Home | History | Annotate | Download | only in ADT
      1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief This file implements a class to represent arbitrary precision
     12 /// integral constant values and operations on them.
     13 ///
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_ADT_APINT_H
     17 #define LLVM_ADT_APINT_H
     18 
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/Support/Compiler.h"
     21 #include "llvm/Support/MathExtras.h"
     22 #include <cassert>
     23 #include <climits>
     24 #include <cstring>
     25 #include <string>
     26 
     27 namespace llvm {
     28 class FoldingSetNodeID;
     29 class StringRef;
     30 class hash_code;
     31 class raw_ostream;
     32 
     33 template <typename T> class SmallVectorImpl;
     34 
     35 // An unsigned host type used as a single part of a multi-part
     36 // bignum.
     37 typedef uint64_t integerPart;
     38 
     39 const unsigned int host_char_bit = 8;
     40 const unsigned int integerPartWidth =
     41     host_char_bit * static_cast<unsigned int>(sizeof(integerPart));
     42 
     43 //===----------------------------------------------------------------------===//
     44 //                              APInt Class
     45 //===----------------------------------------------------------------------===//
     46 
     47 /// \brief Class for arbitrary precision integers.
     48 ///
     49 /// APInt is a functional replacement for common case unsigned integer type like
     50 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
     51 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
     52 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
     53 /// and methods to manipulate integer values of any bit-width. It supports both
     54 /// the typical integer arithmetic and comparison operations as well as bitwise
     55 /// manipulation.
     56 ///
     57 /// The class has several invariants worth noting:
     58 ///   * All bit, byte, and word positions are zero-based.
     59 ///   * Once the bit width is set, it doesn't change except by the Truncate,
     60 ///     SignExtend, or ZeroExtend operations.
     61 ///   * All binary operators must be on APInt instances of the same bit width.
     62 ///     Attempting to use these operators on instances with different bit
     63 ///     widths will yield an assertion.
     64 ///   * The value is stored canonically as an unsigned value. For operations
     65 ///     where it makes a difference, there are both signed and unsigned variants
     66 ///     of the operation. For example, sdiv and udiv. However, because the bit
     67 ///     widths must be the same, operations such as Mul and Add produce the same
     68 ///     results regardless of whether the values are interpreted as signed or
     69 ///     not.
     70 ///   * In general, the class tries to follow the style of computation that LLVM
     71 ///     uses in its IR. This simplifies its use for LLVM.
     72 ///
     73 class APInt {
     74   unsigned BitWidth; ///< The number of bits in this APInt.
     75 
     76   /// This union is used to store the integer value. When the
     77   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
     78   union {
     79     uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
     80     uint64_t *pVal; ///< Used to store the >64 bits integer value.
     81   };
     82 
     83   /// This enum is used to hold the constants we needed for APInt.
     84   enum {
     85     /// Bits in a word
     86     APINT_BITS_PER_WORD =
     87         static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
     88     /// Byte size of a word
     89     APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
     90   };
     91 
     92   friend struct DenseMapAPIntKeyInfo;
     93 
     94   /// \brief Fast internal constructor
     95   ///
     96   /// This constructor is used only internally for speed of construction of
     97   /// temporaries. It is unsafe for general use so it is not public.
     98   APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}
     99 
    100   /// \brief Determine if this APInt just has one word to store value.
    101   ///
    102   /// \returns true if the number of bits <= 64, false otherwise.
    103   bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
    104 
    105   /// \brief Determine which word a bit is in.
    106   ///
    107   /// \returns the word position for the specified bit position.
    108   static unsigned whichWord(unsigned bitPosition) {
    109     return bitPosition / APINT_BITS_PER_WORD;
    110   }
    111 
    112   /// \brief Determine which bit in a word a bit is in.
    113   ///
    114   /// \returns the bit position in a word for the specified bit position
    115   /// in the APInt.
    116   static unsigned whichBit(unsigned bitPosition) {
    117     return bitPosition % APINT_BITS_PER_WORD;
    118   }
    119 
    120   /// \brief Get a single bit mask.
    121   ///
    122   /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
    123   /// This method generates and returns a uint64_t (word) mask for a single
    124   /// bit at a specific bit position. This is used to mask the bit in the
    125   /// corresponding word.
    126   static uint64_t maskBit(unsigned bitPosition) {
    127     return 1ULL << whichBit(bitPosition);
    128   }
    129 
    130   /// \brief Clear unused high order bits
    131   ///
    132   /// This method is used internally to clear the top "N" bits in the high order
    133   /// word that are not used by the APInt. This is needed after the most
    134   /// significant word is assigned a value to ensure that those bits are
    135   /// zero'd out.
    136   APInt &clearUnusedBits() {
    137     // Compute how many bits are used in the final word
    138     unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
    139     if (wordBits == 0)
    140       // If all bits are used, we want to leave the value alone. This also
    141       // avoids the undefined behavior of >> when the shift is the same size as
    142       // the word size (64).
    143       return *this;
    144 
    145     // Mask out the high bits.
    146     uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
    147     if (isSingleWord())
    148       VAL &= mask;
    149     else
    150       pVal[getNumWords() - 1] &= mask;
    151     return *this;
    152   }
    153 
    154   /// \brief Get the word corresponding to a bit position
    155   /// \returns the corresponding word for the specified bit position.
    156   uint64_t getWord(unsigned bitPosition) const {
    157     return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
    158   }
    159 
    160   /// \brief Convert a char array into an APInt
    161   ///
    162   /// \param radix 2, 8, 10, 16, or 36
    163   /// Converts a string into a number.  The string must be non-empty
    164   /// and well-formed as a number of the given base. The bit-width
    165   /// must be sufficient to hold the result.
    166   ///
    167   /// This is used by the constructors that take string arguments.
    168   ///
    169   /// StringRef::getAsInteger is superficially similar but (1) does
    170   /// not assume that the string is well-formed and (2) grows the
    171   /// result to hold the input.
    172   void fromString(unsigned numBits, StringRef str, uint8_t radix);
    173 
    174   /// \brief An internal division function for dividing APInts.
    175   ///
    176   /// This is used by the toString method to divide by the radix. It simply
    177   /// provides a more convenient form of divide for internal use since KnuthDiv
    178   /// has specific constraints on its inputs. If those constraints are not met
    179   /// then it provides a simpler form of divide.
    180   static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS,
    181                      unsigned rhsWords, APInt *Quotient, APInt *Remainder);
    182 
    183   /// out-of-line slow case for inline constructor
    184   void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
    185 
    186   /// shared code between two array constructors
    187   void initFromArray(ArrayRef<uint64_t> array);
    188 
    189   /// out-of-line slow case for inline copy constructor
    190   void initSlowCase(const APInt &that);
    191 
    192   /// out-of-line slow case for shl
    193   APInt shlSlowCase(unsigned shiftAmt) const;
    194 
    195   /// out-of-line slow case for operator&
    196   APInt AndSlowCase(const APInt &RHS) const;
    197 
    198   /// out-of-line slow case for operator|
    199   APInt OrSlowCase(const APInt &RHS) const;
    200 
    201   /// out-of-line slow case for operator^
    202   APInt XorSlowCase(const APInt &RHS) const;
    203 
    204   /// out-of-line slow case for operator=
    205   APInt &AssignSlowCase(const APInt &RHS);
    206 
    207   /// out-of-line slow case for operator==
    208   bool EqualSlowCase(const APInt &RHS) const;
    209 
    210   /// out-of-line slow case for operator==
    211   bool EqualSlowCase(uint64_t Val) const;
    212 
    213   /// out-of-line slow case for countLeadingZeros
    214   unsigned countLeadingZerosSlowCase() const;
    215 
    216   /// out-of-line slow case for countTrailingOnes
    217   unsigned countTrailingOnesSlowCase() const;
    218 
    219   /// out-of-line slow case for countPopulation
    220   unsigned countPopulationSlowCase() const;
    221 
    222 public:
    223   /// \name Constructors
    224   /// @{
    225 
    226   /// \brief Create a new APInt of numBits width, initialized as val.
    227   ///
    228   /// If isSigned is true then val is treated as if it were a signed value
    229   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
    230   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
    231   /// the range of val are zero filled).
    232   ///
    233   /// \param numBits the bit width of the constructed APInt
    234   /// \param val the initial value of the APInt
    235   /// \param isSigned how to treat signedness of val
    236   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
    237       : BitWidth(numBits), VAL(0) {
    238     assert(BitWidth && "bitwidth too small");
    239     if (isSingleWord())
    240       VAL = val;
    241     else
    242       initSlowCase(numBits, val, isSigned);
    243     clearUnusedBits();
    244   }
    245 
    246   /// \brief Construct an APInt of numBits width, initialized as bigVal[].
    247   ///
    248   /// Note that bigVal.size() can be smaller or larger than the corresponding
    249   /// bit width but any extraneous bits will be dropped.
