Home | History | Annotate | Download | only in IR
      1 //===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines layout properties related to datatype size/offset/alignment
     11 // information.  It uses lazy annotations to cache information about how
     12 // structure types are laid out and used.
     13 //
     14 // This structure should be created once, filled in if the defaults are not
     15 // correct and then passed around by const&.  None of the members functions
     16 // require modification to the object.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #ifndef LLVM_IR_DATALAYOUT_H
     21 #define LLVM_IR_DATALAYOUT_H
     22 
     23 #include "llvm/ADT/DenseMap.h"
     24 #include "llvm/ADT/SmallVector.h"
     25 #include "llvm/IR/DerivedTypes.h"
     26 #include "llvm/IR/Type.h"
     27 #include "llvm/Pass.h"
     28 #include "llvm/Support/DataTypes.h"
     29 
     30 // This needs to be outside of the namespace, to avoid conflict with llvm-c
     31 // decl.
     32 typedef struct LLVMOpaqueTargetData *LLVMTargetDataRef;
     33 
     34 namespace llvm {
     35 
     36 class Value;
     37 class Type;
     38 class IntegerType;
     39 class StructType;
     40 class StructLayout;
     41 class Triple;
     42 class GlobalVariable;
     43 class LLVMContext;
     44 template<typename T>
     45 class ArrayRef;
     46 
     47 /// Enum used to categorize the alignment types stored by LayoutAlignElem
     48 enum AlignTypeEnum {
     49   INVALID_ALIGN = 0,
     50   INTEGER_ALIGN = 'i',
     51   VECTOR_ALIGN = 'v',
     52   FLOAT_ALIGN = 'f',
     53   AGGREGATE_ALIGN = 'a'
     54 };
     55 
     56 // FIXME: Currently the DataLayout string carries a "preferred alignment"
     57 // for types. As the DataLayout is module/global, this should likely be
     58 // sunk down to an FTTI element that is queried rather than a global
     59 // preference.
     60 
     61 /// \brief Layout alignment element.
     62 ///
     63 /// Stores the alignment data associated with a given alignment type (integer,
     64 /// vector, float) and type bit width.
     65 ///
     66 /// \note The unusual order of elements in the structure attempts to reduce
     67 /// padding and make the structure slightly more cache friendly.
     68 struct LayoutAlignElem {
     69   /// \brief Alignment type from \c AlignTypeEnum
     70   unsigned AlignType : 8;
     71   unsigned TypeBitWidth : 24;
     72   unsigned ABIAlign : 16;
     73   unsigned PrefAlign : 16;
     74 
     75   static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
     76                              unsigned pref_align, uint32_t bit_width);
     77   bool operator==(const LayoutAlignElem &rhs) const;
     78 };
     79 
     80 /// \brief Layout pointer alignment element.
     81 ///
     82 /// Stores the alignment data associated with a given pointer and address space.
     83 ///
     84 /// \note The unusual order of elements in the structure attempts to reduce
     85 /// padding and make the structure slightly more cache friendly.
     86 struct PointerAlignElem {
     87   unsigned ABIAlign;
     88   unsigned PrefAlign;
     89   uint32_t TypeByteWidth;
     90   uint32_t AddressSpace;
     91 
     92   /// Initializer
     93   static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
     94                               unsigned PrefAlign, uint32_t TypeByteWidth);
     95   bool operator==(const PointerAlignElem &rhs) const;
     96 };
     97 
     98 /// \brief A parsed version of the target data layout string in and methods for
     99 /// querying it.
    100 ///
    101 /// The target data layout string is specified *by the target* - a frontend
    102 /// generating LLVM IR is required to generate the right target data for the
    103 /// target being codegen'd to.
    104 class DataLayout {
    105 private:
    106   /// Defaults to false.
    107   bool BigEndian;
    108 
    109   unsigned StackNaturalAlign;
    110 
    111   enum ManglingModeT {
    112     MM_None,
    113     MM_ELF,
    114     MM_MachO,
    115     MM_WinCOFF,
    116     MM_WinCOFFX86,
    117     MM_Mips
    118   };
    119   ManglingModeT ManglingMode;
    120 
    121   SmallVector<unsigned char, 8> LegalIntWidths;
    122 
    123   /// \brief Primitive type alignment data.
