1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief This file implements a class to represent arbitrary precision 12 /// integral constant values and operations on them. 13 /// 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_ADT_APINT_H 17 #define LLVM_ADT_APINT_H 18 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/Support/Compiler.h" 21 #include "llvm/Support/MathExtras.h" 22 #include <cassert> 23 #include <climits> 24 #include <cstring> 25 #include <string> 26 27 namespace llvm { 28 class FoldingSetNodeID; 29 class StringRef; 30 class hash_code; 31 class raw_ostream; 32 33 template <typename T> class SmallVectorImpl; 34 35 // An unsigned host type used as a single part of a multi-part 36 // bignum. 37 typedef uint64_t integerPart; 38 39 const unsigned int host_char_bit = 8; 40 const unsigned int integerPartWidth = 41 host_char_bit * static_cast<unsigned int>(sizeof(integerPart)); 42 43 //===----------------------------------------------------------------------===// 44 // APInt Class 45 //===----------------------------------------------------------------------===// 46 47 /// \brief Class for arbitrary precision integers. 48 /// 49 /// APInt is a functional replacement for common case unsigned integer type like 50 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width 51 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more 52 /// than 64-bits of precision. APInt provides a variety of arithmetic operators 53 /// and methods to manipulate integer values of any bit-width. It supports both 54 /// the typical integer arithmetic and comparison operations as well as bitwise 55 /// manipulation. 56 /// 57 /// The class has several invariants worth noting: 58 /// * All bit, byte, and word positions are zero-based. 59 /// * Once the bit width is set, it doesn't change except by the Truncate, 60 /// SignExtend, or ZeroExtend operations. 61 /// * All binary operators must be on APInt instances of the same bit width. 62 /// Attempting to use these operators on instances with different bit 63 /// widths will yield an assertion. 64 /// * The value is stored canonically as an unsigned value. For operations 65 /// where it makes a difference, there are both signed and unsigned variants 66 /// of the operation. For example, sdiv and udiv. However, because the bit 67 /// widths must be the same, operations such as Mul and Add produce the same 68 /// results regardless of whether the values are interpreted as signed or 69 /// not. 70 /// * In general, the class tries to follow the style of computation that LLVM 71 /// uses in its IR. This simplifies its use for LLVM. 72 /// 73 class APInt { 74 unsigned BitWidth; ///< The number of bits in this APInt. 75 76 /// This union is used to store the integer value. When the 77 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. 78 union { 79 uint64_t VAL; ///< Used to store the <= 64 bits integer value. 80 uint64_t *pVal; ///< Used to store the >64 bits integer value. 81 }; 82 83 /// This enum is used to hold the constants we needed for APInt. 84 enum { 85 /// Bits in a word 86 APINT_BITS_PER_WORD = 87 static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT, 88 /// Byte size of a word 89 APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t)) 90 }; 91 92 friend struct DenseMapAPIntKeyInfo; 93 94 /// \brief Fast internal constructor 95 /// 96 /// This constructor is used only internally for speed of construction of 97 /// temporaries. It is unsafe for general use so it is not public. 98 APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {} 99 100 /// \brief Determine if this APInt just has one word to store value. 101 /// 102 /// \returns true if the number of bits <= 64, false otherwise. 103 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } 104 105 /// \brief Determine which word a bit is in. 106 /// 107 /// \returns the word position for the specified bit position. 108 static unsigned whichWord(unsigned bitPosition) { 109 return bitPosition / APINT_BITS_PER_WORD; 110 } 111 112 /// \brief Determine which bit in a word a bit is in. 113 /// 114 /// \returns the bit position in a word for the specified bit position 115 /// in the APInt. 116 static unsigned whichBit(unsigned bitPosition) { 117 return bitPosition % APINT_BITS_PER_WORD; 118 } 119 120 /// \brief Get a single bit mask. 121 /// 122 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set 123 /// This method generates and returns a uint64_t (word) mask for a single 124 /// bit at a specific bit position. This is used to mask the bit in the 125 /// corresponding word. 126 static uint64_t maskBit(unsigned bitPosition) { 127 return 1ULL << whichBit(bitPosition); 128 } 129 130 /// \brief Clear unused high order bits 131 /// 132 /// This method is used internally to clear the top "N" bits in the high order 133 /// word that are not used by the APInt. This is needed after the most 134 /// significant word is assigned a value to ensure that those bits are 135 /// zero'd out. 136 APInt &clearUnusedBits() { 137 // Compute how many bits are used in the final word 138 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD; 139 if (wordBits == 0) 140 // If all bits are used, we want to leave the value alone. This also 141 // avoids the undefined behavior of >> when the shift is the same size as 142 // the word size (64). 143 return *this; 144 145 // Mask out the high bits. 146 uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits); 147 if (isSingleWord()) 148 VAL &= mask; 149 else 150 pVal[getNumWords() - 1] &= mask; 151 return *this; 152 } 153 154 /// \brief Get the word corresponding to a bit position 155 /// \returns the corresponding word for the specified bit position. 156 uint64_t getWord(unsigned bitPosition) const { 157 return isSingleWord() ? VAL : pVal[whichWord(bitPosition)]; 158 } 159 160 /// \brief Convert a char array into an APInt 161 /// 162 /// \param radix 2, 8, 10, 16, or 36 163 /// Converts a string into a number. The string must be non-empty 164 /// and well-formed as a number of the given base. The bit-width 165 /// must be sufficient to hold the result. 166 /// 167 /// This is used by the constructors that take string arguments. 168 /// 169 /// StringRef::getAsInteger is superficially similar but (1) does 170 /// not assume that the string is well-formed and (2) grows the 171 /// result to hold the input. 172 void fromString(unsigned numBits, StringRef str, uint8_t radix); 173 174 /// \brief An internal division function for dividing APInts. 