Home | History | Annotate | Download | only in IR
      1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements simple dominator construction algorithms for finding
     11 // forward dominators.  Postdominators are available in libanalysis, but are not
     12 // included in libvmcore, because it's not needed.  Forward dominators are
     13 // needed to support the Verifier pass.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "llvm/IR/Dominators.h"
     18 #include "llvm/ADT/DepthFirstIterator.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/IR/CFG.h"
     22 #include "llvm/IR/Instructions.h"
     23 #include "llvm/IR/PassManager.h"
     24 #include "llvm/Support/CommandLine.h"
     25 #include "llvm/Support/Compiler.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Support/GenericDomTreeConstruction.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 #include <algorithm>
     30 using namespace llvm;
     31 
     32 // Always verify dominfo if expensive checking is enabled.
     33 #ifdef XDEBUG
     34 static bool VerifyDomInfo = true;
     35 #else
     36 static bool VerifyDomInfo = false;
     37 #endif
     38 static cl::opt<bool,true>
     39 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
     40                cl::desc("Verify dominator info (time consuming)"));
     41 
     42 bool BasicBlockEdge::isSingleEdge() const {
     43   const TerminatorInst *TI = Start->getTerminator();
     44   unsigned NumEdgesToEnd = 0;
     45   for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
     46     if (TI->getSuccessor(i) == End)
     47       ++NumEdgesToEnd;
     48     if (NumEdgesToEnd >= 2)
     49       return false;
     50   }
     51   assert(NumEdgesToEnd == 1);
     52   return true;
     53 }
     54 
     55 //===----------------------------------------------------------------------===//
     56 //  DominatorTree Implementation
     57 //===----------------------------------------------------------------------===//
     58 //
     59 // Provide public access to DominatorTree information.  Implementation details
     60 // can be found in Dominators.h, GenericDomTree.h, and
     61 // GenericDomTreeConstruction.h.
     62 //
     63 //===----------------------------------------------------------------------===//
     64 
     65 template class llvm::DomTreeNodeBase<BasicBlock>;
     66 template class llvm::DominatorTreeBase<BasicBlock>;
     67 
     68 template void llvm::Calculate<Function, BasicBlock *>(
     69     DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT, Function &F);
     70 template void llvm::Calculate<Function, Inverse<BasicBlock *>>(
     71     DominatorTreeBase<GraphTraits<Inverse<BasicBlock *>>::NodeType> &DT,
     72     Function &F);
     73 
     74 // dominates - Return true if Def dominates a use in User. This performs
     75 // the special checks necessary if Def and User are in the same basic block.
     76 // Note that Def doesn't dominate a use in Def itself!
     77 bool DominatorTree::dominates(const Instruction *Def,
     78                               const Instruction *User) const {
     79   const BasicBlock *UseBB = User->getParent();
     80   const BasicBlock *DefBB = Def->getParent();
     81 
     82   // Any unreachable use is dominated, even if Def == User.
     83   if (!isReachableFromEntry(UseBB))
     84     return true;
     85 
     86   // Unreachable definitions don't dominate anything.
     87   if (!isReachableFromEntry(DefBB))
     88     return false;
     89 
     90   // An instruction doesn't dominate a use in itself.
     91   if (Def == User)
     92     return false;
     93 
     94   // The value defined by an invoke dominates an instruction only if it
     95   // dominates every instruction in UseBB.
     96   // A PHI is dominated only if the instruction dominates every possible use in
     97   // the UseBB.
     98   if (isa<InvokeInst>(Def) || isa<PHINode>(User))
     99     return dominates(Def, UseBB);
    100 
    101   if (DefBB != UseBB)
    102     return dominates(DefBB, UseBB);
    103 
    104   // Loop through the basic block until we find Def or User.
    105   BasicBlock::const_iterator I = DefBB->begin();
    106   for (; &*I != Def && &*I != User; ++I)
    107     /*empty*/;
    108 
    109   return &*I == Def;
    110 }
    111 
    112 // true if Def would dominate a use in any instruction in UseBB.
    113 // note that dominates(Def, Def->getParent()) is false.
    114 bool DominatorTree::dominates(const Instruction *Def,
    115                               const BasicBlock *UseBB) const {
    116   const BasicBlock *DefBB = Def->getParent();
    117 
    118   // Any unreachable use is dominated, even if DefBB == UseBB.
    119   if (!isReachableFromEntry(UseBB))
    120     return true;
    121 
    122   // Unreachable definitions don't dominate anything.
