1 //===- COFFObjectFile.cpp - COFF object file implementation -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the COFFObjectFile class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Object/COFF.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/ADT/iterator_range.h" 20 #include "llvm/Support/COFF.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include <cctype> 24 #include <limits> 25 26 using namespace llvm; 27 using namespace object; 28 29 using support::ulittle16_t; 30 using support::ulittle32_t; 31 using support::ulittle64_t; 32 using support::little16_t; 33 34 // Returns false if size is greater than the buffer size. And sets ec. 35 static bool checkSize(MemoryBufferRef M, std::error_code &EC, uint64_t Size) { 36 if (M.getBufferSize() < Size) { 37 EC = object_error::unexpected_eof; 38 return false; 39 } 40 return true; 41 } 42 43 static std::error_code checkOffset(MemoryBufferRef M, uintptr_t Addr, 44 const uint64_t Size) { 45 if (Addr + Size < Addr || Addr + Size < Size || 46 Addr + Size > uintptr_t(M.getBufferEnd()) || 47 Addr < uintptr_t(M.getBufferStart())) { 48 return object_error::unexpected_eof; 49 } 50 return std::error_code(); 51 } 52 53 // Sets Obj unless any bytes in [addr, addr + size) fall outsize of m. 54 // Returns unexpected_eof if error. 55 template <typename T> 56 static std::error_code getObject(const T *&Obj, MemoryBufferRef M, 57 const void *Ptr, 58 const uint64_t Size = sizeof(T)) { 59 uintptr_t Addr = uintptr_t(Ptr); 60 if (std::error_code EC = checkOffset(M, Addr, Size)) 61 return EC; 62 Obj = reinterpret_cast<const T *>(Addr); 63 return std::error_code(); 64 } 65 66 // Decode a string table entry in base 64 (//AAAAAA). Expects \arg Str without 67 // prefixed slashes. 68 static bool decodeBase64StringEntry(StringRef Str, uint32_t &Result) { 69 assert(Str.size() <= 6 && "String too long, possible overflow."); 70 if (Str.size() > 6) 71 return true; 72 73 uint64_t Value = 0; 74 while (!Str.empty()) { 75 unsigned CharVal; 76 if (Str[0] >= 'A' && Str[0] <= 'Z') // 0..25 77 CharVal = Str[0] - 'A'; 78 else if (Str[0] >= 'a' && Str[0] <= 'z') // 26..51 79 CharVal = Str[0] - 'a' + 26; 80 else if (Str[0] >= '0' && Str[0] <= '9') // 52..61 81 CharVal = Str[0] - '0' + 52; 82 else if (Str[0] == '+') // 62 83 CharVal = 62; 84 else if (Str[0] == '/') // 63 85 CharVal = 63; 86 else 87 return true; 88 89 Value = (Value * 64) + CharVal; 90 Str = Str.substr(1); 91 } 92 93 if (Value > std::numeric_limits<uint32_t>::max()) 94 return true; 95 96 Result = static_cast<uint32_t>(Value); 97 return false; 98 } 99 100 template <typename coff_symbol_type> 101 const coff_symbol_type *COFFObjectFile::toSymb(DataRefImpl Ref) const { 102 const coff_symbol_type *Addr = 103 reinterpret_cast<const coff_symbol_type *>(Ref.p); 104 105 assert(!checkOffset(Data, uintptr_t(Addr), sizeof(*Addr))); 106 #ifndef NDEBUG 107 // Verify that the symbol points to a valid entry in the symbol table. 108 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(base()); 109 110 assert((Offset - getPointerToSymbolTable()) % sizeof(coff_symbol_type) == 0 && 111 "Symbol did not point to the beginning of a symbol"); 112 #endif 113 114 return Addr; 115 } 116 117 const coff_section *COFFObjectFile::toSec(DataRefImpl Ref) const { 118 const coff_section *Addr = reinterpret_cast<const coff_section*>(Ref.p); 119 120 # ifndef NDEBUG 121 // Verify that the section points to a valid entry in the section table. 122 if (Addr < SectionTable || Addr >= (SectionTable + getNumberOfSections())) 123 report_fatal_error("Section was outside of section table."); 124 125 uintptr_t Offset = uintptr_t(Addr) - uintptr_t(SectionTable); 126 assert(Offset % sizeof(coff_section) == 0 && 127 "Section did not point to the beginning of a section"); 128 # endif 129 130 return Addr; 131 } 132 133 void COFFObjectFile::moveSymbolNext(DataRefImpl &Ref) const { 134 auto End = reinterpret_cast<uintptr_t>(StringTable); 135 if (SymbolTable16) { 136 const coff_symbol16 *Symb = toSymb<coff_symbol16>(Ref); 137 Symb += 1 + Symb->NumberOfAuxSymbols; 138 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 139 } else if (SymbolTable32) { 140 const coff_symbol32 *Symb = toSymb<coff_symbol32>(Ref); 141 Symb += 1 + Symb->NumberOfAuxSymbols; 142 Ref.p = std::min(reinterpret_cast<uintptr_t>(Symb), End); 143 } else { 144 llvm_unreachable("no symbol table pointer!"); 145 } 146 } 147 148 ErrorOr<StringRef> COFFObjectFile::getSymbolName(DataRefImpl Ref) const { 149 COFFSymbolRef Symb = getCOFFSymbol(Ref); 150 StringRef Result; 151 std::error_code EC = getSymbolName(Symb, Result); 152 if (EC) 153 return EC; 154 return Result; 155 } 156 157 uint64_t COFFObjectFile::getSymbolValueImpl(DataRefImpl Ref) const { 158 return getCOFFSymbol(Ref).getValue(); 159 } 160 161 ErrorOr<uint64_t> COFFObjectFile::getSymbolAddress(DataRefImpl Ref) const { 162 uint64_t Result = getSymbolValue(Ref); 163 COFFSymbolRef Symb = getCOFFSymbol(Ref); 164 int32_t SectionNumber = Symb.getSectionNumber(); 165 166 if (Symb.isAnyUndefined() || Symb.isCommon() || 167 COFF::isReservedSectionNumber(SectionNumber)) 168 return Result; 169 170 const coff_section *Section = nullptr; 171 if (std::error_code EC = getSection(SectionNumber, Section)) 172 return EC; 173 Result += Section->VirtualAddress; 174 175 // The section VirtualAddress does not include ImageBase, and we want to 176 // return virtual addresses. 177 Result += getImageBase(); 178 179 return Result; 180 } 181 182 SymbolRef::Type COFFObjectFile::getSymbolType(DataRefImpl Ref) const { 183 COFFSymbolRef Symb = getCOFFSymbol(Ref); 184 int32_t SectionNumber = Symb.getSectionNumber(); 185 186 if (Symb.getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) 187 return SymbolRef::ST_Function; 188 if (Symb.isAnyUndefined()) 189 return SymbolRef::ST_Unknown; 190 if (Symb.isCommon()) 191 return SymbolRef::ST_Data; 192 if (Symb.isFileRecord()) 193 return SymbolRef::ST_File; 194 195 // TODO: perhaps we need a new symbol type ST_Section. 