175 /// 176 /// This is used by the toString method to divide by the radix. It simply 177 /// provides a more convenient form of divide for internal use since KnuthDiv 178 /// has specific constraints on its inputs. If those constraints are not met 179 /// then it provides a simpler form of divide. 180 static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS, 181 unsigned rhsWords, APInt *Quotient, APInt *Remainder); 182 183 /// out-of-line slow case for inline constructor 184 void initSlowCase(unsigned numBits, uint64_t val, bool isSigned); 185 186 /// shared code between two array constructors 187 void initFromArray(ArrayRef<uint64_t> array); 188 189 /// out-of-line slow case for inline copy constructor 190 void initSlowCase(const APInt &that); 191 192 /// out-of-line slow case for shl 193 APInt shlSlowCase(unsigned shiftAmt) const; 194 195 /// out-of-line slow case for operator& 196 APInt AndSlowCase(const APInt &RHS) const; 197 198 /// out-of-line slow case for operator| 199 APInt OrSlowCase(const APInt &RHS) const; 200 201 /// out-of-line slow case for operator^ 202 APInt XorSlowCase(const APInt &RHS) const; 203 204 /// out-of-line slow case for operator= 205 APInt &AssignSlowCase(const APInt &RHS); 206 207 /// out-of-line slow case for operator== 208 bool EqualSlowCase(const APInt &RHS) const; 209 210 /// out-of-line slow case for operator== 211 bool EqualSlowCase(uint64_t Val) const; 212 213 /// out-of-line slow case for countLeadingZeros 214 unsigned countLeadingZerosSlowCase() const; 215 216 /// out-of-line slow case for countTrailingOnes 217 unsigned countTrailingOnesSlowCase() const; 218 219 /// out-of-line slow case for countPopulation 220 unsigned countPopulationSlowCase() const; 221 222 public: 223 /// \name Constructors 224 /// @{ 225 226 /// \brief Create a new APInt of numBits width, initialized as val. 227 /// 228 /// If isSigned is true then val is treated as if it were a signed value 229 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width 230 /// will be done. Otherwise, no sign extension occurs (high order bits beyond 231 /// the range of val are zero filled). 232 /// 233 /// \param numBits the bit width of the constructed APInt 234 /// \param val the initial value of the APInt 235 /// \param isSigned how to treat signedness of val 236 APInt(unsigned numBits, uint64_t val, bool isSigned = false) 237 : BitWidth(numBits), VAL(0) { 238 assert(BitWidth && "bitwidth too small"); 239 if (isSingleWord()) 240 VAL = val; 241 else 242 initSlowCase(numBits, val, isSigned); 243 clearUnusedBits(); 244 } 245 246 /// \brief Construct an APInt of numBits width, initialized as bigVal[]. 247 /// 248 /// Note that bigVal.size() can be smaller or larger than the corresponding 249 /// bit width but any extraneous bits will be dropped. 250 /// 251 /// \param numBits the bit width of the constructed APInt 252 /// \param bigVal a sequence of words to form the initial value of the APInt 253 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); 254 255 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but 256 /// deprecated because this constructor is prone to ambiguity with the 257 /// APInt(unsigned, uint64_t, bool) constructor. 258 /// 259 /// If this overload is ever deleted, care should be taken to prevent calls 260 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) 261 /// constructor. 262 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); 263 264 /// \brief Construct an APInt from a string representation. 265 /// 266 /// This constructor interprets the string \p str in the given radix. The 267 /// interpretation stops when the first character that is not suitable for the 268 /// radix is encountered, or the end of the string. Acceptable radix values 269 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the 270 /// string to require more bits than numBits. 271 /// 272 /// \param numBits the bit width of the constructed APInt 273 /// \param str the string to be interpreted 274 /// \param radix the radix to use for the conversion 275 APInt(unsigned numBits, StringRef str, uint8_t radix); 276 277 /// Simply makes *this a copy of that. 278 /// @brief Copy Constructor. 279 APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) { 280 if (isSingleWord()) 281 VAL = that.VAL; 282 else 283 initSlowCase(that); 284 } 285 286 /// \brief Move Constructor. 287 APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) { 288 that.BitWidth = 0; 289 } 290 291 /// \brief Destructor. 292 ~APInt() { 293 if (needsCleanup()) 294 delete[] pVal; 295 } 296 297 /// \brief Default constructor that creates an uninteresting APInt 298 /// representing a 1-bit zero value. 299 /// 300 /// This is useful for object deserialization (pair this with the static 301 /// method Read). 302 explicit APInt() : BitWidth(1), VAL(0) {} 303 304 /// \brief Returns whether this instance allocated memory. 305 bool needsCleanup() const { return !isSingleWord(); } 306 307 /// Used to insert APInt objects, or objects that contain APInt objects, into 308 /// FoldingSets. 309 void Profile(FoldingSetNodeID &id) const; 310 311 /// @} 312 /// \name Value Tests 313 /// @{ 314 315 /// \brief Determine sign of this APInt. 316 /// 317 /// This tests the high bit of this APInt to determine if it is set. 318 /// 319 /// \returns true if this APInt is negative, false otherwise 320 bool isNegative() const { return (*this)[BitWidth - 1]; } 321 322 /// \brief Determine if this APInt Value is non-negative (>= 0) 323 /// 324 /// This tests the high bit of the APInt to determine if it is unset. 325 bool isNonNegative() const { return !isNegative(); } 326 327 /// \brief Determine if this APInt Value is positive. 328 /// 329 /// This tests if the value of this APInt is positive (> 0). Note 330 /// that 0 is not a positive value. 331 /// 332 /// \returns true if this APInt is positive. 333 bool isStrictlyPositive() const { return isNonNegative() && !!*this; } 334 335 /// \brief Determine if all bits are set 336 /// 337 /// This checks to see if the value has all bits of the APInt are set or not. 338 bool isAllOnesValue() const { 339 if (isSingleWord()) 340 return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth); 341 return countPopulationSlowCase() == BitWidth; 342 } 343 344 /// \brief Determine if this is the largest unsigned value. 345 /// 346 /// This checks to see if the value of this APInt is the maximum unsigned 347 /// value for the APInt's bit width. 