    124   SmallVector<LayoutAlignElem, 16> Alignments;
    125 
    126   /// \brief The string representation used to create this DataLayout
    127   std::string StringRepresentation;
    128 
    129   typedef SmallVector<PointerAlignElem, 8> PointersTy;
    130   PointersTy Pointers;
    131 
    132   PointersTy::const_iterator
    133   findPointerLowerBound(uint32_t AddressSpace) const {
    134     return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
    135   }
    136 
    137   PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
    138 
    139   /// This member is a signal that a requested alignment type and bit width were
    140   /// not found in the SmallVector.
    141   static const LayoutAlignElem InvalidAlignmentElem;
    142 
    143   /// This member is a signal that a requested pointer type and bit width were
    144   /// not found in the DenseSet.
    145   static const PointerAlignElem InvalidPointerElem;
    146 
    147   // The StructType -> StructLayout map.
    148   mutable void *LayoutMap;
    149 
    150   void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
    151                     unsigned pref_align, uint32_t bit_width);
    152   unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
    153                             bool ABIAlign, Type *Ty) const;
    154   void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
    155                            unsigned PrefAlign, uint32_t TypeByteWidth);
    156 
    157   /// Internal helper method that returns requested alignment for type.
    158   unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
    159 
    160   /// \brief Valid alignment predicate.
    161   ///
    162   /// Predicate that tests a LayoutAlignElem reference returned by get() against
    163   /// InvalidAlignmentElem.
    164   bool validAlignment(const LayoutAlignElem &align) const {
    165     return &align != &InvalidAlignmentElem;
    166   }
    167 
    168   /// \brief Valid pointer predicate.
    169   ///
    170   /// Predicate that tests a PointerAlignElem reference returned by get()
    171   /// against \c InvalidPointerElem.
    172   bool validPointer(const PointerAlignElem &align) const {
    173     return &align != &InvalidPointerElem;
    174   }
    175 
    176   /// Parses a target data specification string. Assert if the string is
    177   /// malformed.
    178   void parseSpecifier(StringRef LayoutDescription);
    179 
    180   // Free all internal data structures.
    181   void clear();
    182 
    183 public:
    184   /// Constructs a DataLayout from a specification string. See reset().
    185   explicit DataLayout(StringRef LayoutDescription) : LayoutMap(nullptr) {
    186     reset(LayoutDescription);
    187   }
    188 
    189   /// Initialize target data from properties stored in the module.
    190   explicit DataLayout(const Module *M);
    191 
    192   void init(const Module *M);
    193 
    194   DataLayout(const DataLayout &DL) : LayoutMap(nullptr) { *this = DL; }
    195 
    196   DataLayout &operator=(const DataLayout &DL) {
    197     clear();
    198     StringRepresentation = DL.StringRepresentation;
    199     BigEndian = DL.isBigEndian();
    200     StackNaturalAlign = DL.StackNaturalAlign;
    201     ManglingMode = DL.ManglingMode;
    202     LegalIntWidths = DL.LegalIntWidths;
    203     Alignments = DL.Alignments;
    204     Pointers = DL.Pointers;
    205     return *this;
    206   }
    207 
    208   bool operator==(const DataLayout &Other) const;
    209   bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
    210 
    211   ~DataLayout(); // Not virtual, do not subclass this class
    212 
    213   /// Parse a data layout string (with fallback to default values).
    214   void reset(StringRef LayoutDescription);
    215 
    216   /// Layout endianness...
    217   bool isLittleEndian() const { return !BigEndian; }
    218   bool isBigEndian() const { return BigEndian; }
    219 
    220   /// \brief Returns the string representation of the DataLayout.
    221   ///
    222   /// This representation is in the same format accepted by the string
    223   /// constructor above. This should not be used to compare two DataLayout as
    224   /// different string can represent the same layout.
    225   const std::string &getStringRepresentation() const {
    226     return StringRepresentation;
    227   }
    228 
    229   /// \brief Test if the DataLayout was constructed from an empty string.