196 if (SectionNumber == COFF::IMAGE_SYM_DEBUG || Symb.isSectionDefinition()) 197 return SymbolRef::ST_Debug; 198 199 if (!COFF::isReservedSectionNumber(SectionNumber)) 200 return SymbolRef::ST_Data; 201 202 return SymbolRef::ST_Other; 203 } 204 205 uint32_t COFFObjectFile::getSymbolFlags(DataRefImpl Ref) const { 206 COFFSymbolRef Symb = getCOFFSymbol(Ref); 207 uint32_t Result = SymbolRef::SF_None; 208 209 if (Symb.isExternal() || Symb.isWeakExternal()) 210 Result |= SymbolRef::SF_Global; 211 212 if (Symb.isWeakExternal()) 213 Result |= SymbolRef::SF_Weak; 214 215 if (Symb.getSectionNumber() == COFF::IMAGE_SYM_ABSOLUTE) 216 Result |= SymbolRef::SF_Absolute; 217 218 if (Symb.isFileRecord()) 219 Result |= SymbolRef::SF_FormatSpecific; 220 221 if (Symb.isSectionDefinition()) 222 Result |= SymbolRef::SF_FormatSpecific; 223 224 if (Symb.isCommon()) 225 Result |= SymbolRef::SF_Common; 226 227 if (Symb.isAnyUndefined()) 228 Result |= SymbolRef::SF_Undefined; 229 230 return Result; 231 } 232 233 uint64_t COFFObjectFile::getCommonSymbolSizeImpl(DataRefImpl Ref) const { 234 COFFSymbolRef Symb = getCOFFSymbol(Ref); 235 return Symb.getValue(); 236 } 237 238 ErrorOr<section_iterator> 239 COFFObjectFile::getSymbolSection(DataRefImpl Ref) const { 240 COFFSymbolRef Symb = getCOFFSymbol(Ref); 241 if (COFF::isReservedSectionNumber(Symb.getSectionNumber())) 242 return section_end(); 243 const coff_section *Sec = nullptr; 244 if (std::error_code EC = getSection(Symb.getSectionNumber(), Sec)) 245 return EC; 246 DataRefImpl Ret; 247 Ret.p = reinterpret_cast<uintptr_t>(Sec); 248 return section_iterator(SectionRef(Ret, this)); 249 } 250 251 unsigned COFFObjectFile::getSymbolSectionID(SymbolRef Sym) const { 252 COFFSymbolRef Symb = getCOFFSymbol(Sym.getRawDataRefImpl()); 253 return Symb.getSectionNumber(); 254 } 255 256 void COFFObjectFile::moveSectionNext(DataRefImpl &Ref) const { 257 const coff_section *Sec = toSec(Ref); 258 Sec += 1; 259 Ref.p = reinterpret_cast<uintptr_t>(Sec); 260 } 261 262 std::error_code COFFObjectFile::getSectionName(DataRefImpl Ref, 263 StringRef &Result) const { 264 const coff_section *Sec = toSec(Ref); 265 return getSectionName(Sec, Result); 266 } 267 268 uint64_t COFFObjectFile::getSectionAddress(DataRefImpl Ref) const { 269 const coff_section *Sec = toSec(Ref); 270 uint64_t Result = Sec->VirtualAddress; 271 272 // The section VirtualAddress does not include ImageBase, and we want to 273 // return virtual addresses. 274 Result += getImageBase(); 275 return Result; 276 } 277 278 uint64_t COFFObjectFile::getSectionSize(DataRefImpl Ref) const { 279 return getSectionSize(toSec(Ref)); 280 } 281 282 std::error_code COFFObjectFile::getSectionContents(DataRefImpl Ref, 283 StringRef &Result) const { 284 const coff_section *Sec = toSec(Ref); 285 ArrayRef<uint8_t> Res; 286 std::error_code EC = getSectionContents(Sec, Res); 287 Result = StringRef(reinterpret_cast<const char*>(Res.data()), Res.size()); 288 return EC; 289 } 290 291 uint64_t COFFObjectFile::getSectionAlignment(DataRefImpl Ref) const { 292 const coff_section *Sec = toSec(Ref); 293 return uint64_t(1) << (((Sec->Characteristics & 0x00F00000) >> 20) - 1); 294 } 295 296 bool COFFObjectFile::isSectionText(DataRefImpl Ref) const { 297 const coff_section *Sec = toSec(Ref); 298 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE; 299 } 300 301 bool COFFObjectFile::isSectionData(DataRefImpl Ref) const { 302 const coff_section *Sec = toSec(Ref); 303 return Sec->Characteristics & COFF::IMAGE_SCN_CNT_INITIALIZED_DATA; 304 } 305 306 bool COFFObjectFile::isSectionBSS(DataRefImpl Ref) const { 307 const coff_section *Sec = toSec(Ref); 308 const uint32_t BssFlags = COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 309 COFF::IMAGE_SCN_MEM_READ | 310 COFF::IMAGE_SCN_MEM_WRITE; 311 return (Sec->Characteristics & BssFlags) == BssFlags; 312 } 313 314 unsigned COFFObjectFile::getSectionID(SectionRef Sec) const { 315 uintptr_t Offset = 316 uintptr_t(Sec.getRawDataRefImpl().p) - uintptr_t(SectionTable); 317 assert((Offset % sizeof(coff_section)) == 0); 318 return (Offset / sizeof(coff_section)) + 1; 319 } 320 321 bool COFFObjectFile::isSectionVirtual(DataRefImpl Ref) const { 322 const coff_section *Sec = toSec(Ref); 323 // In COFF, a virtual section won't have any in-file 324 // content, so the file pointer to the content will be zero. 325 return Sec->PointerToRawData == 0; 326 } 327 328 static uint32_t getNumberOfRelocations(const coff_section *Sec, 329 MemoryBufferRef M, const uint8_t *base) { 330 // The field for the number of relocations in COFF section table is only 331 // 16-bit wide. If a section has more than 65535 relocations, 0xFFFF is set to 332 // NumberOfRelocations field, and the actual relocation count is stored in the 333 // VirtualAddress field in the first relocation entry. 334 if (Sec->hasExtendedRelocations()) { 335 const coff_relocation *FirstReloc; 336 if (getObject(FirstReloc, M, reinterpret_cast<const coff_relocation*>( 337 base + Sec->PointerToRelocations))) 338 return 0; 339 // -1 to exclude this first relocation entry. 340 return FirstReloc->VirtualAddress - 1; 341 } 342 return Sec->NumberOfRelocations; 343 } 344 345 static const coff_relocation * 346 getFirstReloc(const coff_section *Sec, MemoryBufferRef M, const uint8_t *Base) { 347 uint64_t NumRelocs = getNumberOfRelocations(Sec, M, Base); 348 if (!NumRelocs) 349 return nullptr; 350 auto begin = reinterpret_cast<const coff_relocation *>( 351 Base + Sec->PointerToRelocations); 352 if (Sec->hasExtendedRelocations()) { 353 // Skip the first relocation entry repurposed to store the number of 354 // relocations. 355 begin++; 356 } 357 if (checkOffset(M, uintptr_t(begin), sizeof(coff_relocation) * NumRelocs)) 358 return nullptr; 359 return begin; 360 } 361 362 relocation_iterator COFFObjectFile::section_rel_begin(DataRefImpl Ref) const { 363 const coff_section *Sec = toSec(Ref); 364 const coff_relocation *begin = getFirstReloc(Sec, Data, base()); 365 if (begin && Sec->VirtualAddress != 0) 366 report_fatal_error("Sections with relocations should have an address of 0"); 367 DataRefImpl Ret; 368 Ret.p = reinterpret_cast<uintptr_t>(begin); 369 return relocation_iterator(RelocationRef(Ret, this)); 370 } 371 372 relocation_iterator COFFObjectFile::section_rel_end(DataRefImpl Ref) const { 373 const coff_section *Sec = toSec(Ref); 374 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 375 if (I) 376 I += getNumberOfRelocations(Sec, Data, base()); 377 DataRefImpl Ret; 378 Ret.p = reinterpret_cast<uintptr_t>(I); 379 return relocation_iterator(RelocationRef(Ret, this)); 380 } 381 382 // Initialize the pointer to the symbol table. 