348 bool isMaxValue() const { return isAllOnesValue(); } 349 350 /// \brief Determine if this is the largest signed value. 351 /// 352 /// This checks to see if the value of this APInt is the maximum signed 353 /// value for the APInt's bit width. 354 bool isMaxSignedValue() const { 355 return !isNegative() && countPopulation() == BitWidth - 1; 356 } 357 358 /// \brief Determine if this is the smallest unsigned value. 359 /// 360 /// This checks to see if the value of this APInt is the minimum unsigned 361 /// value for the APInt's bit width. 362 bool isMinValue() const { return !*this; } 363 364 /// \brief Determine if this is the smallest signed value. 365 /// 366 /// This checks to see if the value of this APInt is the minimum signed 367 /// value for the APInt's bit width. 368 bool isMinSignedValue() const { 369 return isNegative() && isPowerOf2(); 370 } 371 372 /// \brief Check if this APInt has an N-bits unsigned integer value. 373 bool isIntN(unsigned N) const { 374 assert(N && "N == 0 ???"); 375 return getActiveBits() <= N; 376 } 377 378 /// \brief Check if this APInt has an N-bits signed integer value. 379 bool isSignedIntN(unsigned N) const { 380 assert(N && "N == 0 ???"); 381 return getMinSignedBits() <= N; 382 } 383 384 /// \brief Check if this APInt's value is a power of two greater than zero. 385 /// 386 /// \returns true if the argument APInt value is a power of two > 0. 387 bool isPowerOf2() const { 388 if (isSingleWord()) 389 return isPowerOf2_64(VAL); 390 return countPopulationSlowCase() == 1; 391 } 392 393 /// \brief Check if the APInt's value is returned by getSignBit. 394 /// 395 /// \returns true if this is the value returned by getSignBit. 396 bool isSignBit() const { return isMinSignedValue(); } 397 398 /// \brief Convert APInt to a boolean value. 399 /// 400 /// This converts the APInt to a boolean value as a test against zero. 401 bool getBoolValue() const { return !!*this; } 402 403 /// If this value is smaller than the specified limit, return it, otherwise 404 /// return the limit value. This causes the value to saturate to the limit. 405 uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { 406 return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit 407 : getZExtValue(); 408 } 409 410 /// \brief Check if the APInt consists of a repeated bit pattern. 411 /// 412 /// e.g. 0x01010101 satisfies isSplat(8). 413 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit 414 /// width without remainder. 415 bool isSplat(unsigned SplatSizeInBits) const; 416 417 /// @} 418 /// \name Value Generators 419 /// @{ 420 421 /// \brief Gets maximum unsigned value of APInt for specific bit width. 422 static APInt getMaxValue(unsigned numBits) { 423 return getAllOnesValue(numBits); 424 } 425 426 /// \brief Gets maximum signed value of APInt for a specific bit width. 427 static APInt getSignedMaxValue(unsigned numBits) { 428 APInt API = getAllOnesValue(numBits); 429 API.clearBit(numBits - 1); 430 return API; 431 } 432 433 /// \brief Gets minimum unsigned value of APInt for a specific bit width. 434 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } 435 436 /// \brief Gets minimum signed value of APInt for a specific bit width. 437 static APInt getSignedMinValue(unsigned numBits) { 438 APInt API(numBits, 0); 439 API.setBit(numBits - 1); 440 return API; 441 } 442 443 /// \brief Get the SignBit for a specific bit width. 444 /// 445 /// This is just a wrapper function of getSignedMinValue(), and it helps code 446 /// readability when we want to get a SignBit. 447 static APInt getSignBit(unsigned BitWidth) { 448 return getSignedMinValue(BitWidth); 449 } 450 451 /// \brief Get the all-ones value. 452 /// 453 /// \returns the all-ones value for an APInt of the specified bit-width. 454 static APInt getAllOnesValue(unsigned numBits) { 455 return APInt(numBits, UINT64_MAX, true); 456 } 457 458 /// \brief Get the '0' value. 459 /// 460 /// \returns the '0' value for an APInt of the specified bit-width. 461 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); } 462 463 /// \brief Compute an APInt containing numBits highbits from this APInt. 464 /// 465 /// Get an APInt with the same BitWidth as this APInt, just zero mask 466 /// the low bits and right shift to the least significant bit. 467 /// 468 /// \returns the high "numBits" bits of this APInt. 469 APInt getHiBits(unsigned numBits) const; 470 471 /// \brief Compute an APInt containing numBits lowbits from this APInt. 472 /// 473 /// Get an APInt with the same BitWidth as this APInt, just zero mask 474 /// the high bits. 475 /// 476 /// \returns the low "numBits" bits of this APInt. 477 APInt getLoBits(unsigned numBits) const; 478 479 /// \brief Return an APInt with exactly one bit set in the result. 480 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { 481 APInt Res(numBits, 0); 482 Res.setBit(BitNo); 483 return Res; 484 } 485 486 /// \brief Get a value with a block of bits set. 487 /// 488 /// Constructs an APInt value that has a contiguous range of bits set. The 489 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other 490 /// bits will be zero. For example, with parameters(32, 0, 16) you would get 491 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For 492 /// example, with parameters (32, 28, 4), you would get 0xF000000F. 493 /// 494 /// \param numBits the intended bit width of the result 495 /// \param loBit the index of the lowest bit set. 496 /// \param hiBit the index of the highest bit set. 497 /// 498 /// \returns An APInt value with the requested bits set. 499 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { 500 assert(hiBit <= numBits && "hiBit out of range"); 501 assert(loBit < numBits && "loBit out of range"); 502 if (hiBit < loBit) 503 return getLowBitsSet(numBits, hiBit) | 504 getHighBitsSet(numBits, numBits - loBit); 505 return getLowBitsSet(numBits, hiBit - loBit).shl(loBit); 506 } 507 508 /// \brief Get a value with high bits set 509 /// 510 /// Constructs an APInt value that has the top hiBitsSet bits set. 511 /// 512 /// \param numBits the bitwidth of the result 513 /// \param hiBitsSet the number of high-order bits set in the result. 514 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { 515 assert(hiBitsSet <= numBits && "Too many bits to set!"); 516 // Handle a degenerate case, to avoid shifting by word size 517 if (hiBitsSet == 0) 518 return APInt(numBits, 0); 519 unsigned shiftAmt = numBits - hiBitsSet; 520 // For small values, return quickly 521 if (numBits <= APINT_BITS_PER_WORD) 522 return APInt(numBits, ~0ULL << shiftAmt); 523 return getAllOnesValue(numBits).shl(shiftAmt); 524 } 525 526 /// \brief Get a value with low bits set 527 /// 528 /// Constructs an APInt value that has the bottom loBitsSet bits set. 529 /// 530 /// \param numBits the bitwidth of the result 531 /// \param loBitsSet the number of low-order bits set in the result. 