    230   bool isDefault() const { return StringRepresentation.empty(); }
    231 
    232   /// \brief Returns true if the specified type is known to be a native integer
    233   /// type supported by the CPU.
    234   ///
    235   /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
    236   /// on any known one. This returns false if the integer width is not legal.
    237   ///
    238   /// The width is specified in bits.
    239   bool isLegalInteger(unsigned Width) const {
    240     for (unsigned LegalIntWidth : LegalIntWidths)
    241       if (LegalIntWidth == Width)
    242         return true;
    243     return false;
    244   }
    245 
    246   bool isIllegalInteger(unsigned Width) const { return !isLegalInteger(Width); }
    247 
    248   /// Returns true if the given alignment exceeds the natural stack alignment.
    249   bool exceedsNaturalStackAlignment(unsigned Align) const {
    250     return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
    251   }
    252 
    253   unsigned getStackAlignment() const { return StackNaturalAlign; }
    254 
    255   bool hasMicrosoftFastStdCallMangling() const {
    256     return ManglingMode == MM_WinCOFFX86;
    257   }
    258 
    259   bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
    260 
    261   const char *getLinkerPrivateGlobalPrefix() const {
    262     if (ManglingMode == MM_MachO)
    263       return "l";
    264     return "";
    265   }
    266 
    267   char getGlobalPrefix() const {
    268     switch (ManglingMode) {
    269     case MM_None:
    270     case MM_ELF:
    271     case MM_Mips:
    272     case MM_WinCOFF:
    273       return '\0';
    274     case MM_MachO:
    275     case MM_WinCOFFX86:
    276       return '_';
    277     }
    278     llvm_unreachable("invalid mangling mode");
    279   }
    280 
    281   const char *getPrivateGlobalPrefix() const {
    282     switch (ManglingMode) {
    283     case MM_None:
    284       return "";
    285     case MM_ELF:
    286       return ".L";
    287     case MM_Mips:
    288       return "$";
    289     case MM_MachO:
    290     case MM_WinCOFF:
    291     case MM_WinCOFFX86:
    292       return "L";
    293     }
    294     llvm_unreachable("invalid mangling mode");
    295   }
    296 
    297   static const char *getManglingComponent(const Triple &T);
    298 
    299   /// \brief Returns true if the specified type fits in a native integer type
    300   /// supported by the CPU.
    301   ///
    302   /// For example, if the CPU only supports i32 as a native integer type, then
    303   /// i27 fits in a legal integer type but i45 does not.
    304   bool fitsInLegalInteger(unsigned Width) const {
    305     for (unsigned LegalIntWidth : LegalIntWidths)
    306       if (Width <= LegalIntWidth)
    307         return true;
    308     return false;
    309   }
    310 
    311   /// Layout pointer alignment
    312   /// FIXME: The defaults need to be removed once all of
    313   /// the backends/clients are updated.
    314   unsigned getPointerABIAlignment(unsigned AS = 0) const;
    315 
    316   /// Return target's alignment for stack-based pointers
    317   /// FIXME: The defaults need to be removed once all of
    318   /// the backends/clients are updated.
    319   unsigned getPointerPrefAlignment(unsigned AS = 0) const;
    320 
    321   /// Layout pointer size
    322   /// FIXME: The defaults need to be removed once all of
    323   /// the backends/clients are updated.
    324   unsigned getPointerSize(unsigned AS = 0) const;
    325 
    326   /// Layout pointer size, in bits
    327   /// FIXME: The defaults need to be removed once all of
    328   /// the backends/clients are updated.
    329   unsigned getPointerSizeInBits(unsigned AS = 0) const {
    330     return getPointerSize(AS) * 8;
    331   }
    332 
    333   /// Layout pointer size, in bits, based on the type.  If this function is
    334   /// called with a pointer type, then the type size of the pointer is returned.
    335   /// If this function is called with a vector of pointers, then the type size
    336   /// of the pointer is returned.  This should only be called with a pointer or
    337   /// vector of pointers.