    250   ///
    251   /// \param numBits the bit width of the constructed APInt
    252   /// \param bigVal a sequence of words to form the initial value of the APInt
    253   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
    254 
    255   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
    256   /// deprecated because this constructor is prone to ambiguity with the
    257   /// APInt(unsigned, uint64_t, bool) constructor.
    258   ///
    259   /// If this overload is ever deleted, care should be taken to prevent calls
    260   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
    261   /// constructor.
    262   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
    263 
    264   /// \brief Construct an APInt from a string representation.
    265   ///
    266   /// This constructor interprets the string \p str in the given radix. The
    267   /// interpretation stops when the first character that is not suitable for the
    268   /// radix is encountered, or the end of the string. Acceptable radix values
    269   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
    270   /// string to require more bits than numBits.
    271   ///
    272   /// \param numBits the bit width of the constructed APInt
    273   /// \param str the string to be interpreted
    274   /// \param radix the radix to use for the conversion
    275   APInt(unsigned numBits, StringRef str, uint8_t radix);
    276 
    277   /// Simply makes *this a copy of that.
    278   /// @brief Copy Constructor.
    279   APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
    280     if (isSingleWord())
    281       VAL = that.VAL;
    282     else
    283       initSlowCase(that);
    284   }
    285 
    286   /// \brief Move Constructor.
    287   APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
    288     that.BitWidth = 0;
    289   }
    290 
    291   /// \brief Destructor.
    292   ~APInt() {
    293     if (needsCleanup())
    294       delete[] pVal;
    295   }
    296 
    297   /// \brief Default constructor that creates an uninteresting APInt
    298   /// representing a 1-bit zero value.
    299   ///
    300   /// This is useful for object deserialization (pair this with the static
    301   ///  method Read).
    302   explicit APInt() : BitWidth(1), VAL(0) {}
    303 
    304   /// \brief Returns whether this instance allocated memory.
    305   bool needsCleanup() const { return !isSingleWord(); }
    306 
    307   /// Used to insert APInt objects, or objects that contain APInt objects, into
    308   ///  FoldingSets.
    309   void Profile(FoldingSetNodeID &id) const;
    310 
    311   /// @}
    312   /// \name Value Tests
    313   /// @{
    314 
    315   /// \brief Determine sign of this APInt.
    316   ///
    317   /// This tests the high bit of this APInt to determine if it is set.
    318   ///
    319   /// \returns true if this APInt is negative, false otherwise
    320   bool isNegative() const { return (*this)[BitWidth - 1]; }
    321 
    322   /// \brief Determine if this APInt Value is non-negative (>= 0)
    323   ///
    324   /// This tests the high bit of the APInt to determine if it is unset.
    325   bool isNonNegative() const { return !isNegative(); }
    326 
    327   /// \brief Determine if this APInt Value is positive.
    328   ///
    329   /// This tests if the value of this APInt is positive (> 0). Note
    330   /// that 0 is not a positive value.
    331   ///
    332   /// \returns true if this APInt is positive.
    333   bool isStrictlyPositive() const { return isNonNegative() && !!*this; }
    334 
    335   /// \brief Determine if all bits are set
    336   ///
    337   /// This checks to see if the value has all bits of the APInt are set or not.
    338   bool isAllOnesValue() const {
    339     if (isSingleWord())
    340       return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
    341     return countPopulationSlowCase() == BitWidth;
    342   }
    343 
    344   /// \brief Determine if this is the largest unsigned value.
    345   ///
    346   /// This checks to see if the value of this APInt is the maximum unsigned
    347   /// value for the APInt's bit width.
    348   bool isMaxValue() const { return isAllOnesValue(); }
    349 
    350   /// \brief Determine if this is the largest signed value.
    351   ///
    352   /// This checks to see if the value of this APInt is the maximum signed
    353   /// value for the APInt's bit width.
    354   bool isMaxSignedValue() const {
    355     return !isNegative() && countPopulation() == BitWidth - 1;
    356   }
    357 
    358   /// \brief Determine if this is the smallest unsigned value.
    359   ///
    360   /// This checks to see if the value of this APInt is the minimum unsigned
    361   /// value for the APInt's bit width.
    362   bool isMinValue() const { return !*this; }
    363 
    364   /// \brief Determine if this is the smallest signed value.
    365   ///
    366   /// This checks to see if the value of this APInt is the minimum signed
    367   /// value for the APInt's bit width.
    368   bool isMinSignedValue() const {
    369     return isNegative() && isPowerOf2();
    370   }
    371 
    372   /// \brief Check if this APInt has an N-bits unsigned integer value.
    373   bool isIntN(unsigned N) const {
    374     assert(N && "N == 0 ???");
    375     return getActiveBits() <= N;
    376   }
    377 
    378   /// \brief Check if this APInt has an N-bits signed integer value.
    379   bool isSignedIntN(unsigned N) const {
    380     assert(N && "N == 0 ???");
    381     return getMinSignedBits() <= N;
    382   }
    383 
    384   /// \brief Check if this APInt's value is a power of two greater than zero.
    385   ///
    386   /// \returns true if the argument APInt value is a power of two > 0.
    387   bool isPowerOf2() const {
    388     if (isSingleWord())
    389       return isPowerOf2_64(VAL);
    390     return countPopulationSlowCase() == 1;
    391   }
    392 
    393   /// \brief Check if the APInt's value is returned by getSignBit.
    394   ///
    395   /// \returns true if this is the value returned by getSignBit.
    396   bool isSignBit() const { return isMinSignedValue(); }
    397 
    398   /// \brief Convert APInt to a boolean value.
    399   ///
    400   /// This converts the APInt to a boolean value as a test against zero.
    401   bool getBoolValue() const { return !!*this; }
    402 
    403   /// If this value is smaller than the specified limit, return it, otherwise
    404   /// return the limit value.  This causes the value to saturate to the limit.
    405   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
    406     return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
    407                                                             : getZExtValue();
    408   }
    409 
    410   /// \brief Check if the APInt consists of a repeated bit pattern.
    411   ///
    412   /// e.g. 0x01010101 satisfies isSplat(8).
    413   /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
    414   /// width without remainder.
    415   bool isSplat(unsigned SplatSizeInBits) const;
    416 
    417   /// @}
    418   /// \name Value Generators
    419   /// @{
    420 
    421   /// \brief Gets maximum unsigned value of APInt for specific bit width.
    422   static APInt getMaxValue(unsigned numBits) {
    423     return getAllOnesValue(numBits);
    424   }
    425 
    426   /// \brief Gets maximum signed value of APInt for a specific bit width.
    427   static APInt getSignedMaxValue(unsigned numBits) {
    428     APInt API = getAllOnesValue(numBits);
    429     API.clearBit(numBits - 1);
    430     return API;
    431   }
    432 
    433   /// \brief Gets minimum unsigned value of APInt for a specific bit width.
    434   static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
    435 
    436   /// \brief Gets minimum signed value of APInt for a specific bit width.
    437   static APInt getSignedMinValue(unsigned numBits) {
    438     APInt API(numBits, 0);
    439     API.setBit(numBits - 1);
    440     return API;
    441   }
    442 
    443   /// \brief Get the SignBit for a specific bit width.
    444   ///
    445   /// This is just a wrapper function of getSignedMinValue(), and it helps code
    446   /// readability when we want to get a SignBit.
    447   static APInt getSignBit(unsigned BitWidth) {
    448     return getSignedMinValue(BitWidth);
    449   }
    450 
    451   /// \brief Get the all-ones value.
    452   ///
    453   /// \returns the all-ones value for an APInt of the specified bit-width.
    454   static APInt getAllOnesValue(unsigned numBits) {
    455     return APInt(numBits, UINT64_MAX, true);
    456   }
    457 
    458   /// \brief Get the '0' value.
    459   ///
    460   /// \returns the '0' value for an APInt of the specified bit-width.
    461   static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
    462 
    463   /// \brief Compute an APInt containing numBits highbits from this APInt.
    464   ///
    465   /// Get an APInt with the same BitWidth as this APInt, just zero mask
    466   /// the low bits and right shift to the least significant bit.
    467   ///
    468   /// \returns the high "numBits" bits of this APInt.
    469   APInt getHiBits(unsigned numBits) const;
    470 
    471   /// \brief Compute an APInt containing numBits lowbits from this APInt.
    472   ///
    473   /// Get an APInt with the same BitWidth as this APInt, just zero mask
    474   /// the high bits.
    475   ///
    476   /// \returns the low "numBits" bits of this APInt.
    477   APInt getLoBits(unsigned numBits) const;
    478 
    479   /// \brief Return an APInt with exactly one bit set in the result.
    480   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
    481     APInt Res(numBits, 0);
    482     Res.setBit(BitNo);
    483     return Res;
    484   }
    485 
    486   /// \brief Get a value with a block of bits set.
    487   ///
    488   /// Constructs an APInt value that has a contiguous range of bits set. The
    489   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
    490   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
    491   /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
    492   /// example, with parameters (32, 28, 4), you would get 0xF000000F.