532 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { 533 assert(loBitsSet <= numBits && "Too many bits to set!"); 534 // Handle a degenerate case, to avoid shifting by word size 535 if (loBitsSet == 0) 536 return APInt(numBits, 0); 537 if (loBitsSet == APINT_BITS_PER_WORD) 538 return APInt(numBits, UINT64_MAX); 539 // For small values, return quickly. 540 if (loBitsSet <= APINT_BITS_PER_WORD) 541 return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet)); 542 return getAllOnesValue(numBits).lshr(numBits - loBitsSet); 543 } 544 545 /// \brief Return a value containing V broadcasted over NewLen bits. 546 static APInt getSplat(unsigned NewLen, const APInt &V) { 547 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"); 548 549 APInt Val = V.zextOrSelf(NewLen); 550 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) 551 Val |= Val << I; 552 553 return Val; 554 } 555 556 /// \brief Determine if two APInts have the same value, after zero-extending 557 /// one of them (if needed!) to ensure that the bit-widths match. 558 static bool isSameValue(const APInt &I1, const APInt &I2) { 559 if (I1.getBitWidth() == I2.getBitWidth()) 560 return I1 == I2; 561 562 if (I1.getBitWidth() > I2.getBitWidth()) 563 return I1 == I2.zext(I1.getBitWidth()); 564 565 return I1.zext(I2.getBitWidth()) == I2; 566 } 567 568 /// \brief Overload to compute a hash_code for an APInt value. 569 friend hash_code hash_value(const APInt &Arg); 570 571 /// This function returns a pointer to the internal storage of the APInt. 572 /// This is useful for writing out the APInt in binary form without any 573 /// conversions. 574 const uint64_t *getRawData() const { 575 if (isSingleWord()) 576 return &VAL; 577 return &pVal[0]; 578 } 579 580 /// @} 581 /// \name Unary Operators 582 /// @{ 583 584 /// \brief Postfix increment operator. 585 /// 586 /// \returns a new APInt value representing *this incremented by one 587 const APInt operator++(int) { 588 APInt API(*this); 589 ++(*this); 590 return API; 591 } 592 593 /// \brief Prefix increment operator. 594 /// 595 /// \returns *this incremented by one 596 APInt &operator++(); 597 598 /// \brief Postfix decrement operator. 599 /// 600 /// \returns a new APInt representing *this decremented by one. 601 const APInt operator--(int) { 602 APInt API(*this); 603 --(*this); 604 return API; 605 } 606 607 /// \brief Prefix decrement operator. 608 /// 609 /// \returns *this decremented by one. 610 APInt &operator--(); 611 612 /// \brief Unary bitwise complement operator. 613 /// 614 /// Performs a bitwise complement operation on this APInt. 615 /// 616 /// \returns an APInt that is the bitwise complement of *this 617 APInt operator~() const { 618 APInt Result(*this); 619 Result.flipAllBits(); 620 return Result; 621 } 622 623 /// \brief Unary negation operator 624 /// 625 /// Negates *this using two's complement logic. 626 /// 627 /// \returns An APInt value representing the negation of *this. 628 APInt operator-() const { return APInt(BitWidth, 0) - (*this); } 629 630 /// \brief Logical negation operator. 631 /// 632 /// Performs logical negation operation on this APInt. 633 /// 634 /// \returns true if *this is zero, false otherwise. 635 bool operator!() const { 636 if (isSingleWord()) 637 return !VAL; 638 639 for (unsigned i = 0; i != getNumWords(); ++i) 640 if (pVal[i]) 641 return false; 642 return true; 643 } 644 645 /// @} 646 /// \name Assignment Operators 647 /// @{ 648 649 /// \brief Copy assignment operator. 650 /// 651 /// \returns *this after assignment of RHS. 652 APInt &operator=(const APInt &RHS) { 653 // If the bitwidths are the same, we can avoid mucking with memory 654 if (isSingleWord() && RHS.isSingleWord()) { 655 VAL = RHS.VAL; 656 BitWidth = RHS.BitWidth; 657 return clearUnusedBits(); 658 } 659 660 return AssignSlowCase(RHS); 661 } 662 663 /// @brief Move assignment operator. 664 APInt &operator=(APInt &&that) { 665 if (!isSingleWord()) { 666 // The MSVC STL shipped in 2013 requires that self move assignment be a 667 // no-op. Otherwise algorithms like stable_sort will produce answers 668 // where half of the output is left in a moved-from state. 669 if (this == &that) 670 return *this; 671 delete[] pVal; 672 } 673 674 // Use memcpy so that type based alias analysis sees both VAL and pVal 675 // as modified. 676 memcpy(&VAL, &that.VAL, sizeof(uint64_t)); 677 678 // If 'this == &that', avoid zeroing our own bitwidth by storing to 'that' 679 // first. 680 unsigned ThatBitWidth = that.BitWidth; 681 that.BitWidth = 0; 682 BitWidth = ThatBitWidth; 683 684 return *this; 685 } 686 687 /// \brief Assignment operator. 688 /// 689 /// The RHS value is assigned to *this. If the significant bits in RHS exceed 690 /// the bit width, the excess bits are truncated. If the bit width is larger 691 /// than 64, the value is zero filled in the unspecified high order bits. 692 /// 693 /// \returns *this after assignment of RHS value. 694 APInt &operator=(uint64_t RHS); 695 696 /// \brief Bitwise AND assignment operator. 697 /// 698 /// Performs a bitwise AND operation on this APInt and RHS. The result is 699 /// assigned to *this. 700 /// 701 /// \returns *this after ANDing with RHS. 702 APInt &operator&=(const APInt &RHS); 703 704 /// \brief Bitwise OR assignment operator. 705 /// 706 /// Performs a bitwise OR operation on this APInt and RHS. The result is 707 /// assigned *this; 708 /// 709 /// \returns *this after ORing with RHS. 710 APInt &operator|=(const APInt &RHS); 711 712 /// \brief Bitwise OR assignment operator. 713 /// 714 /// Performs a bitwise OR operation on this APInt and RHS. RHS is 715 /// logically zero-extended or truncated to match the bit-width of 716 /// the LHS. 717 APInt &operator|=(uint64_t RHS) { 718 if (isSingleWord()) { 719 VAL |= RHS; 720 clearUnusedBits(); 721 } else { 722 pVal[0] |= RHS; 723 } 724 return *this; 725 } 726 727 /// \brief Bitwise XOR assignment operator. 728 /// 729 /// Performs a bitwise XOR operation on this APInt and RHS. The result is 730 /// assigned to *this. 731 /// 732 /// \returns *this after XORing with RHS. 733 APInt &operator^=(const APInt &RHS); 734 735 /// \brief Multiplication assignment operator. 