383 std::error_code COFFObjectFile::initSymbolTablePtr() { 384 if (COFFHeader) 385 if (std::error_code EC = getObject( 386 SymbolTable16, Data, base() + getPointerToSymbolTable(), 387 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 388 return EC; 389 390 if (COFFBigObjHeader) 391 if (std::error_code EC = getObject( 392 SymbolTable32, Data, base() + getPointerToSymbolTable(), 393 (uint64_t)getNumberOfSymbols() * getSymbolTableEntrySize())) 394 return EC; 395 396 // Find string table. The first four byte of the string table contains the 397 // total size of the string table, including the size field itself. If the 398 // string table is empty, the value of the first four byte would be 4. 399 uint32_t StringTableOffset = getPointerToSymbolTable() + 400 getNumberOfSymbols() * getSymbolTableEntrySize(); 401 const uint8_t *StringTableAddr = base() + StringTableOffset; 402 const ulittle32_t *StringTableSizePtr; 403 if (std::error_code EC = getObject(StringTableSizePtr, Data, StringTableAddr)) 404 return EC; 405 StringTableSize = *StringTableSizePtr; 406 if (std::error_code EC = 407 getObject(StringTable, Data, StringTableAddr, StringTableSize)) 408 return EC; 409 410 // Treat table sizes < 4 as empty because contrary to the PECOFF spec, some 411 // tools like cvtres write a size of 0 for an empty table instead of 4. 412 if (StringTableSize < 4) 413 StringTableSize = 4; 414 415 // Check that the string table is null terminated if has any in it. 416 if (StringTableSize > 4 && StringTable[StringTableSize - 1] != 0) 417 return object_error::parse_failed; 418 return std::error_code(); 419 } 420 421 uint64_t COFFObjectFile::getImageBase() const { 422 if (PE32Header) 423 return PE32Header->ImageBase; 424 else if (PE32PlusHeader) 425 return PE32PlusHeader->ImageBase; 426 // This actually comes up in practice. 427 return 0; 428 } 429 430 // Returns the file offset for the given VA. 431 std::error_code COFFObjectFile::getVaPtr(uint64_t Addr, uintptr_t &Res) const { 432 uint64_t ImageBase = getImageBase(); 433 uint64_t Rva = Addr - ImageBase; 434 assert(Rva <= UINT32_MAX); 435 return getRvaPtr((uint32_t)Rva, Res); 436 } 437 438 // Returns the file offset for the given RVA. 439 std::error_code COFFObjectFile::getRvaPtr(uint32_t Addr, uintptr_t &Res) const { 440 for (const SectionRef &S : sections()) { 441 const coff_section *Section = getCOFFSection(S); 442 uint32_t SectionStart = Section->VirtualAddress; 443 uint32_t SectionEnd = Section->VirtualAddress + Section->VirtualSize; 444 if (SectionStart <= Addr && Addr < SectionEnd) { 445 uint32_t Offset = Addr - SectionStart; 446 Res = uintptr_t(base()) + Section->PointerToRawData + Offset; 447 return std::error_code(); 448 } 449 } 450 return object_error::parse_failed; 451 } 452 453 // Returns hint and name fields, assuming \p Rva is pointing to a Hint/Name 454 // table entry. 455 std::error_code COFFObjectFile::getHintName(uint32_t Rva, uint16_t &Hint, 456 StringRef &Name) const { 457 uintptr_t IntPtr = 0; 458 if (std::error_code EC = getRvaPtr(Rva, IntPtr)) 459 return EC; 460 const uint8_t *Ptr = reinterpret_cast<const uint8_t *>(IntPtr); 461 Hint = *reinterpret_cast<const ulittle16_t *>(Ptr); 462 Name = StringRef(reinterpret_cast<const char *>(Ptr + 2)); 463 return std::error_code(); 464 } 465 466 // Find the import table. 467 std::error_code COFFObjectFile::initImportTablePtr() { 468 // First, we get the RVA of the import table. If the file lacks a pointer to 469 // the import table, do nothing. 470 const data_directory *DataEntry; 471 if (getDataDirectory(COFF::IMPORT_TABLE, DataEntry)) 472 return std::error_code(); 473 474 // Do nothing if the pointer to import table is NULL. 475 if (DataEntry->RelativeVirtualAddress == 0) 476 return std::error_code(); 477 478 uint32_t ImportTableRva = DataEntry->RelativeVirtualAddress; 479 // -1 because the last entry is the null entry. 480 NumberOfImportDirectory = DataEntry->Size / 481 sizeof(import_directory_table_entry) - 1; 482 483 // Find the section that contains the RVA. This is needed because the RVA is 484 // the import table's memory address which is different from its file offset. 485 uintptr_t IntPtr = 0; 486 if (std::error_code EC = getRvaPtr(ImportTableRva, IntPtr)) 487 return EC; 488 ImportDirectory = reinterpret_cast< 489 const import_directory_table_entry *>(IntPtr); 490 return std::error_code(); 491 } 492 493 // Initializes DelayImportDirectory and NumberOfDelayImportDirectory. 494 std::error_code COFFObjectFile::initDelayImportTablePtr() { 495 const data_directory *DataEntry; 496 if (getDataDirectory(COFF::DELAY_IMPORT_DESCRIPTOR, DataEntry)) 497 return std::error_code(); 498 if (DataEntry->RelativeVirtualAddress == 0) 499 return std::error_code(); 500 501 uint32_t RVA = DataEntry->RelativeVirtualAddress; 502 NumberOfDelayImportDirectory = DataEntry->Size / 503 sizeof(delay_import_directory_table_entry) - 1; 504 505 uintptr_t IntPtr = 0; 506 if (std::error_code EC = getRvaPtr(RVA, IntPtr)) 507 return EC; 508 DelayImportDirectory = reinterpret_cast< 509 const delay_import_directory_table_entry *>(IntPtr); 510 return std::error_code(); 511 } 512 513 // Find the export table. 514 std::error_code COFFObjectFile::initExportTablePtr() { 515 // First, we get the RVA of the export table. If the file lacks a pointer to 516 // the export table, do nothing. 517 const data_directory *DataEntry; 518 if (getDataDirectory(COFF::EXPORT_TABLE, DataEntry)) 519 return std::error_code(); 520 521 // Do nothing if the pointer to export table is NULL. 522 if (DataEntry->RelativeVirtualAddress == 0) 523 return std::error_code(); 524 525 uint32_t ExportTableRva = DataEntry->RelativeVirtualAddress; 526 uintptr_t IntPtr = 0; 527 if (std::error_code EC = getRvaPtr(ExportTableRva, IntPtr)) 528 return EC; 529 ExportDirectory = 530 reinterpret_cast<const export_directory_table_entry *>(IntPtr); 531 return std::error_code(); 532 } 533 534 std::error_code COFFObjectFile::initBaseRelocPtr() { 535 const data_directory *DataEntry; 536 if (getDataDirectory(COFF::BASE_RELOCATION_TABLE, DataEntry)) 537 return std::error_code(); 538 if (DataEntry->RelativeVirtualAddress == 0) 539 return std::error_code(); 540 541 uintptr_t IntPtr = 0; 542 if (std::error_code EC = getRvaPtr(DataEntry->RelativeVirtualAddress, IntPtr)) 543 return EC; 544 BaseRelocHeader = reinterpret_cast<const coff_base_reloc_block_header *>( 545 IntPtr); 546 BaseRelocEnd = reinterpret_cast<coff_base_reloc_block_header *>( 547 IntPtr + DataEntry->Size); 548 return std::error_code(); 549 } 550 551 COFFObjectFile::COFFObjectFile(MemoryBufferRef Object, std::error_code &EC) 552 : ObjectFile(Binary::ID_COFF, Object), COFFHeader(nullptr), 553 COFFBigObjHeader(nullptr), PE32Header(nullptr), PE32PlusHeader(nullptr), 554 DataDirectory(nullptr), SectionTable(nullptr), SymbolTable16(nullptr), 555 SymbolTable32(nullptr), StringTable(nullptr), StringTableSize(0), 556 ImportDirectory(nullptr), NumberOfImportDirectory(0), 557 DelayImportDirectory(nullptr), NumberOfDelayImportDirectory(0), 558 ExportDirectory(nullptr), BaseRelocHeader(nullptr), 559 BaseRelocEnd(nullptr) { 560 // Check that we at least have enough room for a header. 