    493   ///
    494   /// \param numBits the intended bit width of the result
    495   /// \param loBit the index of the lowest bit set.
    496   /// \param hiBit the index of the highest bit set.
    497   ///
    498   /// \returns An APInt value with the requested bits set.
    499   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
    500     assert(hiBit <= numBits && "hiBit out of range");
    501     assert(loBit < numBits && "loBit out of range");
    502     if (hiBit < loBit)
    503       return getLowBitsSet(numBits, hiBit) |
    504              getHighBitsSet(numBits, numBits - loBit);
    505     return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
    506   }
    507 
    508   /// \brief Get a value with high bits set
    509   ///
    510   /// Constructs an APInt value that has the top hiBitsSet bits set.
    511   ///
    512   /// \param numBits the bitwidth of the result
    513   /// \param hiBitsSet the number of high-order bits set in the result.
    514   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
    515     assert(hiBitsSet <= numBits && "Too many bits to set!");
    516     // Handle a degenerate case, to avoid shifting by word size
    517     if (hiBitsSet == 0)
    518       return APInt(numBits, 0);
    519     unsigned shiftAmt = numBits - hiBitsSet;
    520     // For small values, return quickly
    521     if (numBits <= APINT_BITS_PER_WORD)
    522       return APInt(numBits, ~0ULL << shiftAmt);
    523     return getAllOnesValue(numBits).shl(shiftAmt);
    524   }
    525 
    526   /// \brief Get a value with low bits set
    527   ///
    528   /// Constructs an APInt value that has the bottom loBitsSet bits set.
    529   ///
    530   /// \param numBits the bitwidth of the result
    531   /// \param loBitsSet the number of low-order bits set in the result.
    532   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
    533     assert(loBitsSet <= numBits && "Too many bits to set!");
    534     // Handle a degenerate case, to avoid shifting by word size
    535     if (loBitsSet == 0)
    536       return APInt(numBits, 0);
    537     if (loBitsSet == APINT_BITS_PER_WORD)
    538       return APInt(numBits, UINT64_MAX);
    539     // For small values, return quickly.
    540     if (loBitsSet <= APINT_BITS_PER_WORD)
    541       return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
    542     return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
    543   }
    544 
    545   /// \brief Return a value containing V broadcasted over NewLen bits.
    546   static APInt getSplat(unsigned NewLen, const APInt &V) {
    547     assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
    548 
    549     APInt Val = V.zextOrSelf(NewLen);
    550     for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
    551       Val |= Val << I;
    552 
    553     return Val;
    554   }
    555 
    556   /// \brief Determine if two APInts have the same value, after zero-extending
    557   /// one of them (if needed!) to ensure that the bit-widths match.
    558   static bool isSameValue(const APInt &I1, const APInt &I2) {
    559     if (I1.getBitWidth() == I2.getBitWidth())
    560       return I1 == I2;
    561 
    562     if (I1.getBitWidth() > I2.getBitWidth())
    563       return I1 == I2.zext(I1.getBitWidth());
    564 
    565     return I1.zext(I2.getBitWidth()) == I2;
    566   }
    567 
    568   /// \brief Overload to compute a hash_code for an APInt value.
    569   friend hash_code hash_value(const APInt &Arg);
    570 
    571   /// This function returns a pointer to the internal storage of the APInt.
    572   /// This is useful for writing out the APInt in binary form without any
    573   /// conversions.
    574   const uint64_t *getRawData() const {
    575     if (isSingleWord())
    576       return &VAL;
    577     return &pVal[0];
    578   }
    579 
    580   /// @}
    581   /// \name Unary Operators
    582   /// @{
    583 
    584   /// \brief Postfix increment operator.
    585   ///
    586   /// \returns a new APInt value representing *this incremented by one
    587   const APInt operator++(int) {
    588     APInt API(*this);
    589     ++(*this);
    590     return API;
    591   }
    592 
    593   /// \brief Prefix increment operator.
    594   ///
    595   /// \returns *this incremented by one
    596   APInt &operator++();
    597 
    598   /// \brief Postfix decrement operator.
    599   ///
    600   /// \returns a new APInt representing *this decremented by one.
    601   const APInt operator--(int) {
    602     APInt API(*this);
    603     --(*this);
    604     return API;
    605   }
    606 
    607   /// \brief Prefix decrement operator.
    608   ///
    609   /// \returns *this decremented by one.
    610   APInt &operator--();
    611 
    612   /// \brief Unary bitwise complement operator.
    613   ///
    614   /// Performs a bitwise complement operation on this APInt.
    615   ///
    616   /// \returns an APInt that is the bitwise complement of *this
    617   APInt operator~() const {
    618     APInt Result(*this);
    619     Result.flipAllBits();
    620     return Result;
    621   }
    622 
    623   /// \brief Unary negation operator
    624   ///
    625   /// Negates *this using two's complement logic.
    626   ///
    627   /// \returns An APInt value representing the negation of *this.
    628   APInt operator-() const { return APInt(BitWidth, 0) - (*this); }
    629 
    630   /// \brief Logical negation operator.
    631   ///
    632   /// Performs logical negation operation on this APInt.
    633   ///
    634   /// \returns true if *this is zero, false otherwise.
    635   bool operator!() const {
    636     if (isSingleWord())
    637       return !VAL;
    638 
    639     for (unsigned i = 0; i != getNumWords(); ++i)
    640       if (pVal[i])
    641         return false;
    642     return true;
    643   }
    644 
    645   /// @}
    646   /// \name Assignment Operators
    647   /// @{
    648 
    649   /// \brief Copy assignment operator.
    650   ///
    651   /// \returns *this after assignment of RHS.
    652   APInt &operator=(const APInt &RHS) {
    653     // If the bitwidths are the same, we can avoid mucking with memory
    654     if (isSingleWord() && RHS.isSingleWord()) {
    655       VAL = RHS.VAL;
    656       BitWidth = RHS.BitWidth;
    657       return clearUnusedBits();
    658     }
    659 
    660     return AssignSlowCase(RHS);
    661   }
    662 
    663   /// @brief Move assignment operator.
    664   APInt &operator=(APInt &&that) {
    665     if (!isSingleWord()) {
    666       // The MSVC STL shipped in 2013 requires that self move assignment be a
    667       // no-op.  Otherwise algorithms like stable_sort will produce answers
    668       // where half of the output is left in a moved-from state.
    669       if (this == &that)
    670         return *this;
    671       delete[] pVal;
    672     }
    673 
    674     // Use memcpy so that type based alias analysis sees both VAL and pVal
    675     // as modified.
    676     memcpy(&VAL, &that.VAL, sizeof(uint64_t));
    677 
    678     // If 'this == &that', avoid zeroing our own bitwidth by storing to 'that'
    679     // first.
    680     unsigned ThatBitWidth = that.BitWidth;
    681     that.BitWidth = 0;
    682     BitWidth = ThatBitWidth;
    683 
    684     return *this;
    685   }
    686 
    687   /// \brief Assignment operator.
    688   ///
    689   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
    690   /// the bit width, the excess bits are truncated. If the bit width is larger
    691   /// than 64, the value is zero filled in the unspecified high order bits.
    692   ///
    693   /// \returns *this after assignment of RHS value.
    694   APInt &operator=(uint64_t RHS);
    695 
    696   /// \brief Bitwise AND assignment operator.
    697   ///
    698   /// Performs a bitwise AND operation on this APInt and RHS. The result is
    699   /// assigned to *this.
    700   ///
    701   /// \returns *this after ANDing with RHS.
    702   APInt &operator&=(const APInt &RHS);
    703 
    704   /// \brief Bitwise OR assignment operator.
    705   ///
    706   /// Performs a bitwise OR operation on this APInt and RHS. The result is
    707   /// assigned *this;
    708   ///
    709   /// \returns *this after ORing with RHS.
    710   APInt &operator|=(const APInt &RHS);
    711 
    712   /// \brief Bitwise OR assignment operator.
    713   ///
    714   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
    715   /// logically zero-extended or truncated to match the bit-width of
    716   /// the LHS.
    717   APInt &operator|=(uint64_t RHS) {
    718     if (isSingleWord()) {
    719       VAL |= RHS;
    720       clearUnusedBits();
    721     } else {
    722       pVal[0] |= RHS;
    723     }
    724     return *this;
    725   }
    726 
    727   /// \brief Bitwise XOR assignment operator.
    728   ///
    729   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
    730   /// assigned to *this.
    731   ///
    732   /// \returns *this after XORing with RHS.
    733   APInt &operator^=(const APInt &RHS);
    734 
    735   /// \brief Multiplication assignment operator.
    736   ///
    737   /// Multiplies this APInt by RHS and assigns the result to *this.
    738   ///
    739   /// \returns *this
    740   APInt &operator*=(const APInt &RHS);
    741 
    742   /// \brief Addition assignment operator.
    743   ///
    744   /// Adds RHS to *this and assigns the result to *this.
    745   ///
    746   /// \returns *this
    747   APInt &operator+=(const APInt &RHS);
    748 
    749   /// \brief Subtraction assignment operator.