736 /// 737 /// Multiplies this APInt by RHS and assigns the result to *this. 738 /// 739 /// \returns *this 740 APInt &operator*=(const APInt &RHS); 741 742 /// \brief Addition assignment operator. 743 /// 744 /// Adds RHS to *this and assigns the result to *this. 745 /// 746 /// \returns *this 747 APInt &operator+=(const APInt &RHS); 748 749 /// \brief Subtraction assignment operator. 750 /// 751 /// Subtracts RHS from *this and assigns the result to *this. 752 /// 753 /// \returns *this 754 APInt &operator-=(const APInt &RHS); 755 756 /// \brief Left-shift assignment function. 757 /// 758 /// Shifts *this left by shiftAmt and assigns the result to *this. 759 /// 760 /// \returns *this after shifting left by shiftAmt 761 APInt &operator<<=(unsigned shiftAmt) { 762 *this = shl(shiftAmt); 763 return *this; 764 } 765 766 /// @} 767 /// \name Binary Operators 768 /// @{ 769 770 /// \brief Bitwise AND operator. 771 /// 772 /// Performs a bitwise AND operation on *this and RHS. 773 /// 774 /// \returns An APInt value representing the bitwise AND of *this and RHS. 775 APInt operator&(const APInt &RHS) const { 776 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 777 if (isSingleWord()) 778 return APInt(getBitWidth(), VAL & RHS.VAL); 779 return AndSlowCase(RHS); 780 } 781 APInt LLVM_ATTRIBUTE_UNUSED_RESULT And(const APInt &RHS) const { 782 return this->operator&(RHS); 783 } 784 785 /// \brief Bitwise OR operator. 786 /// 787 /// Performs a bitwise OR operation on *this and RHS. 788 /// 789 /// \returns An APInt value representing the bitwise OR of *this and RHS. 790 APInt operator|(const APInt &RHS) const { 791 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 792 if (isSingleWord()) 793 return APInt(getBitWidth(), VAL | RHS.VAL); 794 return OrSlowCase(RHS); 795 } 796 797 /// \brief Bitwise OR function. 798 /// 799 /// Performs a bitwise or on *this and RHS. This is implemented by simply 800 /// calling operator|. 801 /// 802 /// \returns An APInt value representing the bitwise OR of *this and RHS. 803 APInt LLVM_ATTRIBUTE_UNUSED_RESULT Or(const APInt &RHS) const { 804 return this->operator|(RHS); 805 } 806 807 /// \brief Bitwise XOR operator. 808 /// 809 /// Performs a bitwise XOR operation on *this and RHS. 810 /// 811 /// \returns An APInt value representing the bitwise XOR of *this and RHS. 812 APInt operator^(const APInt &RHS) const { 813 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 814 if (isSingleWord()) 815 return APInt(BitWidth, VAL ^ RHS.VAL); 816 return XorSlowCase(RHS); 817 } 818 819 /// \brief Bitwise XOR function. 820 /// 821 /// Performs a bitwise XOR operation on *this and RHS. This is implemented 822 /// through the usage of operator^. 823 /// 824 /// \returns An APInt value representing the bitwise XOR of *this and RHS. 825 APInt LLVM_ATTRIBUTE_UNUSED_RESULT Xor(const APInt &RHS) const { 826 return this->operator^(RHS); 827 } 828 829 /// \brief Multiplication operator. 830 /// 831 /// Multiplies this APInt by RHS and returns the result. 832 APInt operator*(const APInt &RHS) const; 833 834 /// \brief Addition operator. 835 /// 836 /// Adds RHS to this APInt and returns the result. 837 APInt operator+(const APInt &RHS) const; 838 APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); } 839 840 /// \brief Subtraction operator. 841 /// 842 /// Subtracts RHS from this APInt and returns the result. 843 APInt operator-(const APInt &RHS) const; 844 APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); } 845 846 /// \brief Left logical shift operator. 847 /// 848 /// Shifts this APInt left by \p Bits and returns the result. 849 APInt operator<<(unsigned Bits) const { return shl(Bits); } 850 851 /// \brief Left logical shift operator. 852 /// 853 /// Shifts this APInt left by \p Bits and returns the result. 854 APInt operator<<(const APInt &Bits) const { return shl(Bits); } 855 856 /// \brief Arithmetic right-shift function. 857 /// 858 /// Arithmetic right-shift this APInt by shiftAmt. 859 APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(unsigned shiftAmt) const; 860 861 /// \brief Logical right-shift function. 862 /// 863 /// Logical right-shift this APInt by shiftAmt. 864 APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const; 865 866 /// \brief Left-shift function. 867 /// 868 /// Left-shift this APInt by shiftAmt. 869 APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(unsigned shiftAmt) const { 870 assert(shiftAmt <= BitWidth && "Invalid shift amount"); 871 if (isSingleWord()) { 872 if (shiftAmt >= BitWidth) 873 return APInt(BitWidth, 0); // avoid undefined shift results 874 return APInt(BitWidth, VAL << shiftAmt); 875 } 876 return shlSlowCase(shiftAmt); 877 } 878 879 /// \brief Rotate left by rotateAmt. 880 APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(unsigned rotateAmt) const; 881 882 /// \brief Rotate right by rotateAmt. 883 APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(unsigned rotateAmt) const; 884 885 /// \brief Arithmetic right-shift function. 886 /// 887 /// Arithmetic right-shift this APInt by shiftAmt. 888 APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(const APInt &shiftAmt) const; 889 890 /// \brief Logical right-shift function. 891 /// 892 /// Logical right-shift this APInt by shiftAmt. 893 APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(const APInt &shiftAmt) const; 894 895 /// \brief Left-shift function. 896 /// 897 /// Left-shift this APInt by shiftAmt. 898 APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(const APInt &shiftAmt) const; 899 900 /// \brief Rotate left by rotateAmt. 901 APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(const APInt &rotateAmt) const; 902 903 /// \brief Rotate right by rotateAmt. 904 APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(const APInt &rotateAmt) const; 905 906 /// \brief Unsigned division operation. 907 /// 908 /// Perform an unsigned divide operation on this APInt by RHS. Both this and 909 /// RHS are treated as unsigned quantities for purposes of this division. 910 /// 911 /// \returns a new APInt value containing the division result 912 APInt LLVM_ATTRIBUTE_UNUSED_RESULT udiv(const APInt &RHS) const; 913 914 /// \brief Signed division function for APInt. 915 /// 916 /// Signed divide this APInt by APInt RHS. 917 APInt LLVM_ATTRIBUTE_UNUSED_RESULT sdiv(const APInt &RHS) const; 918 919 /// \brief Unsigned remainder operation. 