561 if (!checkSize(Data, EC, sizeof(coff_file_header))) 562 return; 563 564 // The current location in the file where we are looking at. 565 uint64_t CurPtr = 0; 566 567 // PE header is optional and is present only in executables. If it exists, 568 // it is placed right after COFF header. 569 bool HasPEHeader = false; 570 571 // Check if this is a PE/COFF file. 572 if (checkSize(Data, EC, sizeof(dos_header) + sizeof(COFF::PEMagic))) { 573 // PE/COFF, seek through MS-DOS compatibility stub and 4-byte 574 // PE signature to find 'normal' COFF header. 575 const auto *DH = reinterpret_cast<const dos_header *>(base()); 576 if (DH->Magic[0] == 'M' && DH->Magic[1] == 'Z') { 577 CurPtr = DH->AddressOfNewExeHeader; 578 // Check the PE magic bytes. ("PE\0\0") 579 if (memcmp(base() + CurPtr, COFF::PEMagic, sizeof(COFF::PEMagic)) != 0) { 580 EC = object_error::parse_failed; 581 return; 582 } 583 CurPtr += sizeof(COFF::PEMagic); // Skip the PE magic bytes. 584 HasPEHeader = true; 585 } 586 } 587 588 if ((EC = getObject(COFFHeader, Data, base() + CurPtr))) 589 return; 590 591 // It might be a bigobj file, let's check. Note that COFF bigobj and COFF 592 // import libraries share a common prefix but bigobj is more restrictive. 593 if (!HasPEHeader && COFFHeader->Machine == COFF::IMAGE_FILE_MACHINE_UNKNOWN && 594 COFFHeader->NumberOfSections == uint16_t(0xffff) && 595 checkSize(Data, EC, sizeof(coff_bigobj_file_header))) { 596 if ((EC = getObject(COFFBigObjHeader, Data, base() + CurPtr))) 597 return; 598 599 // Verify that we are dealing with bigobj. 600 if (COFFBigObjHeader->Version >= COFF::BigObjHeader::MinBigObjectVersion && 601 std::memcmp(COFFBigObjHeader->UUID, COFF::BigObjMagic, 602 sizeof(COFF::BigObjMagic)) == 0) { 603 COFFHeader = nullptr; 604 CurPtr += sizeof(coff_bigobj_file_header); 605 } else { 606 // It's not a bigobj. 607 COFFBigObjHeader = nullptr; 608 } 609 } 610 if (COFFHeader) { 611 // The prior checkSize call may have failed. This isn't a hard error 612 // because we were just trying to sniff out bigobj. 613 EC = std::error_code(); 614 CurPtr += sizeof(coff_file_header); 615 616 if (COFFHeader->isImportLibrary()) 617 return; 618 } 619 620 if (HasPEHeader) { 621 const pe32_header *Header; 622 if ((EC = getObject(Header, Data, base() + CurPtr))) 623 return; 624 625 const uint8_t *DataDirAddr; 626 uint64_t DataDirSize; 627 if (Header->Magic == COFF::PE32Header::PE32) { 628 PE32Header = Header; 629 DataDirAddr = base() + CurPtr + sizeof(pe32_header); 630 DataDirSize = sizeof(data_directory) * PE32Header->NumberOfRvaAndSize; 631 } else if (Header->Magic == COFF::PE32Header::PE32_PLUS) { 632 PE32PlusHeader = reinterpret_cast<const pe32plus_header *>(Header); 633 DataDirAddr = base() + CurPtr + sizeof(pe32plus_header); 634 DataDirSize = sizeof(data_directory) * PE32PlusHeader->NumberOfRvaAndSize; 635 } else { 636 // It's neither PE32 nor PE32+. 637 EC = object_error::parse_failed; 638 return; 639 } 640 if ((EC = getObject(DataDirectory, Data, DataDirAddr, DataDirSize))) 641 return; 642 CurPtr += COFFHeader->SizeOfOptionalHeader; 643 } 644 645 if ((EC = getObject(SectionTable, Data, base() + CurPtr, 646 (uint64_t)getNumberOfSections() * sizeof(coff_section)))) 647 return; 648 649 // Initialize the pointer to the symbol table. 650 if (getPointerToSymbolTable() != 0) { 651 if ((EC = initSymbolTablePtr())) 652 return; 653 } else { 654 // We had better not have any symbols if we don't have a symbol table. 655 if (getNumberOfSymbols() != 0) { 656 EC = object_error::parse_failed; 657 return; 658 } 659 } 660 661 // Initialize the pointer to the beginning of the import table. 662 if ((EC = initImportTablePtr())) 663 return; 664 if ((EC = initDelayImportTablePtr())) 665 return; 666 667 // Initialize the pointer to the export table. 668 if ((EC = initExportTablePtr())) 669 return; 670 671 // Initialize the pointer to the base relocation table. 672 if ((EC = initBaseRelocPtr())) 673 return; 674 675 EC = std::error_code(); 676 } 677 678 basic_symbol_iterator COFFObjectFile::symbol_begin_impl() const { 679 DataRefImpl Ret; 680 Ret.p = getSymbolTable(); 681 return basic_symbol_iterator(SymbolRef(Ret, this)); 682 } 683 684 basic_symbol_iterator COFFObjectFile::symbol_end_impl() const { 685 // The symbol table ends where the string table begins. 686 DataRefImpl Ret; 687 Ret.p = reinterpret_cast<uintptr_t>(StringTable); 688 return basic_symbol_iterator(SymbolRef(Ret, this)); 689 } 690 691 import_directory_iterator COFFObjectFile::import_directory_begin() const { 692 return import_directory_iterator( 693 ImportDirectoryEntryRef(ImportDirectory, 0, this)); 694 } 695 696 import_directory_iterator COFFObjectFile::import_directory_end() const { 697 return import_directory_iterator( 698 ImportDirectoryEntryRef(ImportDirectory, NumberOfImportDirectory, this)); 699 } 700 701 delay_import_directory_iterator 702 COFFObjectFile::delay_import_directory_begin() const { 703 return delay_import_directory_iterator( 704 DelayImportDirectoryEntryRef(DelayImportDirectory, 0, this)); 705 } 706 707 delay_import_directory_iterator 708 COFFObjectFile::delay_import_directory_end() const { 709 return delay_import_directory_iterator( 710 DelayImportDirectoryEntryRef( 711 DelayImportDirectory, NumberOfDelayImportDirectory, this)); 712 } 713 714 export_directory_iterator COFFObjectFile::export_directory_begin() const { 715 return export_directory_iterator( 716 ExportDirectoryEntryRef(ExportDirectory, 0, this)); 717 } 718 719 export_directory_iterator COFFObjectFile::export_directory_end() const { 720 if (!ExportDirectory) 721 return export_directory_iterator(ExportDirectoryEntryRef(nullptr, 0, this)); 722 ExportDirectoryEntryRef Ref(ExportDirectory, 723 ExportDirectory->AddressTableEntries, this); 724 return export_directory_iterator(Ref); 725 } 726 727 section_iterator COFFObjectFile::section_begin() const { 728 DataRefImpl Ret; 729 Ret.p = reinterpret_cast<uintptr_t>(SectionTable); 730 return section_iterator(SectionRef(Ret, this)); 731 } 732 733 section_iterator COFFObjectFile::section_end() const { 734 DataRefImpl Ret; 735 int NumSections = 736 COFFHeader && COFFHeader->isImportLibrary() ? 