    123   if (!isReachableFromEntry(DefBB))
    124     return false;
    125 
    126   if (DefBB == UseBB)
    127     return false;
    128 
    129   // Invoke results are only usable in the normal destination, not in the
    130   // exceptional destination.
    131   if (const auto *II = dyn_cast<InvokeInst>(Def)) {
    132     BasicBlock *NormalDest = II->getNormalDest();
    133     BasicBlockEdge E(DefBB, NormalDest);
    134     return dominates(E, UseBB);
    135   }
    136 
    137   return dominates(DefBB, UseBB);
    138 }
    139 
    140 bool DominatorTree::dominates(const BasicBlockEdge &BBE,
    141                               const BasicBlock *UseBB) const {
    142   // Assert that we have a single edge. We could handle them by simply
    143   // returning false, but since isSingleEdge is linear on the number of
    144   // edges, the callers can normally handle them more efficiently.
    145   assert(BBE.isSingleEdge() &&
    146          "This function is not efficient in handling multiple edges");
    147 
    148   // If the BB the edge ends in doesn't dominate the use BB, then the
    149   // edge also doesn't.
    150   const BasicBlock *Start = BBE.getStart();
    151   const BasicBlock *End = BBE.getEnd();
    152   if (!dominates(End, UseBB))
    153     return false;
    154 
    155   // Simple case: if the end BB has a single predecessor, the fact that it
    156   // dominates the use block implies that the edge also does.
    157   if (End->getSinglePredecessor())
    158     return true;
    159 
    160   // The normal edge from the invoke is critical. Conceptually, what we would
    161   // like to do is split it and check if the new block dominates the use.
    162   // With X being the new block, the graph would look like:
    163   //
    164   //        DefBB
    165   //          /\      .  .
    166   //         /  \     .  .
    167   //        /    \    .  .
    168   //       /      \   |  |
    169   //      A        X  B  C
    170   //      |         \ | /
    171   //      .          \|/
    172   //      .      NormalDest
    173   //      .
    174   //
    175   // Given the definition of dominance, NormalDest is dominated by X iff X
    176   // dominates all of NormalDest's predecessors (X, B, C in the example). X
    177   // trivially dominates itself, so we only have to find if it dominates the
    178   // other predecessors. Since the only way out of X is via NormalDest, X can
    179   // only properly dominate a node if NormalDest dominates that node too.
    180   for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
    181        PI != E; ++PI) {
    182     const BasicBlock *BB = *PI;
    183     if (BB == Start)
    184       continue;
    185 
    186     if (!dominates(End, BB))
    187       return false;
    188   }
    189   return true;
    190 }
    191 
    192 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
    193   // Assert that we have a single edge. We could handle them by simply
    194   // returning false, but since isSingleEdge is linear on the number of
    195   // edges, the callers can normally handle them more efficiently.
    196   assert(BBE.isSingleEdge() &&
    197          "This function is not efficient in handling multiple edges");
    198 
    199   Instruction *UserInst = cast<Instruction>(U.getUser());
    200   // A PHI in the end of the edge is dominated by it.
    201   PHINode *PN = dyn_cast<PHINode>(UserInst);
    202   if (PN && PN->getParent() == BBE.getEnd() &&
    203       PN->getIncomingBlock(U) == BBE.getStart())
    204     return true;
    205 
    206   // Otherwise use the edge-dominates-block query, which
    207   // handles the crazy critical edge cases properly.
    208   const BasicBlock *UseBB;
    209   if (PN)
    210     UseBB = PN->getIncomingBlock(U);
    211   else
    212     UseBB = UserInst->getParent();
    213   return dominates(BBE, UseBB);
    214 }
    215 
    216 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
    217   Instruction *UserInst = cast<Instruction>(U.getUser());
    218   const BasicBlock *DefBB = Def->getParent();
    219 
    220   // Determine the block in which the use happens. PHI nodes use
    221   // their operands on edges; simulate this by thinking of the use
    222   // happening at the end of the predecessor block.
    223   const BasicBlock *UseBB;
    224   if (PHINode *PN = dyn_cast<PHINode>(UserInst))
    225     UseBB = PN->getIncomingBlock(U);
    226   else
    227     UseBB = UserInst->getParent();
    228 
    229   // Any unreachable use is dominated, even if Def == User.
    230   if (!isReachableFromEntry(UseBB))
    231     return true;
    232 
    233   // Unreachable definitions don't dominate anything.