920 /// 921 /// Perform an unsigned remainder operation on this APInt with RHS being the 922 /// divisor. Both this and RHS are treated as unsigned quantities for purposes 923 /// of this operation. Note that this is a true remainder operation and not a 924 /// modulo operation because the sign follows the sign of the dividend which 925 /// is *this. 926 /// 927 /// \returns a new APInt value containing the remainder result 928 APInt LLVM_ATTRIBUTE_UNUSED_RESULT urem(const APInt &RHS) const; 929 930 /// \brief Function for signed remainder operation. 931 /// 932 /// Signed remainder operation on APInt. 933 APInt LLVM_ATTRIBUTE_UNUSED_RESULT srem(const APInt &RHS) const; 934 935 /// \brief Dual division/remainder interface. 936 /// 937 /// Sometimes it is convenient to divide two APInt values and obtain both the 938 /// quotient and remainder. This function does both operations in the same 939 /// computation making it a little more efficient. The pair of input arguments 940 /// may overlap with the pair of output arguments. It is safe to call 941 /// udivrem(X, Y, X, Y), for example. 942 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, 943 APInt &Remainder); 944 945 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, 946 APInt &Remainder); 947 948 // Operations that return overflow indicators. 949 APInt sadd_ov(const APInt &RHS, bool &Overflow) const; 950 APInt uadd_ov(const APInt &RHS, bool &Overflow) const; 951 APInt ssub_ov(const APInt &RHS, bool &Overflow) const; 952 APInt usub_ov(const APInt &RHS, bool &Overflow) const; 953 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; 954 APInt smul_ov(const APInt &RHS, bool &Overflow) const; 955 APInt umul_ov(const APInt &RHS, bool &Overflow) const; 956 APInt sshl_ov(const APInt &Amt, bool &Overflow) const; 957 APInt ushl_ov(const APInt &Amt, bool &Overflow) const; 958 959 /// \brief Array-indexing support. 960 /// 961 /// \returns the bit value at bitPosition 962 bool operator[](unsigned bitPosition) const { 963 assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); 964 return (maskBit(bitPosition) & 965 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 966 0; 967 } 968 969 /// @} 970 /// \name Comparison Operators 971 /// @{ 972 973 /// \brief Equality operator. 974 /// 975 /// Compares this APInt with RHS for the validity of the equality 976 /// relationship. 977 bool operator==(const APInt &RHS) const { 978 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); 979 if (isSingleWord()) 980 return VAL == RHS.VAL; 981 return EqualSlowCase(RHS); 982 } 983 984 /// \brief Equality operator. 985 /// 986 /// Compares this APInt with a uint64_t for the validity of the equality 987 /// relationship. 988 /// 989 /// \returns true if *this == Val 990 bool operator==(uint64_t Val) const { 991 if (isSingleWord()) 992 return VAL == Val; 993 return EqualSlowCase(Val); 994 } 995 996 /// \brief Equality comparison. 997 /// 998 /// Compares this APInt with RHS for the validity of the equality 999 /// relationship. 1000 /// 1001 /// \returns true if *this == Val 1002 bool eq(const APInt &RHS) const { return (*this) == RHS; } 1003 1004 /// \brief Inequality operator. 1005 /// 1006 /// Compares this APInt with RHS for the validity of the inequality 1007 /// relationship. 1008 /// 1009 /// \returns true if *this != Val 1010 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } 1011 1012 /// \brief Inequality operator. 1013 /// 1014 /// Compares this APInt with a uint64_t for the validity of the inequality 1015 /// relationship. 1016 /// 1017 /// \returns true if *this != Val 1018 bool operator!=(uint64_t Val) const { return !((*this) == Val); } 1019 1020 /// \brief Inequality comparison 1021 /// 1022 /// Compares this APInt with RHS for the validity of the inequality 1023 /// relationship. 1024 /// 1025 /// \returns true if *this != Val 1026 bool ne(const APInt &RHS) const { return !((*this) == RHS); } 1027 1028 /// \brief Unsigned less than comparison 1029 /// 1030 /// Regards both *this and RHS as unsigned quantities and compares them for 1031 /// the validity of the less-than relationship. 1032 /// 1033 /// \returns true if *this < RHS when both are considered unsigned. 1034 bool ult(const APInt &RHS) const; 1035 1036 /// \brief Unsigned less than comparison 1037 /// 1038 /// Regards both *this as an unsigned quantity and compares it with RHS for 1039 /// the validity of the less-than relationship. 1040 /// 1041 /// \returns true if *this < RHS when considered unsigned. 1042 bool ult(uint64_t RHS) const { 1043 return getActiveBits() > 64 ? false : getZExtValue() < RHS; 1044 } 1045 1046 /// \brief Signed less than comparison 1047 /// 1048 /// Regards both *this and RHS as signed quantities and compares them for 1049 /// validity of the less-than relationship. 1050 /// 1051 /// \returns true if *this < RHS when both are considered signed. 1052 bool slt(const APInt &RHS) const; 1053 1054 /// \brief Signed less than comparison 1055 /// 1056 /// Regards both *this as a signed quantity and compares it with RHS for 1057 /// the validity of the less-than relationship. 1058 /// 1059 /// \returns true if *this < RHS when considered signed. 1060 bool slt(int64_t RHS) const { 1061 return getMinSignedBits() > 64 ? isNegative() : getSExtValue() < RHS; 1062 } 1063 1064 /// \brief Unsigned less or equal comparison 1065 /// 1066 /// Regards both *this and RHS as unsigned quantities and compares them for 1067 /// validity of the less-or-equal relationship. 1068 /// 1069 /// \returns true if *this <= RHS when both are considered unsigned. 1070 bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); } 1071 1072 /// \brief Unsigned less or equal comparison 1073 /// 1074 /// Regards both *this as an unsigned quantity and compares it with RHS for 1075 /// the validity of the less-or-equal relationship. 1076 /// 1077 /// \returns true if *this <= RHS when considered unsigned. 1078 bool ule(uint64_t RHS) const { return !ugt(RHS); } 1079 1080 /// \brief Signed less or equal comparison 1081 /// 1082 /// Regards both *this and RHS as signed quantities and compares them for 1083 /// validity of the less-or-equal relationship. 1084 /// 1085 /// \returns true if *this <= RHS when both are considered signed. 1086 bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); } 1087 1088 /// \brief Signed less or equal comparison 1089 /// 1090 /// Regards both *this as a signed quantity and compares it with RHS for the 1091 /// validity of the less-or-equal relationship. 1092 /// 1093 /// \returns true if *this <= RHS when considered signed. 