0 : getNumberOfSections(); 737 Ret.p = reinterpret_cast<uintptr_t>(SectionTable + NumSections); 738 return section_iterator(SectionRef(Ret, this)); 739 } 740 741 base_reloc_iterator COFFObjectFile::base_reloc_begin() const { 742 return base_reloc_iterator(BaseRelocRef(BaseRelocHeader, this)); 743 } 744 745 base_reloc_iterator COFFObjectFile::base_reloc_end() const { 746 return base_reloc_iterator(BaseRelocRef(BaseRelocEnd, this)); 747 } 748 749 uint8_t COFFObjectFile::getBytesInAddress() const { 750 return getArch() == Triple::x86_64 ? 8 : 4; 751 } 752 753 StringRef COFFObjectFile::getFileFormatName() const { 754 switch(getMachine()) { 755 case COFF::IMAGE_FILE_MACHINE_I386: 756 return "COFF-i386"; 757 case COFF::IMAGE_FILE_MACHINE_AMD64: 758 return "COFF-x86-64"; 759 case COFF::IMAGE_FILE_MACHINE_ARMNT: 760 return "COFF-ARM"; 761 case COFF::IMAGE_FILE_MACHINE_ARM64: 762 return "COFF-ARM64"; 763 default: 764 return "COFF-<unknown arch>"; 765 } 766 } 767 768 unsigned COFFObjectFile::getArch() const { 769 switch (getMachine()) { 770 case COFF::IMAGE_FILE_MACHINE_I386: 771 return Triple::x86; 772 case COFF::IMAGE_FILE_MACHINE_AMD64: 773 return Triple::x86_64; 774 case COFF::IMAGE_FILE_MACHINE_ARMNT: 775 return Triple::thumb; 776 case COFF::IMAGE_FILE_MACHINE_ARM64: 777 return Triple::aarch64; 778 default: 779 return Triple::UnknownArch; 780 } 781 } 782 783 iterator_range<import_directory_iterator> 784 COFFObjectFile::import_directories() const { 785 return make_range(import_directory_begin(), import_directory_end()); 786 } 787 788 iterator_range<delay_import_directory_iterator> 789 COFFObjectFile::delay_import_directories() const { 790 return make_range(delay_import_directory_begin(), 791 delay_import_directory_end()); 792 } 793 794 iterator_range<export_directory_iterator> 795 COFFObjectFile::export_directories() const { 796 return make_range(export_directory_begin(), export_directory_end()); 797 } 798 799 iterator_range<base_reloc_iterator> COFFObjectFile::base_relocs() const { 800 return make_range(base_reloc_begin(), base_reloc_end()); 801 } 802 803 std::error_code COFFObjectFile::getPE32Header(const pe32_header *&Res) const { 804 Res = PE32Header; 805 return std::error_code(); 806 } 807 808 std::error_code 809 COFFObjectFile::getPE32PlusHeader(const pe32plus_header *&Res) const { 810 Res = PE32PlusHeader; 811 return std::error_code(); 812 } 813 814 std::error_code 815 COFFObjectFile::getDataDirectory(uint32_t Index, 816 const data_directory *&Res) const { 817 // Error if if there's no data directory or the index is out of range. 818 if (!DataDirectory) { 819 Res = nullptr; 820 return object_error::parse_failed; 821 } 822 assert(PE32Header || PE32PlusHeader); 823 uint32_t NumEnt = PE32Header ? PE32Header->NumberOfRvaAndSize 824 : PE32PlusHeader->NumberOfRvaAndSize; 825 if (Index >= NumEnt) { 826 Res = nullptr; 827 return object_error::parse_failed; 828 } 829 Res = &DataDirectory[Index]; 830 return std::error_code(); 831 } 832 833 std::error_code COFFObjectFile::getSection(int32_t Index, 834 const coff_section *&Result) const { 835 Result = nullptr; 836 if (COFF::isReservedSectionNumber(Index)) 837 return std::error_code(); 838 if (static_cast<uint32_t>(Index) <= getNumberOfSections()) { 839 // We already verified the section table data, so no need to check again. 840 Result = SectionTable + (Index - 1); 841 return std::error_code(); 842 } 843 return object_error::parse_failed; 844 } 845 846 std::error_code COFFObjectFile::getString(uint32_t Offset, 847 StringRef &Result) const { 848 if (StringTableSize <= 4) 849 // Tried to get a string from an empty string table. 850 return object_error::parse_failed; 851 if (Offset >= StringTableSize) 852 return object_error::unexpected_eof; 853 Result = StringRef(StringTable + Offset); 854 return std::error_code(); 855 } 856 857 std::error_code COFFObjectFile::getSymbolName(COFFSymbolRef Symbol, 858 StringRef &Res) const { 859 return getSymbolName(Symbol.getGeneric(), Res); 860 } 861 862 std::error_code COFFObjectFile::getSymbolName(const coff_symbol_generic *Symbol, 863 StringRef &Res) const { 864 // Check for string table entry. First 4 bytes are 0. 865 if (Symbol->Name.Offset.Zeroes == 0) { 866 if (std::error_code EC = getString(Symbol->Name.Offset.Offset, Res)) 867 return EC; 868 return std::error_code(); 869 } 870 871 if (Symbol->Name.ShortName[COFF::NameSize - 1] == 0) 872 // Null terminated, let ::strlen figure out the length. 873 Res = StringRef(Symbol->Name.ShortName); 874 else 875 // Not null terminated, use all 8 bytes. 876 Res = StringRef(Symbol->Name.ShortName, COFF::NameSize); 877 return std::error_code(); 878 } 879 880 ArrayRef<uint8_t> 881 COFFObjectFile::getSymbolAuxData(COFFSymbolRef Symbol) const { 882 const uint8_t *Aux = nullptr; 883 884 size_t SymbolSize = getSymbolTableEntrySize(); 885 if (Symbol.getNumberOfAuxSymbols() > 0) { 886 // AUX data comes immediately after the symbol in COFF 887 Aux = reinterpret_cast<const uint8_t *>(Symbol.getRawPtr()) + SymbolSize; 888 # ifndef NDEBUG 889 // Verify that the Aux symbol points to a valid entry in the symbol table. 890 uintptr_t Offset = uintptr_t(Aux) - uintptr_t(base()); 891 if (Offset < getPointerToSymbolTable() || 892 Offset >= 893 getPointerToSymbolTable() + (getNumberOfSymbols() * SymbolSize)) 894 report_fatal_error("Aux Symbol data was outside of symbol table."); 895 896 assert((Offset - getPointerToSymbolTable()) % SymbolSize == 0 && 897 "Aux Symbol data did not point to the beginning of a symbol"); 898 # endif 899 } 900 return makeArrayRef(Aux, Symbol.getNumberOfAuxSymbols() * SymbolSize); 901 } 902 903 std::error_code COFFObjectFile::getSectionName(const coff_section *Sec, 904 StringRef &Res) const { 905 StringRef Name; 906 if (Sec->Name[COFF::NameSize - 1] == 0) 907 // Null terminated, let ::strlen figure out the length. 908 Name = Sec->Name; 909 else 910 // Not null terminated, use all 8 bytes. 911 Name = StringRef(Sec->Name, COFF::NameSize); 912 913 // Check for string table entry. First byte is '/'. 