    338   unsigned getPointerTypeSizeInBits(Type *) const;
    339 
    340   unsigned getPointerTypeSize(Type *Ty) const {
    341     return getPointerTypeSizeInBits(Ty) / 8;
    342   }
    343 
    344   /// Size examples:
    345   ///
    346   /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
    347   /// ----        ----------  ---------------  ---------------
    348   ///  i1            1           8                8
    349   ///  i8            8           8                8
    350   ///  i19          19          24               32
    351   ///  i32          32          32               32
    352   ///  i100        100         104              128
    353   ///  i128        128         128              128
    354   ///  Float        32          32               32
    355   ///  Double       64          64               64
    356   ///  X86_FP80     80          80               96
    357   ///
    358   /// [*] The alloc size depends on the alignment, and thus on the target.
    359   ///     These values are for x86-32 linux.
    360 
    361   /// \brief Returns the number of bits necessary to hold the specified type.
    362   ///
    363   /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
    364   /// have a size (Type::isSized() must return true).
    365   uint64_t getTypeSizeInBits(Type *Ty) const;
    366 
    367   /// \brief Returns the maximum number of bytes that may be overwritten by
    368   /// storing the specified type.
    369   ///
    370   /// For example, returns 5 for i36 and 10 for x86_fp80.
    371   uint64_t getTypeStoreSize(Type *Ty) const {
    372     return (getTypeSizeInBits(Ty) + 7) / 8;
    373   }
    374 
    375   /// \brief Returns the maximum number of bits that may be overwritten by
    376   /// storing the specified type; always a multiple of 8.
    377   ///
    378   /// For example, returns 40 for i36 and 80 for x86_fp80.
    379   uint64_t getTypeStoreSizeInBits(Type *Ty) const {
    380     return 8 * getTypeStoreSize(Ty);
    381   }
    382 
    383   /// \brief Returns the offset in bytes between successive objects of the
    384   /// specified type, including alignment padding.
    385   ///
    386   /// This is the amount that alloca reserves for this type. For example,
    387   /// returns 12 or 16 for x86_fp80, depending on alignment.
    388   uint64_t getTypeAllocSize(Type *Ty) const {
    389     // Round up to the next alignment boundary.
    390     return RoundUpToAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
    391   }
    392 
    393   /// \brief Returns the offset in bits between successive objects of the
    394   /// specified type, including alignment padding; always a multiple of 8.
    395   ///
    396   /// This is the amount that alloca reserves for this type. For example,
    397   /// returns 96 or 128 for x86_fp80, depending on alignment.
    398   uint64_t getTypeAllocSizeInBits(Type *Ty) const {
    399     return 8 * getTypeAllocSize(Ty);
    400   }
    401 
    402   /// \brief Returns the minimum ABI-required alignment for the specified type.
    403   unsigned getABITypeAlignment(Type *Ty) const;
    404 
    405   /// \brief Returns the minimum ABI-required alignment for an integer type of
    406   /// the specified bitwidth.
    407   unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
    408 
    409   /// \brief Returns the preferred stack/global alignment for the specified
    410   /// type.
    411   ///
    412   /// This is always at least as good as the ABI alignment.
    413   unsigned getPrefTypeAlignment(Type *Ty) const;
    414 
    415   /// \brief Returns the preferred alignment for the specified type, returned as
    416   /// log2 of the value (a shift amount).
    417   unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
    418 
    419   /// \brief Returns an integer type with size at least as big as that of a
    420   /// pointer in the given address space.
    421   IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
    422 
    423   /// \brief Returns an integer (vector of integer) type with size at least as
    424   /// big as that of a pointer of the given pointer (vector of pointer) type.
    425   Type *getIntPtrType(Type *) const;
    426 
    427   /// \brief Returns the smallest integer type with size at least as big as
    428   /// Width bits.
    429   Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
    430 
    431   /// \brief Returns the largest legal integer type, or null if none are set.
    432   Type *getLargestLegalIntType(LLVMContext &C) const {
    433     unsigned LargestSize = getLargestLegalIntTypeSize();
    434     return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
    435   }
    436 
    437   /// \brief Returns the size of largest legal integer type size, or 0 if none
    438   /// are set.
    439   unsigned getLargestLegalIntTypeSize() const;
    440 
    441   /// \brief Returns the offset from the beginning of the type for the specified
    442   /// indices.