1094 bool sle(uint64_t RHS) const { return !sgt(RHS); } 1095 1096 /// \brief Unsigned greather than comparison 1097 /// 1098 /// Regards both *this and RHS as unsigned quantities and compares them for 1099 /// the validity of the greater-than relationship. 1100 /// 1101 /// \returns true if *this > RHS when both are considered unsigned. 1102 bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); } 1103 1104 /// \brief Unsigned greater than comparison 1105 /// 1106 /// Regards both *this as an unsigned quantity and compares it with RHS for 1107 /// the validity of the greater-than relationship. 1108 /// 1109 /// \returns true if *this > RHS when considered unsigned. 1110 bool ugt(uint64_t RHS) const { 1111 return getActiveBits() > 64 ? true : getZExtValue() > RHS; 1112 } 1113 1114 /// \brief Signed greather than comparison 1115 /// 1116 /// Regards both *this and RHS as signed quantities and compares them for the 1117 /// validity of the greater-than relationship. 1118 /// 1119 /// \returns true if *this > RHS when both are considered signed. 1120 bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); } 1121 1122 /// \brief Signed greater than comparison 1123 /// 1124 /// Regards both *this as a signed quantity and compares it with RHS for 1125 /// the validity of the greater-than relationship. 1126 /// 1127 /// \returns true if *this > RHS when considered signed. 1128 bool sgt(int64_t RHS) const { 1129 return getMinSignedBits() > 64 ? !isNegative() : getSExtValue() > RHS; 1130 } 1131 1132 /// \brief Unsigned greater or equal comparison 1133 /// 1134 /// Regards both *this and RHS as unsigned quantities and compares them for 1135 /// validity of the greater-or-equal relationship. 1136 /// 1137 /// \returns true if *this >= RHS when both are considered unsigned. 1138 bool uge(const APInt &RHS) const { return !ult(RHS); } 1139 1140 /// \brief Unsigned greater or equal comparison 1141 /// 1142 /// Regards both *this as an unsigned quantity and compares it with RHS for 1143 /// the validity of the greater-or-equal relationship. 1144 /// 1145 /// \returns true if *this >= RHS when considered unsigned. 1146 bool uge(uint64_t RHS) const { return !ult(RHS); } 1147 1148 /// \brief Signed greather or equal comparison 1149 /// 1150 /// Regards both *this and RHS as signed quantities and compares them for 1151 /// validity of the greater-or-equal relationship. 1152 /// 1153 /// \returns true if *this >= RHS when both are considered signed. 1154 bool sge(const APInt &RHS) const { return !slt(RHS); } 1155 1156 /// \brief Signed greater or equal comparison 1157 /// 1158 /// Regards both *this as a signed quantity and compares it with RHS for 1159 /// the validity of the greater-or-equal relationship. 1160 /// 1161 /// \returns true if *this >= RHS when considered signed. 1162 bool sge(int64_t RHS) const { return !slt(RHS); } 1163 1164 /// This operation tests if there are any pairs of corresponding bits 1165 /// between this APInt and RHS that are both set. 1166 bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; } 1167 1168 /// @} 1169 /// \name Resizing Operators 1170 /// @{ 1171 1172 /// \brief Truncate to new width. 1173 /// 1174 /// Truncate the APInt to a specified width. It is an error to specify a width 1175 /// that is greater than or equal to the current width. 1176 APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const; 1177 1178 /// \brief Sign extend to a new width. 1179 /// 1180 /// This operation sign extends the APInt to a new width. If the high order 1181 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. 1182 /// It is an error to specify a width that is less than or equal to the 1183 /// current width. 1184 APInt LLVM_ATTRIBUTE_UNUSED_RESULT sext(unsigned width) const; 1185 1186 /// \brief Zero extend to a new width. 1187 /// 1188 /// This operation zero extends the APInt to a new width. The high order bits 1189 /// are filled with 0 bits. It is an error to specify a width that is less 1190 /// than or equal to the current width. 1191 APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const; 1192 1193 /// \brief Sign extend or truncate to width 1194 /// 1195 /// Make this APInt have the bit width given by \p width. The value is sign 1196 /// extended, truncated, or left alone to make it that width. 1197 APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrTrunc(unsigned width) const; 1198 1199 /// \brief Zero extend or truncate to width 1200 /// 1201 /// Make this APInt have the bit width given by \p width. The value is zero 1202 /// extended, truncated, or left alone to make it that width. 1203 APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrTrunc(unsigned width) const; 1204 1205 /// \brief Sign extend or truncate to width 1206 /// 1207 /// Make this APInt have the bit width given by \p width. The value is sign 1208 /// extended, or left alone to make it that width. 1209 APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrSelf(unsigned width) const; 1210 1211 /// \brief Zero extend or truncate to width 1212 /// 1213 /// Make this APInt have the bit width given by \p width. The value is zero 1214 /// extended, or left alone to make it that width. 1215 APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrSelf(unsigned width) const; 1216 1217 /// @} 1218 /// \name Bit Manipulation Operators 1219 /// @{ 1220 1221 /// \brief Set every bit to 1. 1222 void setAllBits() { 1223 if (isSingleWord()) 1224 VAL = UINT64_MAX; 1225 else { 1226 // Set all the bits in all the words. 1227 for (unsigned i = 0; i < getNumWords(); ++i) 1228 pVal[i] = UINT64_MAX; 1229 } 1230 // Clear the unused ones 1231 clearUnusedBits(); 1232 } 1233 1234 /// \brief Set a given bit to 1. 1235 /// 1236 /// Set the given bit to 1 whose position is given as "bitPosition". 1237 void setBit(unsigned bitPosition); 1238 1239 /// \brief Set every bit to 0. 1240 void clearAllBits() { 1241 if (isSingleWord()) 1242 VAL = 0; 1243 else 1244 memset(pVal, 0, getNumWords() * APINT_WORD_SIZE); 1245 } 1246 1247 /// \brief Set a given bit to 0. 1248 /// 1249 /// Set the given bit to 0 whose position is given as "bitPosition". 1250 void clearBit(unsigned bitPosition); 1251 1252 /// \brief Toggle every bit to its opposite value. 1253 void flipAllBits() { 1254 if (isSingleWord()) 1255 VAL ^= UINT64_MAX; 1256 else { 1257 for (unsigned i = 0; i < getNumWords(); ++i) 1258 pVal[i] ^= UINT64_MAX; 1259 } 1260 clearUnusedBits(); 1261 } 1262 1263 /// \brief Toggles a given bit to its opposite value. 