    750   ///
    751   /// Subtracts RHS from *this and assigns the result to *this.
    752   ///
    753   /// \returns *this
    754   APInt &operator-=(const APInt &RHS);
    755 
    756   /// \brief Left-shift assignment function.
    757   ///
    758   /// Shifts *this left by shiftAmt and assigns the result to *this.
    759   ///
    760   /// \returns *this after shifting left by shiftAmt
    761   APInt &operator<<=(unsigned shiftAmt) {
    762     *this = shl(shiftAmt);
    763     return *this;
    764   }
    765 
    766   /// @}
    767   /// \name Binary Operators
    768   /// @{
    769 
    770   /// \brief Bitwise AND operator.
    771   ///
    772   /// Performs a bitwise AND operation on *this and RHS.
    773   ///
    774   /// \returns An APInt value representing the bitwise AND of *this and RHS.
    775   APInt operator&(const APInt &RHS) const {
    776     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    777     if (isSingleWord())
    778       return APInt(getBitWidth(), VAL & RHS.VAL);
    779     return AndSlowCase(RHS);
    780   }
    781   APInt LLVM_ATTRIBUTE_UNUSED_RESULT And(const APInt &RHS) const {
    782     return this->operator&(RHS);
    783   }
    784 
    785   /// \brief Bitwise OR operator.
    786   ///
    787   /// Performs a bitwise OR operation on *this and RHS.
    788   ///
    789   /// \returns An APInt value representing the bitwise OR of *this and RHS.
    790   APInt operator|(const APInt &RHS) const {
    791     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    792     if (isSingleWord())
    793       return APInt(getBitWidth(), VAL | RHS.VAL);
    794     return OrSlowCase(RHS);
    795   }
    796 
    797   /// \brief Bitwise OR function.
    798   ///
    799   /// Performs a bitwise or on *this and RHS. This is implemented by simply
    800   /// calling operator|.
    801   ///
    802   /// \returns An APInt value representing the bitwise OR of *this and RHS.
    803   APInt LLVM_ATTRIBUTE_UNUSED_RESULT Or(const APInt &RHS) const {
    804     return this->operator|(RHS);
    805   }
    806 
    807   /// \brief Bitwise XOR operator.
    808   ///
    809   /// Performs a bitwise XOR operation on *this and RHS.
    810   ///
    811   /// \returns An APInt value representing the bitwise XOR of *this and RHS.
    812   APInt operator^(const APInt &RHS) const {
    813     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    814     if (isSingleWord())
    815       return APInt(BitWidth, VAL ^ RHS.VAL);
    816     return XorSlowCase(RHS);
    817   }
    818 
    819   /// \brief Bitwise XOR function.
    820   ///
    821   /// Performs a bitwise XOR operation on *this and RHS. This is implemented
    822   /// through the usage of operator^.
    823   ///
    824   /// \returns An APInt value representing the bitwise XOR of *this and RHS.
    825   APInt LLVM_ATTRIBUTE_UNUSED_RESULT Xor(const APInt &RHS) const {
    826     return this->operator^(RHS);
    827   }
    828 
    829   /// \brief Multiplication operator.
    830   ///
    831   /// Multiplies this APInt by RHS and returns the result.
    832   APInt operator*(const APInt &RHS) const;
    833 
    834   /// \brief Addition operator.
    835   ///
    836   /// Adds RHS to this APInt and returns the result.
    837   APInt operator+(const APInt &RHS) const;
    838   APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); }
    839 
    840   /// \brief Subtraction operator.
    841   ///
    842   /// Subtracts RHS from this APInt and returns the result.
    843   APInt operator-(const APInt &RHS) const;
    844   APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); }
    845 
    846   /// \brief Left logical shift operator.
    847   ///
    848   /// Shifts this APInt left by \p Bits and returns the result.
    849   APInt operator<<(unsigned Bits) const { return shl(Bits); }
    850 
    851   /// \brief Left logical shift operator.
    852   ///
    853   /// Shifts this APInt left by \p Bits and returns the result.
    854   APInt operator<<(const APInt &Bits) const { return shl(Bits); }
    855 
    856   /// \brief Arithmetic right-shift function.
    857   ///
    858   /// Arithmetic right-shift this APInt by shiftAmt.
    859   APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(unsigned shiftAmt) const;
    860 
    861   /// \brief Logical right-shift function.
    862   ///
    863   /// Logical right-shift this APInt by shiftAmt.
    864   APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const;
    865 
    866   /// \brief Left-shift function.
    867   ///
    868   /// Left-shift this APInt by shiftAmt.
    869   APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(unsigned shiftAmt) const {
    870     assert(shiftAmt <= BitWidth && "Invalid shift amount");
    871     if (isSingleWord()) {
    872       if (shiftAmt >= BitWidth)
    873         return APInt(BitWidth, 0); // avoid undefined shift results
    874       return APInt(BitWidth, VAL << shiftAmt);
    875     }
    876     return shlSlowCase(shiftAmt);
    877   }
    878 
    879   /// \brief Rotate left by rotateAmt.
    880   APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(unsigned rotateAmt) const;
    881 
    882   /// \brief Rotate right by rotateAmt.
    883   APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(unsigned rotateAmt) const;
    884 
    885   /// \brief Arithmetic right-shift function.
    886   ///
    887   /// Arithmetic right-shift this APInt by shiftAmt.
    888   APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(const APInt &shiftAmt) const;
    889 
    890   /// \brief Logical right-shift function.
    891   ///
    892   /// Logical right-shift this APInt by shiftAmt.
    893   APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(const APInt &shiftAmt) const;
    894 
    895   /// \brief Left-shift function.
    896   ///
    897   /// Left-shift this APInt by shiftAmt.
    898   APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(const APInt &shiftAmt) const;
    899 
    900   /// \brief Rotate left by rotateAmt.
    901   APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(const APInt &rotateAmt) const;
    902 
    903   /// \brief Rotate right by rotateAmt.
    904   APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(const APInt &rotateAmt) const;
    905 
    906   /// \brief Unsigned division operation.
    907   ///
    908   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
    909   /// RHS are treated as unsigned quantities for purposes of this division.
    910   ///
    911   /// \returns a new APInt value containing the division result
    912   APInt LLVM_ATTRIBUTE_UNUSED_RESULT udiv(const APInt &RHS) const;
    913 
    914   /// \brief Signed division function for APInt.
    915   ///
    916   /// Signed divide this APInt by APInt RHS.
    917   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sdiv(const APInt &RHS) const;
    918 
    919   /// \brief Unsigned remainder operation.
    920   ///
    921   /// Perform an unsigned remainder operation on this APInt with RHS being the
    922   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
    923   /// of this operation. Note that this is a true remainder operation and not a
    924   /// modulo operation because the sign follows the sign of the dividend which
    925   /// is *this.
    926   ///
    927   /// \returns a new APInt value containing the remainder result
    928   APInt LLVM_ATTRIBUTE_UNUSED_RESULT urem(const APInt &RHS) const;
    929 
    930   /// \brief Function for signed remainder operation.
    931   ///
    932   /// Signed remainder operation on APInt.
    933   APInt LLVM_ATTRIBUTE_UNUSED_RESULT srem(const APInt &RHS) const;
    934 
    935   /// \brief Dual division/remainder interface.
    936   ///
    937   /// Sometimes it is convenient to divide two APInt values and obtain both the
    938   /// quotient and remainder. This function does both operations in the same
    939   /// computation making it a little more efficient. The pair of input arguments
    940   /// may overlap with the pair of output arguments. It is safe to call
    941   /// udivrem(X, Y, X, Y), for example.
    942   static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
    943                       APInt &Remainder);
    944 
    945   static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
    946                       APInt &Remainder);
    947 
    948   // Operations that return overflow indicators.
    949   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
    950   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
    951   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
    952   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
    953   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
    954   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
    955   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
    956   APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
    957   APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
    958 
    959   /// \brief Array-indexing support.
    960   ///
    961   /// \returns the bit value at bitPosition
    962   bool operator[](unsigned bitPosition) const {
    963     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
    964     return (maskBit(bitPosition) &
    965             (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
    966            0;
    967   }
    968 
    969   /// @}
    970   /// \name Comparison Operators
    971   /// @{
    972 
    973   /// \brief Equality operator.
    974   ///
    975   /// Compares this APInt with RHS for the validity of the equality
    976   /// relationship.
    977   bool operator==(const APInt &RHS) const {
    978     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
    979     if (isSingleWord())
    980       return VAL == RHS.VAL;
    981     return EqualSlowCase(RHS);
    982   }
    983 
    984   /// \brief Equality operator.
    985   ///
    986   /// Compares this APInt with a uint64_t for the validity of the equality
    987   /// relationship.
    988   ///
    989   /// \returns true if *this == Val
    990   bool operator==(uint64_t Val) const {
    991     if (isSingleWord())
    992       return VAL == Val;
    993     return EqualSlowCase(Val);
    994   }
    995 
    996   /// \brief Equality comparison.