914 if (Name.startswith("/")) { 915 uint32_t Offset; 916 if (Name.startswith("//")) { 917 if (decodeBase64StringEntry(Name.substr(2), Offset)) 918 return object_error::parse_failed; 919 } else { 920 if (Name.substr(1).getAsInteger(10, Offset)) 921 return object_error::parse_failed; 922 } 923 if (std::error_code EC = getString(Offset, Name)) 924 return EC; 925 } 926 927 Res = Name; 928 return std::error_code(); 929 } 930 931 uint64_t COFFObjectFile::getSectionSize(const coff_section *Sec) const { 932 // SizeOfRawData and VirtualSize change what they represent depending on 933 // whether or not we have an executable image. 934 // 935 // For object files, SizeOfRawData contains the size of section's data; 936 // VirtualSize should be zero but isn't due to buggy COFF writers. 937 // 938 // For executables, SizeOfRawData *must* be a multiple of FileAlignment; the 939 // actual section size is in VirtualSize. It is possible for VirtualSize to 940 // be greater than SizeOfRawData; the contents past that point should be 941 // considered to be zero. 942 if (getDOSHeader()) 943 return std::min(Sec->VirtualSize, Sec->SizeOfRawData); 944 return Sec->SizeOfRawData; 945 } 946 947 std::error_code 948 COFFObjectFile::getSectionContents(const coff_section *Sec, 949 ArrayRef<uint8_t> &Res) const { 950 // PointerToRawData and SizeOfRawData won't make sense for BSS sections, 951 // don't do anything interesting for them. 952 assert((Sec->Characteristics & COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0 && 953 "BSS sections don't have contents!"); 954 // The only thing that we need to verify is that the contents is contained 955 // within the file bounds. We don't need to make sure it doesn't cover other 956 // data, as there's nothing that says that is not allowed. 957 uintptr_t ConStart = uintptr_t(base()) + Sec->PointerToRawData; 958 uint32_t SectionSize = getSectionSize(Sec); 959 if (checkOffset(Data, ConStart, SectionSize)) 960 return object_error::parse_failed; 961 Res = makeArrayRef(reinterpret_cast<const uint8_t *>(ConStart), SectionSize); 962 return std::error_code(); 963 } 964 965 const coff_relocation *COFFObjectFile::toRel(DataRefImpl Rel) const { 966 return reinterpret_cast<const coff_relocation*>(Rel.p); 967 } 968 969 void COFFObjectFile::moveRelocationNext(DataRefImpl &Rel) const { 970 Rel.p = reinterpret_cast<uintptr_t>( 971 reinterpret_cast<const coff_relocation*>(Rel.p) + 1); 972 } 973 974 uint64_t COFFObjectFile::getRelocationOffset(DataRefImpl Rel) const { 975 const coff_relocation *R = toRel(Rel); 976 return R->VirtualAddress; 977 } 978 979 symbol_iterator COFFObjectFile::getRelocationSymbol(DataRefImpl Rel) const { 980 const coff_relocation *R = toRel(Rel); 981 DataRefImpl Ref; 982 if (R->SymbolTableIndex >= getNumberOfSymbols()) 983 return symbol_end(); 984 if (SymbolTable16) 985 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable16 + R->SymbolTableIndex); 986 else if (SymbolTable32) 987 Ref.p = reinterpret_cast<uintptr_t>(SymbolTable32 + R->SymbolTableIndex); 988 else 989 llvm_unreachable("no symbol table pointer!"); 990 return symbol_iterator(SymbolRef(Ref, this)); 991 } 992 993 uint64_t COFFObjectFile::getRelocationType(DataRefImpl Rel) const { 994 const coff_relocation* R = toRel(Rel); 995 return R->Type; 996 } 997 998 const coff_section * 999 COFFObjectFile::getCOFFSection(const SectionRef &Section) const { 1000 return toSec(Section.getRawDataRefImpl()); 1001 } 1002 1003 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const DataRefImpl &Ref) const { 1004 if (SymbolTable16) 1005 return toSymb<coff_symbol16>(Ref); 1006 if (SymbolTable32) 1007 return toSymb<coff_symbol32>(Ref); 1008 llvm_unreachable("no symbol table pointer!"); 1009 } 1010 1011 COFFSymbolRef COFFObjectFile::getCOFFSymbol(const SymbolRef &Symbol) const { 1012 return getCOFFSymbol(Symbol.getRawDataRefImpl()); 1013 } 1014 1015 const coff_relocation * 1016 COFFObjectFile::getCOFFRelocation(const RelocationRef &Reloc) const { 1017 return toRel(Reloc.getRawDataRefImpl()); 1018 } 1019 1020 iterator_range<const coff_relocation *> 1021 COFFObjectFile::getRelocations(const coff_section *Sec) const { 1022 const coff_relocation *I = getFirstReloc(Sec, Data, base()); 1023 const coff_relocation *E = I; 1024 if (I) 1025 E += getNumberOfRelocations(Sec, Data, base()); 1026 return make_range(I, E); 1027 } 1028 1029 #define LLVM_COFF_SWITCH_RELOC_TYPE_NAME(reloc_type) \ 1030 case COFF::reloc_type: \ 1031 Res = #reloc_type; \ 1032 break; 1033 1034 void COFFObjectFile::getRelocationTypeName( 1035 DataRefImpl Rel, SmallVectorImpl<char> &Result) const { 1036 const coff_relocation *Reloc = toRel(Rel); 1037 StringRef Res; 1038 switch (getMachine()) { 1039 case COFF::IMAGE_FILE_MACHINE_AMD64: 1040 switch (Reloc->Type) { 1041 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ABSOLUTE); 1042 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR64); 1043 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32); 1044 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_ADDR32NB); 1045 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32); 1046 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_1); 1047 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_2); 1048 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_3); 1049 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_4); 1050 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_REL32_5); 1051 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECTION); 1052 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL); 1053 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SECREL7); 1054 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_TOKEN); 1055 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SREL32); 1056 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_PAIR); 1057 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_AMD64_SSPAN32); 1058 default: 1059 Res = "Unknown"; 1060 } 1061 break; 1062 case COFF::IMAGE_FILE_MACHINE_ARMNT: 1063 switch (Reloc->Type) { 1064 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ABSOLUTE); 1065 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32); 1066 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_ADDR32NB); 1067 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24); 1068 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH11); 1069 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_TOKEN); 1070 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX24); 1071 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX11); 1072 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECTION); 1073 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_SECREL); 