    443   ///
    444   /// This is used to implement getelementptr.
    445   uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
    446 
    447   /// \brief Returns a StructLayout object, indicating the alignment of the
    448   /// struct, its size, and the offsets of its fields.
    449   ///
    450   /// Note that this information is lazily cached.
    451   const StructLayout *getStructLayout(StructType *Ty) const;
    452 
    453   /// \brief Returns the preferred alignment of the specified global.
    454   ///
    455   /// This includes an explicitly requested alignment (if the global has one).
    456   unsigned getPreferredAlignment(const GlobalVariable *GV) const;
    457 
    458   /// \brief Returns the preferred alignment of the specified global, returned
    459   /// in log form.
    460   ///
    461   /// This includes an explicitly requested alignment (if the global has one).
    462   unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
    463 };
    464 
    465 inline DataLayout *unwrap(LLVMTargetDataRef P) {
    466   return reinterpret_cast<DataLayout *>(P);
    467 }
    468 
    469 inline LLVMTargetDataRef wrap(const DataLayout *P) {
    470   return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
    471 }
    472 
    473 /// Used to lazily calculate structure layout information for a target machine,
    474 /// based on the DataLayout structure.
    475 class StructLayout {
    476   uint64_t StructSize;
    477   unsigned StructAlignment;
    478   bool IsPadded : 1;
    479   unsigned NumElements : 31;
    480   uint64_t MemberOffsets[1]; // variable sized array!
    481 public:
    482   uint64_t getSizeInBytes() const { return StructSize; }
    483 
    484   uint64_t getSizeInBits() const { return 8 * StructSize; }
    485 
    486   unsigned getAlignment() const { return StructAlignment; }
    487 
    488   /// Returns whether the struct has padding or not between its fields.
    489   /// NB: Padding in nested element is not taken into account.
    490   bool hasPadding() const { return IsPadded; }
    491 
    492   /// \brief Given a valid byte offset into the structure, returns the structure
    493   /// index that contains it.
    494   unsigned getElementContainingOffset(uint64_t Offset) const;
    495 
    496   uint64_t getElementOffset(unsigned Idx) const {
    497     assert(Idx < NumElements && "Invalid element idx!");
    498     return MemberOffsets[Idx];
    499   }
    500 
    501   uint64_t getElementOffsetInBits(unsigned Idx) const {
    502     return getElementOffset(Idx) * 8;
    503   }
    504 
    505 private:
    506   friend class DataLayout; // Only DataLayout can create this class
    507   StructLayout(StructType *ST, const DataLayout &DL);
    508 };
    509 
    510 // The implementation of this method is provided inline as it is particularly
    511 // well suited to constant folding when called on a specific Type subclass.
    512 inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
    513   assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
    514   switch (Ty->getTypeID()) {
    515   case Type::LabelTyID:
    516     return getPointerSizeInBits(0);
    517   case Type::PointerTyID:
    518     return getPointerSizeInBits(Ty->getPointerAddressSpace());
    519   case Type::ArrayTyID: {
    520     ArrayType *ATy = cast<ArrayType>(Ty);
    521     return ATy->getNumElements() *
    522            getTypeAllocSizeInBits(ATy->getElementType());
    523   }
    524   case Type::StructTyID:
    525     // Get the layout annotation... which is lazily created on demand.
    526     return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
    527   case Type::IntegerTyID:
    528     return Ty->getIntegerBitWidth();
    529   case Type::HalfTyID:
    530     return 16;
    531   case Type::FloatTyID:
    532     return 32;
    533   case Type::DoubleTyID:
    534   case Type::X86_MMXTyID:
    535     return 64;
    536   case Type::PPC_FP128TyID:
    537   case Type::FP128TyID:
    538     return 128;
    539   // In memory objects this is always aligned to a higher boundary, but
    540   // only 80 bits contain information.
    541   case Type::X86_FP80TyID:
    542     return 80;
    543   case Type::VectorTyID: {
    544     VectorType *VTy = cast<VectorType>(Ty);
    545     return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
    546   }
    547   default:
    548     llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
    549   }
    550 }
    551 
    552 } // End llvm namespace
    553 
    554 #endif
    555