    997   ///
    998   /// Compares this APInt with RHS for the validity of the equality
    999   /// relationship.
   1000   ///
   1001   /// \returns true if *this == Val
   1002   bool eq(const APInt &RHS) const { return (*this) == RHS; }
   1003 
   1004   /// \brief Inequality operator.
   1005   ///
   1006   /// Compares this APInt with RHS for the validity of the inequality
   1007   /// relationship.
   1008   ///
   1009   /// \returns true if *this != Val
   1010   bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
   1011 
   1012   /// \brief Inequality operator.
   1013   ///
   1014   /// Compares this APInt with a uint64_t for the validity of the inequality
   1015   /// relationship.
   1016   ///
   1017   /// \returns true if *this != Val
   1018   bool operator!=(uint64_t Val) const { return !((*this) == Val); }
   1019 
   1020   /// \brief Inequality comparison
   1021   ///
   1022   /// Compares this APInt with RHS for the validity of the inequality
   1023   /// relationship.
   1024   ///
   1025   /// \returns true if *this != Val
   1026   bool ne(const APInt &RHS) const { return !((*this) == RHS); }
   1027 
   1028   /// \brief Unsigned less than comparison
   1029   ///
   1030   /// Regards both *this and RHS as unsigned quantities and compares them for
   1031   /// the validity of the less-than relationship.
   1032   ///
   1033   /// \returns true if *this < RHS when both are considered unsigned.
   1034   bool ult(const APInt &RHS) const;
   1035 
   1036   /// \brief Unsigned less than comparison
   1037   ///
   1038   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1039   /// the validity of the less-than relationship.
   1040   ///
   1041   /// \returns true if *this < RHS when considered unsigned.
   1042   bool ult(uint64_t RHS) const {
   1043     return getActiveBits() > 64 ? false : getZExtValue() < RHS;
   1044   }
   1045 
   1046   /// \brief Signed less than comparison
   1047   ///
   1048   /// Regards both *this and RHS as signed quantities and compares them for
   1049   /// validity of the less-than relationship.
   1050   ///
   1051   /// \returns true if *this < RHS when both are considered signed.
   1052   bool slt(const APInt &RHS) const;
   1053 
   1054   /// \brief Signed less than comparison
   1055   ///
   1056   /// Regards both *this as a signed quantity and compares it with RHS for
   1057   /// the validity of the less-than relationship.
   1058   ///
   1059   /// \returns true if *this < RHS when considered signed.
   1060   bool slt(int64_t RHS) const {
   1061     return getMinSignedBits() > 64 ? isNegative() : getSExtValue() < RHS;
   1062   }
   1063 
   1064   /// \brief Unsigned less or equal comparison
   1065   ///
   1066   /// Regards both *this and RHS as unsigned quantities and compares them for
   1067   /// validity of the less-or-equal relationship.
   1068   ///
   1069   /// \returns true if *this <= RHS when both are considered unsigned.
   1070   bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }
   1071 
   1072   /// \brief Unsigned less or equal comparison
   1073   ///
   1074   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1075   /// the validity of the less-or-equal relationship.
   1076   ///
   1077   /// \returns true if *this <= RHS when considered unsigned.
   1078   bool ule(uint64_t RHS) const { return !ugt(RHS); }
   1079 
   1080   /// \brief Signed less or equal comparison
   1081   ///
   1082   /// Regards both *this and RHS as signed quantities and compares them for
   1083   /// validity of the less-or-equal relationship.
   1084   ///
   1085   /// \returns true if *this <= RHS when both are considered signed.
   1086   bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }
   1087 
   1088   /// \brief Signed less or equal comparison
   1089   ///
   1090   /// Regards both *this as a signed quantity and compares it with RHS for the
   1091   /// validity of the less-or-equal relationship.
   1092   ///
   1093   /// \returns true if *this <= RHS when considered signed.
   1094   bool sle(uint64_t RHS) const { return !sgt(RHS); }
   1095 
   1096   /// \brief Unsigned greather than comparison
   1097   ///
   1098   /// Regards both *this and RHS as unsigned quantities and compares them for
   1099   /// the validity of the greater-than relationship.
   1100   ///
   1101   /// \returns true if *this > RHS when both are considered unsigned.
   1102   bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }
   1103 
   1104   /// \brief Unsigned greater than comparison
   1105   ///
   1106   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1107   /// the validity of the greater-than relationship.
   1108   ///
   1109   /// \returns true if *this > RHS when considered unsigned.
   1110   bool ugt(uint64_t RHS) const {
   1111     return getActiveBits() > 64 ? true : getZExtValue() > RHS;
   1112   }
   1113 
   1114   /// \brief Signed greather than comparison
   1115   ///
   1116   /// Regards both *this and RHS as signed quantities and compares them for the
   1117   /// validity of the greater-than relationship.
   1118   ///
   1119   /// \returns true if *this > RHS when both are considered signed.
   1120   bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }
   1121 
   1122   /// \brief Signed greater than comparison
   1123   ///
   1124   /// Regards both *this as a signed quantity and compares it with RHS for
   1125   /// the validity of the greater-than relationship.
   1126   ///
   1127   /// \returns true if *this > RHS when considered signed.
   1128   bool sgt(int64_t RHS) const {
   1129     return getMinSignedBits() > 64 ? !isNegative() : getSExtValue() > RHS;
   1130   }
   1131 
   1132   /// \brief Unsigned greater or equal comparison
   1133   ///
   1134   /// Regards both *this and RHS as unsigned quantities and compares them for
   1135   /// validity of the greater-or-equal relationship.
   1136   ///
   1137   /// \returns true if *this >= RHS when both are considered unsigned.
   1138   bool uge(const APInt &RHS) const { return !ult(RHS); }
   1139 
   1140   /// \brief Unsigned greater or equal comparison
   1141   ///
   1142   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1143   /// the validity of the greater-or-equal relationship.
   1144   ///
   1145   /// \returns true if *this >= RHS when considered unsigned.
   1146   bool uge(uint64_t RHS) const { return !ult(RHS); }
   1147 
   1148   /// \brief Signed greather or equal comparison
   1149   ///
   1150   /// Regards both *this and RHS as signed quantities and compares them for
   1151   /// validity of the greater-or-equal relationship.
   1152   ///
   1153   /// \returns true if *this >= RHS when both are considered signed.
   1154   bool sge(const APInt &RHS) const { return !slt(RHS); }
   1155 
   1156   /// \brief Signed greater or equal comparison
   1157   ///
   1158   /// Regards both *this as a signed quantity and compares it with RHS for
   1159   /// the validity of the greater-or-equal relationship.
   1160   ///
   1161   /// \returns true if *this >= RHS when considered signed.
   1162   bool sge(int64_t RHS) const { return !slt(RHS); }
   1163 
   1164   /// This operation tests if there are any pairs of corresponding bits
   1165   /// between this APInt and RHS that are both set.
   1166   bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }
   1167 
   1168   /// @}
   1169   /// \name Resizing Operators
   1170   /// @{
   1171 
   1172   /// \brief Truncate to new width.
   1173   ///
   1174   /// Truncate the APInt to a specified width. It is an error to specify a width
   1175   /// that is greater than or equal to the current width.
   1176   APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const;
   1177 
   1178   /// \brief Sign extend to a new width.
   1179   ///
   1180   /// This operation sign extends the APInt to a new width. If the high order
   1181   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
   1182   /// It is an error to specify a width that is less than or equal to the
   1183   /// current width.
   1184   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sext(unsigned width) const;
   1185 
   1186   /// \brief Zero extend to a new width.
   1187   ///
   1188   /// This operation zero extends the APInt to a new width. The high order bits
   1189   /// are filled with 0 bits.  It is an error to specify a width that is less
   1190   /// than or equal to the current width.
   1191   APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const;
   1192 
   1193   /// \brief Sign extend or truncate to width
   1194   ///
   1195   /// Make this APInt have the bit width given by \p width. The value is sign
   1196   /// extended, truncated, or left alone to make it that width.
   1197   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrTrunc(unsigned width) const;
   1198 
   1199   /// \brief Zero extend or truncate to width
   1200   ///
   1201   /// Make this APInt have the bit width given by \p width. The value is zero
   1202   /// extended, truncated, or left alone to make it that width.
   1203   APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrTrunc(unsigned width) const;
   1204 
   1205   /// \brief Sign extend or truncate to width
   1206   ///
   1207   /// Make this APInt have the bit width given by \p width. The value is sign
   1208   /// extended, or left alone to make it that width.
   1209   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrSelf(unsigned width) const;
   1210 
   1211   /// \brief Zero extend or truncate to width
   1212   ///
   1213   /// Make this APInt have the bit width given by \p width. The value is zero
   1214   /// extended, or left alone to make it that width.
   1215   APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrSelf(unsigned width) const;
   1216 
   1217   /// @}
   1218   /// \name Bit Manipulation Operators
   1219   /// @{
   1220 
   1221   /// \brief Set every bit to 1.