1074 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32A); 1075 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_MOV32T); 1076 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH20T); 1077 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BRANCH24T); 1078 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_ARM_BLX23T); 1079 default: 1080 Res = "Unknown"; 1081 } 1082 break; 1083 case COFF::IMAGE_FILE_MACHINE_I386: 1084 switch (Reloc->Type) { 1085 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_ABSOLUTE); 1086 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR16); 1087 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL16); 1088 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32); 1089 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_DIR32NB); 1090 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SEG12); 1091 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECTION); 1092 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL); 1093 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_TOKEN); 1094 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_SECREL7); 1095 LLVM_COFF_SWITCH_RELOC_TYPE_NAME(IMAGE_REL_I386_REL32); 1096 default: 1097 Res = "Unknown"; 1098 } 1099 break; 1100 default: 1101 Res = "Unknown"; 1102 } 1103 Result.append(Res.begin(), Res.end()); 1104 } 1105 1106 #undef LLVM_COFF_SWITCH_RELOC_TYPE_NAME 1107 1108 bool COFFObjectFile::isRelocatableObject() const { 1109 return !DataDirectory; 1110 } 1111 1112 bool ImportDirectoryEntryRef:: 1113 operator==(const ImportDirectoryEntryRef &Other) const { 1114 return ImportTable == Other.ImportTable && Index == Other.Index; 1115 } 1116 1117 void ImportDirectoryEntryRef::moveNext() { 1118 ++Index; 1119 } 1120 1121 std::error_code ImportDirectoryEntryRef::getImportTableEntry( 1122 const import_directory_table_entry *&Result) const { 1123 Result = ImportTable + Index; 1124 return std::error_code(); 1125 } 1126 1127 static imported_symbol_iterator 1128 makeImportedSymbolIterator(const COFFObjectFile *Object, 1129 uintptr_t Ptr, int Index) { 1130 if (Object->getBytesInAddress() == 4) { 1131 auto *P = reinterpret_cast<const import_lookup_table_entry32 *>(Ptr); 1132 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1133 } 1134 auto *P = reinterpret_cast<const import_lookup_table_entry64 *>(Ptr); 1135 return imported_symbol_iterator(ImportedSymbolRef(P, Index, Object)); 1136 } 1137 1138 static imported_symbol_iterator 1139 importedSymbolBegin(uint32_t RVA, const COFFObjectFile *Object) { 1140 uintptr_t IntPtr = 0; 1141 Object->getRvaPtr(RVA, IntPtr); 1142 return makeImportedSymbolIterator(Object, IntPtr, 0); 1143 } 1144 1145 static imported_symbol_iterator 1146 importedSymbolEnd(uint32_t RVA, const COFFObjectFile *Object) { 1147 uintptr_t IntPtr = 0; 1148 Object->getRvaPtr(RVA, IntPtr); 1149 // Forward the pointer to the last entry which is null. 1150 int Index = 0; 1151 if (Object->getBytesInAddress() == 4) { 1152 auto *Entry = reinterpret_cast<ulittle32_t *>(IntPtr); 1153 while (*Entry++) 1154 ++Index; 1155 } else { 1156 auto *Entry = reinterpret_cast<ulittle64_t *>(IntPtr); 1157 while (*Entry++) 1158 ++Index; 1159 } 1160 return makeImportedSymbolIterator(Object, IntPtr, Index); 1161 } 1162 1163 imported_symbol_iterator 1164 ImportDirectoryEntryRef::imported_symbol_begin() const { 1165 return importedSymbolBegin(ImportTable[Index].ImportLookupTableRVA, 1166 OwningObject); 1167 } 1168 1169 imported_symbol_iterator 1170 ImportDirectoryEntryRef::imported_symbol_end() const { 1171 return importedSymbolEnd(ImportTable[Index].ImportLookupTableRVA, 1172 OwningObject); 1173 } 1174 1175 iterator_range<imported_symbol_iterator> 1176 ImportDirectoryEntryRef::imported_symbols() const { 1177 return make_range(imported_symbol_begin(), imported_symbol_end()); 1178 } 1179 1180 std::error_code ImportDirectoryEntryRef::getName(StringRef &Result) const { 1181 uintptr_t IntPtr = 0; 1182 if (std::error_code EC = 1183 OwningObject->getRvaPtr(ImportTable[Index].NameRVA, IntPtr)) 1184 return EC; 1185 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1186 return std::error_code(); 1187 } 1188 1189 std::error_code 1190 ImportDirectoryEntryRef::getImportLookupTableRVA(uint32_t &Result) const { 1191 Result = ImportTable[Index].ImportLookupTableRVA; 1192 return std::error_code(); 1193 } 1194 1195 std::error_code 1196 ImportDirectoryEntryRef::getImportAddressTableRVA(uint32_t &Result) const { 1197 Result = ImportTable[Index].ImportAddressTableRVA; 1198 return std::error_code(); 1199 } 1200 1201 std::error_code ImportDirectoryEntryRef::getImportLookupEntry( 1202 const import_lookup_table_entry32 *&Result) const { 1203 uintptr_t IntPtr = 0; 1204 uint32_t RVA = ImportTable[Index].ImportLookupTableRVA; 1205 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1206 return EC; 1207 Result = reinterpret_cast<const import_lookup_table_entry32 *>(IntPtr); 1208 return std::error_code(); 1209 } 1210 1211 bool DelayImportDirectoryEntryRef:: 1212 operator==(const DelayImportDirectoryEntryRef &Other) const { 1213 return Table == Other.Table && Index == Other.Index; 1214 } 1215 1216 void DelayImportDirectoryEntryRef::moveNext() { 1217 ++Index; 1218 } 1219 1220 imported_symbol_iterator 1221 DelayImportDirectoryEntryRef::imported_symbol_begin() const { 1222 return importedSymbolBegin(Table[Index].DelayImportNameTable, 1223 OwningObject); 1224 } 1225 1226 imported_symbol_iterator 1227 DelayImportDirectoryEntryRef::imported_symbol_end() const { 1228 return importedSymbolEnd(Table[Index].DelayImportNameTable, 1229 OwningObject); 1230 } 1231 1232 iterator_range<imported_symbol_iterator> 1233 DelayImportDirectoryEntryRef::imported_symbols() const { 1234 return make_range(imported_symbol_begin(), imported_symbol_end()); 1235 } 1236 1237 std::error_code DelayImportDirectoryEntryRef::getName(StringRef &Result) const { 1238 uintptr_t IntPtr = 0; 1239 if (std::error_code EC = OwningObject->getRvaPtr(Table[Index].Name, IntPtr)) 1240 return EC; 1241 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1242 return std::error_code(); 1243 } 1244 1245 std::error_code DelayImportDirectoryEntryRef:: 1246 getDelayImportTable(const delay_import_directory_table_entry *&Result) const { 1247 Result = Table; 1248 return std::error_code(); 1249 } 1250 1251 std::error_code DelayImportDirectoryEntryRef:: 1252 getImportAddress(int AddrIndex, uint64_t &Result) const { 1253 uint32_t RVA = Table[Index].DelayImportAddressTable + 1254 AddrIndex * (OwningObject->is64() ? 