    234   if (!isReachableFromEntry(DefBB))
    235     return false;
    236 
    237   // Invoke instructions define their return values on the edges to their normal
    238   // successors, so we have to handle them specially.
    239   // Among other things, this means they don't dominate anything in
    240   // their own block, except possibly a phi, so we don't need to
    241   // walk the block in any case.
    242   if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
    243     BasicBlock *NormalDest = II->getNormalDest();
    244     BasicBlockEdge E(DefBB, NormalDest);
    245     return dominates(E, U);
    246   }
    247 
    248   // If the def and use are in different blocks, do a simple CFG dominator
    249   // tree query.
    250   if (DefBB != UseBB)
    251     return dominates(DefBB, UseBB);
    252 
    253   // Ok, def and use are in the same block. If the def is an invoke, it
    254   // doesn't dominate anything in the block. If it's a PHI, it dominates
    255   // everything in the block.
    256   if (isa<PHINode>(UserInst))
    257     return true;
    258 
    259   // Otherwise, just loop through the basic block until we find Def or User.
    260   BasicBlock::const_iterator I = DefBB->begin();
    261   for (; &*I != Def && &*I != UserInst; ++I)
    262     /*empty*/;
    263 
    264   return &*I != UserInst;
    265 }
    266 
    267 bool DominatorTree::isReachableFromEntry(const Use &U) const {
    268   Instruction *I = dyn_cast<Instruction>(U.getUser());
    269 
    270   // ConstantExprs aren't really reachable from the entry block, but they
    271   // don't need to be treated like unreachable code either.
    272   if (!I) return true;
    273 
    274   // PHI nodes use their operands on their incoming edges.
    275   if (PHINode *PN = dyn_cast<PHINode>(I))
    276     return isReachableFromEntry(PN->getIncomingBlock(U));
    277 
    278   // Everything else uses their operands in their own block.
    279   return isReachableFromEntry(I->getParent());
    280 }
    281 
    282 void DominatorTree::verifyDomTree() const {
    283   Function &F = *getRoot()->getParent();
    284 
    285   DominatorTree OtherDT;
    286   OtherDT.recalculate(F);
    287   if (compare(OtherDT)) {
    288     errs() << "DominatorTree is not up to date!\nComputed:\n";
    289     print(errs());
    290     errs() << "\nActual:\n";
    291     OtherDT.print(errs());
    292     abort();
    293   }
    294 }
    295 
    296 //===----------------------------------------------------------------------===//
    297 //  DominatorTreeAnalysis and related pass implementations
    298 //===----------------------------------------------------------------------===//
    299 //
    300 // This implements the DominatorTreeAnalysis which is used with the new pass
    301 // manager. It also implements some methods from utility passes.
    302 //
    303 //===----------------------------------------------------------------------===//
    304 
    305 DominatorTree DominatorTreeAnalysis::run(Function &F) {
    306   DominatorTree DT;
    307   DT.recalculate(F);
    308   return DT;
    309 }
    310 
    311 char DominatorTreeAnalysis::PassID;
    312 
    313 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
    314 
    315 PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
    316                                                 FunctionAnalysisManager *AM) {
    317   OS << "DominatorTree for function: " << F.getName() << "\n";
    318   AM->getResult<DominatorTreeAnalysis>(F).print(OS);
    319 
    320   return PreservedAnalyses::all();
    321 }
    322 
    323 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
    324                                                  FunctionAnalysisManager *AM) {
    325   AM->getResult<DominatorTreeAnalysis>(F).verifyDomTree();
    326 
    327   return PreservedAnalyses::all();
    328 }
    329 
    330 //===----------------------------------------------------------------------===//
    331 //  DominatorTreeWrapperPass Implementation
    332 //===----------------------------------------------------------------------===//
    333 //
    334 // The implementation details of the wrapper pass that holds a DominatorTree
    335 // suitable for use with the legacy pass manager.
    336 //
    337 //===----------------------------------------------------------------------===//
    338 
    339 char DominatorTreeWrapperPass::ID = 0;
    340 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
    341                 "Dominator Tree Construction", true, true)
    342 
    343 bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
    344   DT.recalculate(F);
    345   return false;
    346 }
    347 
    348 void DominatorTreeWrapperPass::verifyAnalysis() const {
    349     if (VerifyDomInfo)
    350       DT.verifyDomTree();
    351 }
    352 
    353 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
    354   DT.print(OS);
    355 }
    356 
    357