   1222   void setAllBits() {
   1223     if (isSingleWord())
   1224       VAL = UINT64_MAX;
   1225     else {
   1226       // Set all the bits in all the words.
   1227       for (unsigned i = 0; i < getNumWords(); ++i)
   1228         pVal[i] = UINT64_MAX;
   1229     }
   1230     // Clear the unused ones
   1231     clearUnusedBits();
   1232   }
   1233 
   1234   /// \brief Set a given bit to 1.
   1235   ///
   1236   /// Set the given bit to 1 whose position is given as "bitPosition".
   1237   void setBit(unsigned bitPosition);
   1238 
   1239   /// \brief Set every bit to 0.
   1240   void clearAllBits() {
   1241     if (isSingleWord())
   1242       VAL = 0;
   1243     else
   1244       memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
   1245   }
   1246 
   1247   /// \brief Set a given bit to 0.
   1248   ///
   1249   /// Set the given bit to 0 whose position is given as "bitPosition".
   1250   void clearBit(unsigned bitPosition);
   1251 
   1252   /// \brief Toggle every bit to its opposite value.
   1253   void flipAllBits() {
   1254     if (isSingleWord())
   1255       VAL ^= UINT64_MAX;
   1256     else {
   1257       for (unsigned i = 0; i < getNumWords(); ++i)
   1258         pVal[i] ^= UINT64_MAX;
   1259     }
   1260     clearUnusedBits();
   1261   }
   1262 
   1263   /// \brief Toggles a given bit to its opposite value.
   1264   ///
   1265   /// Toggle a given bit to its opposite value whose position is given
   1266   /// as "bitPosition".
   1267   void flipBit(unsigned bitPosition);
   1268 
   1269   /// @}
   1270   /// \name Value Characterization Functions
   1271   /// @{
   1272 
   1273   /// \brief Return the number of bits in the APInt.
   1274   unsigned getBitWidth() const { return BitWidth; }
   1275 
   1276   /// \brief Get the number of words.
   1277   ///
   1278   /// Here one word's bitwidth equals to that of uint64_t.
   1279   ///
   1280   /// \returns the number of words to hold the integer value of this APInt.
   1281   unsigned getNumWords() const { return getNumWords(BitWidth); }
   1282 
   1283   /// \brief Get the number of words.
   1284   ///
   1285   /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
   1286   ///
   1287   /// \returns the number of words to hold the integer value with a given bit
   1288   /// width.
   1289   static unsigned getNumWords(unsigned BitWidth) {
   1290     return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
   1291   }
   1292 
   1293   /// \brief Compute the number of active bits in the value
   1294   ///
   1295   /// This function returns the number of active bits which is defined as the
   1296   /// bit width minus the number of leading zeros. This is used in several
   1297   /// computations to see how "wide" the value is.
   1298   unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
   1299 
   1300   /// \brief Compute the number of active words in the value of this APInt.
   1301   ///
   1302   /// This is used in conjunction with getActiveData to extract the raw value of
   1303   /// the APInt.
   1304   unsigned getActiveWords() const {
   1305     unsigned numActiveBits = getActiveBits();
   1306     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
   1307   }
   1308 
   1309   /// \brief Get the minimum bit size for this signed APInt
   1310   ///
   1311   /// Computes the minimum bit width for this APInt while considering it to be a
   1312   /// signed (and probably negative) value. If the value is not negative, this
   1313   /// function returns the same value as getActiveBits()+1. Otherwise, it
   1314   /// returns the smallest bit width that will retain the negative value. For
   1315   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
   1316   /// for -1, this function will always return 1.
   1317   unsigned getMinSignedBits() const {
   1318     if (isNegative())
   1319       return BitWidth - countLeadingOnes() + 1;
   1320     return getActiveBits() + 1;
   1321   }
   1322 
   1323   /// \brief Get zero extended value
   1324   ///
   1325   /// This method attempts to return the value of this APInt as a zero extended
   1326   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
   1327   /// uint64_t. Otherwise an assertion will result.
   1328   uint64_t getZExtValue() const {
   1329     if (isSingleWord())
   1330       return VAL;
   1331     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
   1332     return pVal[0];
   1333   }
   1334 
   1335   /// \brief Get sign extended value
   1336   ///
   1337   /// This method attempts to return the value of this APInt as a sign extended
   1338   /// int64_t. The bit width must be <= 64 or the value must fit within an
   1339   /// int64_t. Otherwise an assertion will result.
   1340   int64_t getSExtValue() const {
   1341     if (isSingleWord())
   1342       return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
   1343              (APINT_BITS_PER_WORD - BitWidth);
   1344     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
   1345     return int64_t(pVal[0]);
   1346   }
   1347 
   1348   /// \brief Get bits required for string value.
   1349   ///
   1350   /// This method determines how many bits are required to hold the APInt
   1351   /// equivalent of the string given by \p str.
   1352   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
   1353 
   1354   /// \brief The APInt version of the countLeadingZeros functions in
   1355   ///   MathExtras.h.
   1356   ///
   1357   /// It counts the number of zeros from the most significant bit to the first
   1358   /// one bit.
   1359   ///
   1360   /// \returns BitWidth if the value is zero, otherwise returns the number of
   1361   ///   zeros from the most significant bit to the first one bits.
   1362   unsigned countLeadingZeros() const {
   1363     if (isSingleWord()) {
   1364       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
   1365       return llvm::countLeadingZeros(VAL) - unusedBits;
   1366     }
   1367     return countLeadingZerosSlowCase();
   1368   }
   1369 
   1370   /// \brief Count the number of leading one bits.
   1371   ///
   1372   /// This function is an APInt version of the countLeadingOnes
   1373   /// functions in MathExtras.h. It counts the number of ones from the most
   1374   /// significant bit to the first zero bit.
   1375   ///
   1376   /// \returns 0 if the high order bit is not set, otherwise returns the number
   1377   /// of 1 bits from the most significant to the least
   1378   unsigned countLeadingOnes() const;
   1379 
   1380   /// Computes the number of leading bits of this APInt that are equal to its
   1381   /// sign bit.
   1382   unsigned getNumSignBits() const {
   1383     return isNegative() ? countLeadingOnes() : countLeadingZeros();
   1384   }
   1385 
   1386   /// \brief Count the number of trailing zero bits.
   1387   ///
   1388   /// This function is an APInt version of the countTrailingZeros
   1389   /// functions in MathExtras.h. It counts the number of zeros from the least
   1390   /// significant bit to the first set bit.
   1391   ///
   1392   /// \returns BitWidth if the value is zero, otherwise returns the number of
   1393   /// zeros from the least significant bit to the first one bit.
   1394   unsigned countTrailingZeros() const;
   1395 
   1396   /// \brief Count the number of trailing one bits.
   1397   ///
   1398   /// This function is an APInt version of the countTrailingOnes
   1399   /// functions in MathExtras.h. It counts the number of ones from the least
   1400   /// significant bit to the first zero bit.
   1401   ///
   1402   /// \returns BitWidth if the value is all ones, otherwise returns the number
   1403   /// of ones from the least significant bit to the first zero bit.
   1404   unsigned countTrailingOnes() const {
   1405     if (isSingleWord())
   1406       return llvm::countTrailingOnes(VAL);
   1407     return countTrailingOnesSlowCase();
   1408   }
   1409 
   1410   /// \brief Count the number of bits set.
   1411   ///
   1412   /// This function is an APInt version of the countPopulation functions
   1413   /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
   1414   ///
   1415   /// \returns 0 if the value is zero, otherwise returns the number of set bits.
   1416   unsigned countPopulation() const {
   1417     if (isSingleWord())
   1418       return llvm::countPopulation(VAL);
   1419     return countPopulationSlowCase();
   1420   }
   1421 
   1422   /// @}
   1423   /// \name Conversion Functions
   1424   /// @{
   1425   void print(raw_ostream &OS, bool isSigned) const;
   1426 
   1427   /// Converts an APInt to a string and append it to Str.  Str is commonly a
   1428   /// SmallString.
   1429   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
   1430                 bool formatAsCLiteral = false) const;
   1431 
   1432   /// Considers the APInt to be unsigned and converts it into a string in the
   1433   /// radix given. The radix can be 2, 8, 10 16, or 36.
   1434   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
   1435     toString(Str, Radix, false, false);
   1436   }
   1437 
   1438   /// Considers the APInt to be signed and converts it into a string in the
   1439   /// radix given. The radix can be 2, 8, 10, 16, or 36.
   1440   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
   1441     toString(Str, Radix, true, false);
   1442   }
   1443 
   1444   /// \brief Return the APInt as a std::string.
   1445   ///
   1446   /// Note that this is an inefficient method.  It is better to pass in a
   1447   /// SmallVector/SmallString to the methods above to avoid thrashing the heap
   1448   /// for the string.