8 : 4); 1255 uintptr_t IntPtr = 0; 1256 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1257 return EC; 1258 if (OwningObject->is64()) 1259 Result = *reinterpret_cast<const ulittle64_t *>(IntPtr); 1260 else 1261 Result = *reinterpret_cast<const ulittle32_t *>(IntPtr); 1262 return std::error_code(); 1263 } 1264 1265 bool ExportDirectoryEntryRef:: 1266 operator==(const ExportDirectoryEntryRef &Other) const { 1267 return ExportTable == Other.ExportTable && Index == Other.Index; 1268 } 1269 1270 void ExportDirectoryEntryRef::moveNext() { 1271 ++Index; 1272 } 1273 1274 // Returns the name of the current export symbol. If the symbol is exported only 1275 // by ordinal, the empty string is set as a result. 1276 std::error_code ExportDirectoryEntryRef::getDllName(StringRef &Result) const { 1277 uintptr_t IntPtr = 0; 1278 if (std::error_code EC = 1279 OwningObject->getRvaPtr(ExportTable->NameRVA, IntPtr)) 1280 return EC; 1281 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1282 return std::error_code(); 1283 } 1284 1285 // Returns the starting ordinal number. 1286 std::error_code 1287 ExportDirectoryEntryRef::getOrdinalBase(uint32_t &Result) const { 1288 Result = ExportTable->OrdinalBase; 1289 return std::error_code(); 1290 } 1291 1292 // Returns the export ordinal of the current export symbol. 1293 std::error_code ExportDirectoryEntryRef::getOrdinal(uint32_t &Result) const { 1294 Result = ExportTable->OrdinalBase + Index; 1295 return std::error_code(); 1296 } 1297 1298 // Returns the address of the current export symbol. 1299 std::error_code ExportDirectoryEntryRef::getExportRVA(uint32_t &Result) const { 1300 uintptr_t IntPtr = 0; 1301 if (std::error_code EC = 1302 OwningObject->getRvaPtr(ExportTable->ExportAddressTableRVA, IntPtr)) 1303 return EC; 1304 const export_address_table_entry *entry = 1305 reinterpret_cast<const export_address_table_entry *>(IntPtr); 1306 Result = entry[Index].ExportRVA; 1307 return std::error_code(); 1308 } 1309 1310 // Returns the name of the current export symbol. If the symbol is exported only 1311 // by ordinal, the empty string is set as a result. 1312 std::error_code 1313 ExportDirectoryEntryRef::getSymbolName(StringRef &Result) const { 1314 uintptr_t IntPtr = 0; 1315 if (std::error_code EC = 1316 OwningObject->getRvaPtr(ExportTable->OrdinalTableRVA, IntPtr)) 1317 return EC; 1318 const ulittle16_t *Start = reinterpret_cast<const ulittle16_t *>(IntPtr); 1319 1320 uint32_t NumEntries = ExportTable->NumberOfNamePointers; 1321 int Offset = 0; 1322 for (const ulittle16_t *I = Start, *E = Start + NumEntries; 1323 I < E; ++I, ++Offset) { 1324 if (*I != Index) 1325 continue; 1326 if (std::error_code EC = 1327 OwningObject->getRvaPtr(ExportTable->NamePointerRVA, IntPtr)) 1328 return EC; 1329 const ulittle32_t *NamePtr = reinterpret_cast<const ulittle32_t *>(IntPtr); 1330 if (std::error_code EC = OwningObject->getRvaPtr(NamePtr[Offset], IntPtr)) 1331 return EC; 1332 Result = StringRef(reinterpret_cast<const char *>(IntPtr)); 1333 return std::error_code(); 1334 } 1335 Result = ""; 1336 return std::error_code(); 1337 } 1338 1339 bool ImportedSymbolRef:: 1340 operator==(const ImportedSymbolRef &Other) const { 1341 return Entry32 == Other.Entry32 && Entry64 == Other.Entry64 1342 && Index == Other.Index; 1343 } 1344 1345 void ImportedSymbolRef::moveNext() { 1346 ++Index; 1347 } 1348 1349 std::error_code 1350 ImportedSymbolRef::getSymbolName(StringRef &Result) const { 1351 uint32_t RVA; 1352 if (Entry32) { 1353 // If a symbol is imported only by ordinal, it has no name. 1354 if (Entry32[Index].isOrdinal()) 1355 return std::error_code(); 1356 RVA = Entry32[Index].getHintNameRVA(); 1357 } else { 1358 if (Entry64[Index].isOrdinal()) 1359 return std::error_code(); 1360 RVA = Entry64[Index].getHintNameRVA(); 1361 } 1362 uintptr_t IntPtr = 0; 1363 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1364 return EC; 1365 // +2 because the first two bytes is hint. 1366 Result = StringRef(reinterpret_cast<const char *>(IntPtr + 2)); 1367 return std::error_code(); 1368 } 1369 1370 std::error_code ImportedSymbolRef::getOrdinal(uint16_t &Result) const { 1371 uint32_t RVA; 1372 if (Entry32) { 1373 if (Entry32[Index].isOrdinal()) { 1374 Result = Entry32[Index].getOrdinal(); 1375 return std::error_code(); 1376 } 1377 RVA = Entry32[Index].getHintNameRVA(); 1378 } else { 1379 if (Entry64[Index].isOrdinal()) { 1380 Result = Entry64[Index].getOrdinal(); 1381 return std::error_code(); 1382 } 1383 RVA = Entry64[Index].getHintNameRVA(); 1384 } 1385 uintptr_t IntPtr = 0; 1386 if (std::error_code EC = OwningObject->getRvaPtr(RVA, IntPtr)) 1387 return EC; 1388 Result = *reinterpret_cast<const ulittle16_t *>(IntPtr); 1389 return std::error_code(); 1390 } 1391 1392 ErrorOr<std::unique_ptr<COFFObjectFile>> 1393 ObjectFile::createCOFFObjectFile(MemoryBufferRef Object) { 1394 std::error_code EC; 1395 std::unique_ptr<COFFObjectFile> Ret(new COFFObjectFile(Object, EC)); 1396 if (EC) 1397 return EC; 1398 return std::move(Ret); 1399 } 1400 1401 bool BaseRelocRef::operator==(const BaseRelocRef &Other) const { 1402 return Header == Other.Header && Index == Other.Index; 1403 } 1404 1405 void BaseRelocRef::moveNext() { 1406 // Header->BlockSize is the size of the current block, including the 1407 // size of the header itself. 1408 uint32_t Size = sizeof(*Header) + 1409 sizeof(coff_base_reloc_block_entry) * (Index + 1); 1410 if (Size == Header->BlockSize) { 1411 // .reloc contains a list of base relocation blocks. Each block 1412 // consists of the header followed by entries. The header contains 1413 // how many entories will follow. When we reach the end of the 1414 // current block, proceed to the next block. 1415 Header = reinterpret_cast<const coff_base_reloc_block_header *>( 1416 reinterpret_cast<const uint8_t *>(Header) + Size); 1417 Index = 0; 1418 } else { 1419 ++Index; 1420 } 1421 } 1422 1423 std::error_code BaseRelocRef::getType(uint8_t &Type) const { 1424 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1425 Type = Entry[Index].getType(); 1426 return std::error_code(); 1427 } 1428 1429 std::error_code BaseRelocRef::getRVA(uint32_t &Result) const { 1430 auto *Entry = reinterpret_cast<const coff_base_reloc_block_entry *>(Header + 1); 1431 Result = Header->PageRVA + Entry[Index].getOffset(); 1432 return std::error_code(); 1433 } 1434