].DelayImportAddressTable +
   1254       AddrIndex * (OwningObject->is64() ? 8 : 4);
   1255   uintptr_t IntPtr = 0;
   1256   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
   1257     return EC;
   1258   if (OwningObject->is64())
   1259     Result = *reinterpret_cast<const ulittle64_t *>(IntPtr);
   1260   else
   1261     Result = *reinterpret_cast<const ulittle32_t *>(IntPtr);
   1262   return std::error_code();
   1263 }
   1264 
   1265 bool ExportDirectoryEntryRef::
   1266 operator==(const ExportDirectoryEntryRef &Other) const {
   1267   return ExportTable == Other.ExportTable && Index == Other.Index;
   1268 }
   1269 
   1270 void ExportDirectoryEntryRef::moveNext() {
   1271   ++Index;
   1272 }
   1273 
   1274 // Returns the name of the current export symbol. If the symbol is exported only
   1275 // by ordinal, the empty string is set as a result.
   1276 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const {
   1277   uintptr_t IntPtr = 0;
   1278   if (std::error_code EC =
   1279           OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr))
   1280     return EC;
   1281   Result = StringRef(reinterpret_cast<const char *>(IntPtr));
   1282   return std::error_code();
   1283 }
   1284 
   1285 // Returns the starting ordinal number.
   1286 std::error_code
   1287 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const {
   1288   Result = ExportTable->OrdinalBase;
   1289   return std::error_code();
   1290 }
   1291 
   1292 // Returns the export ordinal of the current export symbol.
   1293 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const {
   1294   Result = ExportTable->OrdinalBase + Index;
   1295   return std::error_code();
   1296 }
   1297 
   1298 // Returns the address of the current export symbol.
   1299 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const {
   1300   uintptr_t IntPtr = 0;
   1301   if (std::error_code EC =
   1302           OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr))
   1303     return EC;
   1304   const export_address_table_entry *entry =
   1305       reinterpret_cast<const export_address_table_entry *>(IntPtr);
   1306   Result = entry[Index].ExportRVA;
   1307   return std::error_code();
   1308 }
   1309 
   1310 // Returns the name of the current export symbol. If the symbol is exported only
   1311 // by ordinal, the empty string is set as a result.
   1312 std::error_code
   1313 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const {
   1314   uintptr_t IntPtr = 0;
   1315   if (std::error_code EC =
   1316           OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr))
   1317     return EC;
   1318   const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr);
   1319 
   1320   uint32_t NumEntries = ExportTable->NumberOfNamePointers;
   1321   int Offset = 0;
   1322   for (const ulittle16_t *I = Start, *E = Start + NumEntries;
   1323        I < E; ++I, ++Offset) {
   1324     if (*I != Index)
   1325       continue;
   1326     if (std::error_code EC =
   1327             OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr))
   1328       return EC;
   1329     const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr);
   1330     if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr))
   1331       return EC;
   1332     Result = StringRef(reinterpret_cast<const char *>(IntPtr));
   1333     return std::error_code();
   1334   }
   1335   Result = "";
   1336   return std::error_code();
   1337 }
   1338 
   1339 bool ImportedSymbolRef::
   1340 operator==(const ImportedSymbolRef &Other) const {
   1341   return Entry32 == Other.Entry32 && Entry64 == Other.Entry64
   1342       && Index == Other.Index;
   1343 }
   1344 
   1345 void ImportedSymbolRef::moveNext() {
   1346   ++Index;
   1347 }
   1348 
   1349 std::error_code
   1350 ImportedSymbolRef::getSymbolName(StringRef &Result) const {
   1351   uint32_t RVA;
   1352   if (Entry32) {
   1353     // If a symbol is imported only by ordinal, it has no name.
   1354     if (Entry32[Index].isOrdinal())
   1355       return std::error_code();
   1356     RVA = Entry32[Index].getHintNameRVA();
   1357   } else {
   1358     if (Entry64[Index].isOrdinal())
   1359       return std::error_code();
   1360     RVA = Entry64[Index].getHintNameRVA();
   1361   }
   1362   uintptr_t IntPtr = 0;
   1363   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
   1364     return EC;
   1365   // +2 because the first two bytes is hint.
   1366   Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2));
   1367   return std::error_code();
   1368 }
   1369 
   1370 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const {
   1371   uint32_t RVA;
   1372   if (Entry32) {
   1373     if (Entry32[Index].isOrdinal()) {
   1374       Result = Entry32[Index].getOrdinal();
   1375       return std::error_code();
   1376     }
   1377     RVA = Entry32[Index].getHintNameRVA();
   1378   } else {
   1379     if (Entry64[Index].isOrdinal()) {
   1380       Result = Entry64[Index].getOrdinal();
   1381       return std::error_code();
   1382     }
   1383     RVA = Entry64[Index].getHintNameRVA();
   1384   }
   1385   uintptr_t IntPtr = 0;
   1386   if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr))
   1387     return EC;
   1388   Result = *reinterpret_cast<const ulittle16_t *>(IntPtr);
   1389   return std::error_code();
   1390 }
   1391 
   1392 ErrorOr<std::unique_ptr<COFFObjectFile>>
   1393 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) {
   1394   std::error_code EC;
   1395   std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC));
   1396   if (EC)
   1397     return EC;
   1398   return std::move(Ret);
   1399 }
   1400 
   1401 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const {
   1402   return Header == Other.Header && Index == Other.Index;
   1403 }
   1404 
   1405 void BaseRelocRef::moveNext() {
   1406   // Header->BlockSize is the size of the current block, including the
   1407   // size of the header itself.
   1408   uint32_t Size = sizeof(*Header) +
   1409       sizeof(coff_base_reloc_block_entry) * (Index + 1);
   1410   if (Size == Header->BlockSize) {
   1411     // .reloc contains a list of base relocation blocks. Each block
   1412     // consists of the header followed by entries. The header contains
   1413     // how many entories will follow. When we reach the end of the
   1414     // current block, proceed to the next block.
   1415     Header = reinterpret_cast<const coff_base_reloc_block_header *>(
   1416         reinterpret_cast<const uint8_t *>(Header) + Size);
   1417     Index = 0;
   1418   } else {
   1419     ++Index;
   1420   }
   1421 }
   1422 
   1423 std::error_code BaseRelocRef::getType(uint8_t &Type) const {
   1424   auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
   1425   Type = Entry[Index].getType();
   1426   return std::error_code();
   1427 }
   1428 
   1429 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const {
   1430   auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1);
   1431   Result = Header->PageRVA + Entry[Index].getOffset();
   1432   return std::error_code();
   1433 }
   1434