   1449   std::string toString(unsigned Radix, bool Signed) const;
   1450 
   1451   /// \returns a byte-swapped representation of this APInt Value.
   1452   APInt LLVM_ATTRIBUTE_UNUSED_RESULT byteSwap() const;
   1453 
   1454   /// \brief Converts this APInt to a double value.
   1455   double roundToDouble(bool isSigned) const;
   1456 
   1457   /// \brief Converts this unsigned APInt to a double value.
   1458   double roundToDouble() const { return roundToDouble(false); }
   1459 
   1460   /// \brief Converts this signed APInt to a double value.
   1461   double signedRoundToDouble() const { return roundToDouble(true); }
   1462 
   1463   /// \brief Converts APInt bits to a double
   1464   ///
   1465   /// The conversion does not do a translation from integer to double, it just
   1466   /// re-interprets the bits as a double. Note that it is valid to do this on
   1467   /// any bit width. Exactly 64 bits will be translated.
   1468   double bitsToDouble() const {
   1469     union {
   1470       uint64_t I;
   1471       double D;
   1472     } T;
   1473     T.I = (isSingleWord() ? VAL : pVal[0]);
   1474     return T.D;
   1475   }
   1476 
   1477   /// \brief Converts APInt bits to a double
   1478   ///
   1479   /// The conversion does not do a translation from integer to float, it just
   1480   /// re-interprets the bits as a float. Note that it is valid to do this on
   1481   /// any bit width. Exactly 32 bits will be translated.
   1482   float bitsToFloat() const {
   1483     union {
   1484       unsigned I;
   1485       float F;
   1486     } T;
   1487     T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
   1488     return T.F;
   1489   }
   1490 
   1491   /// \brief Converts a double to APInt bits.
   1492   ///
   1493   /// The conversion does not do a translation from double to integer, it just
   1494   /// re-interprets the bits of the double.
   1495   static APInt LLVM_ATTRIBUTE_UNUSED_RESULT doubleToBits(double V) {
   1496     union {
   1497       uint64_t I;
   1498       double D;
   1499     } T;
   1500     T.D = V;
   1501     return APInt(sizeof T * CHAR_BIT, T.I);
   1502   }
   1503 
   1504   /// \brief Converts a float to APInt bits.
   1505   ///
   1506   /// The conversion does not do a translation from float to integer, it just
   1507   /// re-interprets the bits of the float.
   1508   static APInt LLVM_ATTRIBUTE_UNUSED_RESULT floatToBits(float V) {
   1509     union {
   1510       unsigned I;
   1511       float F;
   1512     } T;
   1513     T.F = V;
   1514     return APInt(sizeof T * CHAR_BIT, T.I);
   1515   }
   1516 
   1517   /// @}
   1518   /// \name Mathematics Operations
   1519   /// @{
   1520 
   1521   /// \returns the floor log base 2 of this APInt.
   1522   unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
   1523 
   1524   /// \returns the ceil log base 2 of this APInt.
   1525   unsigned ceilLogBase2() const {
   1526     return BitWidth - (*this - 1).countLeadingZeros();
   1527   }
   1528 
   1529   /// \returns the nearest log base 2 of this APInt. Ties round up.
   1530   ///
   1531   /// NOTE: When we have a BitWidth of 1, we define:
   1532   ///
   1533   ///   log2(0) = UINT32_MAX
   1534   ///   log2(1) = 0
   1535   ///
   1536   /// to get around any mathematical concerns resulting from
   1537   /// referencing 2 in a space where 2 does no exist.
   1538   unsigned nearestLogBase2() const {
   1539     // Special case when we have a bitwidth of 1. If VAL is 1, then we
   1540     // get 0. If VAL is 0, we get UINT64_MAX which gets truncated to
   1541     // UINT32_MAX.
   1542     if (BitWidth == 1)
   1543       return VAL - 1;
   1544 
   1545     // Handle the zero case.
   1546     if (!getBoolValue())
   1547       return UINT32_MAX;
   1548 
   1549     // The non-zero case is handled by computing:
   1550     //
   1551     //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
   1552     //
   1553     // where x[i] is referring to the value of the ith bit of x.
   1554     unsigned lg = logBase2();
   1555     return lg + unsigned((*this)[lg - 1]);
   1556   }
   1557 
   1558   /// \returns the log base 2 of this APInt if its an exact power of two, -1
   1559   /// otherwise
   1560   int32_t exactLogBase2() const {
   1561     if (!isPowerOf2())
   1562       return -1;
   1563     return logBase2();
   1564   }
   1565 
   1566   /// \brief Compute the square root
   1567   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sqrt() const;
   1568 
   1569   /// \brief Get the absolute value;
   1570   ///
   1571   /// If *this is < 0 then return -(*this), otherwise *this;
   1572   APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const {
   1573     if (isNegative())
   1574       return -(*this);
   1575     return *this;
   1576   }
   1577 
   1578   /// \returns the multiplicative inverse for a given modulo.
   1579   APInt multiplicativeInverse(const APInt &modulo) const;
   1580 
   1581   /// @}
   1582   /// \name Support for division by constant
   1583   /// @{
   1584 
   1585   /// Calculate the magic number for signed division by a constant.
   1586   struct ms;
   1587   ms magic() const;
   1588 
   1589   /// Calculate the magic number for unsigned division by a constant.
   1590   struct mu;
   1591   mu magicu(unsigned LeadingZeros = 0) const;
   1592 
   1593   /// @}
   1594   /// \name Building-block Operations for APInt and APFloat
   1595   /// @{
   1596 
   1597   // These building block operations operate on a representation of arbitrary
   1598   // precision, two's-complement, bignum integer values. They should be
   1599   // sufficient to implement APInt and APFloat bignum requirements. Inputs are
   1600   // generally a pointer to the base of an array of integer parts, representing
   1601   // an unsigned bignum, and a count of how many parts there are.
   1602 
   1603   /// Sets the least significant part of a bignum to the input value, and zeroes
   1604   /// out higher parts.
   1605   static void tcSet(integerPart *, integerPart, unsigned int);
   1606 
   1607   /// Assign one bignum to another.
   1608   static void tcAssign(integerPart *, const integerPart *, unsigned int);
   1609 
   1610   /// Returns true if a bignum is zero, false otherwise.
   1611   static bool tcIsZero(const integerPart *, unsigned int);
   1612 
   1613   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
   1614   static int tcExtractBit(const integerPart *, unsigned int bit);
   1615 
   1616   /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
   1617   /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
   1618   /// significant bit of DST.  All high bits above srcBITS in DST are
   1619   /// zero-filled.
   1620   static void tcExtract(integerPart *, unsigned int dstCount,
   1621                         const integerPart *, unsigned int srcBits,
   1622                         unsigned int srcLSB);
   1623 
   1624   /// Set the given bit of a bignum.  Zero-based.
   1625   static void tcSetBit(integerPart *, unsigned int bit);
   1626 
   1627   /// Clear the given bit of a bignum.  Zero-based.
   1628   static void tcClearBit(integerPart *, unsigned int bit);
   1629 
   1630   /// Returns the bit number of the least or most significant set bit of a
   1631   /// number.  If the input number has no bits set -1U is returned.
   1632   static unsigned int tcLSB(const integerPart *, unsigned int);
   1633   static unsigned int tcMSB(const integerPart *parts, unsigned int n);
   1634 
   1635   /// Negate a bignum in-place.
   1636   static void tcNegate(integerPart *, unsigned int);
   1637 
   1638   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
   1639   static integerPart tcAdd(integerPart *, const integerPart *,
   1640                            integerPart carry, unsigned);
   1641 
   1642   /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
   1643   static integerPart tcSubtract(integerPart *, const integerPart *,
   1644                                 integerPart carry, unsigned);
   1645 
   1646   /// DST += SRC * MULTIPLIER + PART   if add is true
   1647   /// DST  = SRC * MULTIPLIER + PART   if add is false
   1648   ///
   1649   /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
   1650   /// start at the same point, i.e. DST == SRC.
   1651   ///
   1652   /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
   1653   /// Otherwise DST is filled with the least significant DSTPARTS parts of the
   1654   /// result, and if all of the omitted higher parts were zero return zero,
   1655   /// otherwise overflow occurred and return one.
   1656   static int tcMultiplyPart(integerPart *dst, const integerPart *src,
   1657                             integerPart multiplier, integerPart carry,
   1658                             unsigned int srcParts, unsigned int dstParts,
   1659                             bool add);
   1660 
   1661   /// DST = LHS * RHS, where DST has the same width as the operands and is
   1662   /// filled with the least significant parts of the result.  Returns one if
   1663   /// overflow occurred, otherwise zero.  DST must be disjoint from both
   1664   /// operands.
   1665   static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
   1666                         unsigned);
   1667 
   1668   /// DST = LHS * RHS, where DST has width the sum of the widths of the
   1669   /// operands.  No overflow occurs.  DST must be disjoint from both
   1670   /// operands. Returns the number of parts required to hold the result.
   1671   static unsigned int tcFullMultiply(integerPart *, const integerPart *,
   1672                                      const integerPart *, unsigned, unsigned);
   1673 
   1674   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
   1675   /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
   1676   /// REMAINDER to the remainder, return zero.  i.e.
   1677   ///
   1678   ///  OLD_LHS = RHS * LHS + REMAINDER
   1679   ///
   1680   /// SCRATCH is a bignum of the same size as the operands and result for use by
   1681   /// the routine; its contents need not be initialized and are destroyed.  LHS,
   1682   /// REMAINDER and SCRATCH must be distinct.
   1683   static int tcDivide(integerPart *lhs, const integerPart *rhs,
   1684                       integerPart *remainder, integerPart *scratch,
   1685                       unsigned int parts);
   1686 
   1687   /// Shift a bignum left COUNT bits.  Shifted in bits are zero.  There are no
   1688   /// restrictions on COUNT.
   1689   static void tcShiftLeft(integerPart *, unsigned int parts,
   1690                           unsigned int count);
   1691 
   1692   /// Shift a bignum right COUNT bits.  Shifted in bits are zero.  There are no
   1693   /// restrictions on COUNT.
   1694   static void tcShiftRight(integerPart *, unsigned int parts,
   1695                            unsigned int count);
   1696 
   1697   /// The obvious AND, OR and XOR and complement operations.
   1698   static void tcAnd(integerPart *, const integerPart *, unsigned int);
   1699   static void tcOr(integerPart *, const integerPart *, unsigned int);
   1700   static void tcXor(integerPart *, const integerPart *, unsigned int);
   1701   static void tcComplement(integerPart *, unsigned int);
   1702 
   1703   /// Comparison (unsigned) of two bignums.
   1704   static int tcCompare(const integerPart *, const integerPart *, unsigned int);
   1705 
   1706   /// Increment a bignum in-place.  Return the carry flag.
   1707   static integerPart tcIncrement(integerPart *, unsigned int);
   1708 
   1709   /// Decrement a bignum in-place.  Return the borrow flag.
   1710   static integerPart tcDecrement(integerPart *, unsigned int);
   1711 
   1712   /// Set the least significant BITS and clear the rest.
   1713   static void tcSetLeastSignificantBits(integerPart *, unsigned int,
   1714                                         unsigned int bits);
   1715 
   1716   /// \brief debug method
   1717   void dump() const;
   1718 
   1719   /// @}
   1720 };
   1721 
   1722 /// Magic data for optimising signed division by a constant.
   1723 struct APInt::ms {
   1724   APInt m;    ///< magic number
   1725   unsigned s; ///< shift amount
   1726 };
   1727 
   1728 /// Magic data for optimising unsigned division by a constant.
   1729 struct APInt::mu {
   1730   APInt m;    ///< magic number
   1731   bool a;     ///< add indicator
   1732   unsigned s; ///< shift amount
   1733 };
   1734 
   1735 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
   1736 
   1737 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
   1738 
   1739 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
   1740   I.print(OS, true);
   1741   return OS;
   1742 }
   1743 
   1744 namespace APIntOps {
   1745 
   1746 /// \brief Determine the smaller of two APInts considered to be signed.
   1747 inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; }
   1748 
   1749 /// \brief Determine the larger of two APInts considered to be signed.
   1750 inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; }
   1751 
   1752 /// \brief Determine the smaller of two APInts considered to be signed.
   1753 inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; }
   1754 
   1755 /// \brief Determine the larger of two APInts considered to be unsigned.
   1756 inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; }
   1757 
   1758 /// \brief Check if the specified APInt has a N-bits unsigned integer value.
   1759 inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }
   1760 
   1761 /// \brief Check if the specified APInt has a N-bits signed integer value.
   1762 inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
   1763   return APIVal.isSignedIntN(N);
   1764 }
   1765 
   1766 /// \returns true if the argument APInt value is a sequence of ones starting at
   1767 /// the least significant bit with the remainder zero.
   1768 inline bool isMask(unsigned numBits, const APInt &APIVal) {
   1769   return numBits <= APIVal.getBitWidth() &&
   1770          APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
   1771 }
   1772 
   1773 /// \brief Return true if the argument APInt value contains a sequence of ones
   1774 /// with the remainder zero.
   1775 inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
   1776   return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
   1777 }
   1778 
   1779 /// \brief Returns a byte-swapped representation of the specified APInt Value.
   1780 inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }
   1781 
   1782 /// \brief Returns the floor log base 2 of the specified APInt value.
   1783 inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }
   1784 
   1785 /// \brief Compute GCD of two APInt values.
   1786 ///
   1787 /// This function returns the greatest common divisor of the two APInt values
   1788 /// using Euclid's algorithm.
   1789 ///
   1790 /// \returns the greatest common divisor of Val1 and Val2
   1791 APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);
   1792 
   1793 /// \brief Converts the given APInt to a double value.
   1794 ///
   1795 /// Treats the APInt as an unsigned value for conversion purposes.
   1796 inline double RoundAPIntToDouble(const APInt &APIVal) {
   1797   return APIVal.roundToDouble();
   1798 }
   1799 
   1800 /// \brief Converts the given APInt to a double value.
   1801 ///
   1802 /// Treats the APInt as a signed value for conversion purposes.
   1803 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
   1804   return APIVal.signedRoundToDouble();
   1805 }
   1806 
   1807 /// \brief Converts the given APInt to a float vlalue.
   1808 inline float RoundAPIntToFloat(const APInt &APIVal) {
   1809   return float(RoundAPIntToDouble(APIVal));
   1810 }
   1811 
   1812 /// \brief Converts the given APInt to a float value.
   1813 ///
   1814 /// Treast the APInt as a signed value for conversion purposes.
   1815 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
   1816   return float(APIVal.signedRoundToDouble());
   1817 }
   1818 
   1819 /// \brief Converts the given double value into a APInt.
   1820 ///
   1821 /// This function convert a double value to an APInt value.
   1822 APInt RoundDoubleToAPInt(double Double, unsigned width);
   1823 
   1824 /// \brief Converts a float value into a APInt.
   1825 ///
   1826 /// Converts a float value into an APInt value.
   1827 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
   1828   return RoundDoubleToAPInt(double(Float), width);
   1829 }
   1830 
   1831 /// \brief Arithmetic right-shift function.
   1832 ///
   1833 /// Arithmetic right-shift the APInt by shiftAmt.
   1834 inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
   1835   return LHS.ashr(shiftAmt);
   1836 }
   1837 
   1838 /// \brief Logical right-shift function.
   1839 ///
   1840 /// Logical right-shift the APInt by shiftAmt.
   1841 inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
   1842   return LHS.lshr(shiftAmt);
   1843 }
   1844 
   1845 /// \brief Left-shift function.
   1846 ///
   1847 /// Left-shift the APInt by shiftAmt.
   1848 inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
   1849   return LHS.shl(shiftAmt);
   1850 }
   1851 
   1852 /// \brief Signed division function for APInt.
   1853 ///
   1854 /// Signed divide APInt LHS by APInt RHS.
   1855 inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }
   1856 
   1857 /// \brief Unsigned division function for APInt.
   1858 ///
   1859 /// Unsigned divide APInt LHS by APInt RHS.
   1860 inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }
   1861 
   1862 /// \brief Function for signed remainder operation.
   1863 ///
   1864 /// Signed remainder operation on APInt.
   1865 inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }
   1866 
   1867 /// \brief Function for unsigned remainder operation.
   1868 ///
   1869 /// Unsigned remainder operation on APInt.
   1870 inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }
   1871 
   1872 /// \brief Function for multiplication operation.
   1873 ///
   1874 /// Performs multiplication on APInt values.
   1875 inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }
   1876 
   1877 /// \brief Function for addition operation.
   1878 ///
   1879 /// Performs addition on APInt values.
   1880 inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }
   1881 
   1882 /// \brief Function for subtraction operation.
   1883 ///
   1884 /// Performs subtraction on APInt values.
   1885 inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }
   1886 
   1887 /// \brief Bitwise AND function for APInt.
   1888 ///
   1889 /// Performs bitwise AND operation on APInt LHS and
   1890 /// APInt RHS.
   1891 inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }
   1892 
   1893 /// \brief Bitwise OR function for APInt.
   1894 ///
   1895 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
   1896 inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }
   1897 
   1898 /// \brief Bitwise XOR function for APInt.
   1899 ///
   1900 /// Performs bitwise XOR operation on APInt.
   1901 inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }
   1902 
   1903 /// \brief Bitwise complement function.
   1904 ///
   1905 /// Performs a bitwise complement operation on APInt.
   1906 inline APInt Not(const APInt &APIVal) { return ~APIVal; }
   1907 
   1908 } // End of APIntOps namespace
   1909 
   1910 // See friend declaration above. This additional declaration is required in
   1911 // order to compile LLVM with IBM xlC compiler.
   1912 hash_code hash_value(const APInt &Arg);
   1913 } // End of llvm namespace
   1914 
   1915 #endif
   1916