1264 /// 1265 /// Toggle a given bit to its opposite value whose position is given 1266 /// as "bitPosition". 1267 void flipBit(unsigned bitPosition); 1268 1269 /// @} 1270 /// \name Value Characterization Functions 1271 /// @{ 1272 1273 /// \brief Return the number of bits in the APInt. 1274 unsigned getBitWidth() const { return BitWidth; } 1275 1276 /// \brief Get the number of words. 1277 /// 1278 /// Here one word's bitwidth equals to that of uint64_t. 1279 /// 1280 /// \returns the number of words to hold the integer value of this APInt. 1281 unsigned getNumWords() const { return getNumWords(BitWidth); } 1282 1283 /// \brief Get the number of words. 1284 /// 1285 /// *NOTE* Here one word's bitwidth equals to that of uint64_t. 1286 /// 1287 /// \returns the number of words to hold the integer value with a given bit 1288 /// width. 1289 static unsigned getNumWords(unsigned BitWidth) { 1290 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; 1291 } 1292 1293 /// \brief Compute the number of active bits in the value 1294 /// 1295 /// This function returns the number of active bits which is defined as the 1296 /// bit width minus the number of leading zeros. This is used in several 1297 /// computations to see how "wide" the value is. 1298 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } 1299 1300 /// \brief Compute the number of active words in the value of this APInt. 1301 /// 1302 /// This is used in conjunction with getActiveData to extract the raw value of 1303 /// the APInt. 1304 unsigned getActiveWords() const { 1305 unsigned numActiveBits = getActiveBits(); 1306 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; 1307 } 1308 1309 /// \brief Get the minimum bit size for this signed APInt 1310 /// 1311 /// Computes the minimum bit width for this APInt while considering it to be a 1312 /// signed (and probably negative) value. If the value is not negative, this 1313 /// function returns the same value as getActiveBits()+1. Otherwise, it 1314 /// returns the smallest bit width that will retain the negative value. For 1315 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so 1316 /// for -1, this function will always return 1. 1317 unsigned getMinSignedBits() const { 1318 if (isNegative()) 1319 return BitWidth - countLeadingOnes() + 1; 1320 return getActiveBits() + 1; 1321 } 1322 1323 /// \brief Get zero extended value 1324 /// 1325 /// This method attempts to return the value of this APInt as a zero extended 1326 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a 1327 /// uint64_t. Otherwise an assertion will result. 1328 uint64_t getZExtValue() const { 1329 if (isSingleWord()) 1330 return VAL; 1331 assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); 1332 return pVal[0]; 1333 } 1334 1335 /// \brief Get sign extended value 1336 /// 1337 /// This method attempts to return the value of this APInt as a sign extended 1338 /// int64_t. The bit width must be <= 64 or the value must fit within an 1339 /// int64_t. Otherwise an assertion will result. 1340 int64_t getSExtValue() const { 1341 if (isSingleWord()) 1342 return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >> 1343 (APINT_BITS_PER_WORD - BitWidth); 1344 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t"); 1345 return int64_t(pVal[0]); 1346 } 1347 1348 /// \brief Get bits required for string value. 1349 /// 1350 /// This method determines how many bits are required to hold the APInt 1351 /// equivalent of the string given by \p str. 1352 static unsigned getBitsNeeded(StringRef str, uint8_t radix); 1353 1354 /// \brief The APInt version of the countLeadingZeros functions in 1355 /// MathExtras.h. 1356 /// 1357 /// It counts the number of zeros from the most significant bit to the first 1358 /// one bit. 1359 /// 1360 /// \returns BitWidth if the value is zero, otherwise returns the number of 1361 /// zeros from the most significant bit to the first one bits. 1362 unsigned countLeadingZeros() const { 1363 if (isSingleWord()) { 1364 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; 1365 return llvm::countLeadingZeros(VAL) - unusedBits; 1366 } 1367 return countLeadingZerosSlowCase(); 1368 } 1369 1370 /// \brief Count the number of leading one bits. 1371 /// 1372 /// This function is an APInt version of the countLeadingOnes 1373 /// functions in MathExtras.h. It counts the number of ones from the most 1374 /// significant bit to the first zero bit. 1375 /// 1376 /// \returns 0 if the high order bit is not set, otherwise returns the number 1377 /// of 1 bits from the most significant to the least 1378 unsigned countLeadingOnes() const; 1379 1380 /// Computes the number of leading bits of this APInt that are equal to its 1381 /// sign bit. 1382 unsigned getNumSignBits() const { 1383 return isNegative() ? countLeadingOnes() : countLeadingZeros(); 1384 } 1385 1386 /// \brief Count the number of trailing zero bits. 1387 /// 1388 /// This function is an APInt version of the countTrailingZeros 1389 /// functions in MathExtras.h. It counts the number of zeros from the least 1390 /// significant bit to the first set bit. 1391 /// 1392 /// \returns BitWidth if the value is zero, otherwise returns the number of 1393 /// zeros from the least significant bit to the first one bit. 1394 unsigned countTrailingZeros() const; 1395 1396 /// \brief Count the number of trailing one bits. 1397 /// 1398 /// This function is an APInt version of the countTrailingOnes 1399 /// functions in MathExtras.h. It counts the number of ones from the least 1400 /// significant bit to the first zero bit. 1401 /// 1402 /// \returns BitWidth if the value is all ones, otherwise returns the number 1403 /// of ones from the least significant bit to the first zero bit. 1404 unsigned countTrailingOnes() const { 1405 if (isSingleWord()) 1406 return llvm::countTrailingOnes(VAL); 1407 return countTrailingOnesSlowCase(); 1408 } 1409 1410 /// \brief Count the number of bits set. 1411 /// 1412 /// This function is an APInt version of the countPopulation functions 1413 /// in MathExtras.h. It counts the number of 1 bits in the APInt value. 1414 /// 1415 /// \returns 0 if the value is zero, otherwise returns the number of set bits. 1416 unsigned countPopulation() const { 1417 if (isSingleWord()) 1418 return llvm::countPopulation(VAL); 1419 return countPopulationSlowCase(); 1420 } 1421 1422 /// @} 1423 /// \name Conversion Functions 1424 /// @{ 1425 void print(raw_ostream &OS, bool isSigned) const; 1426 1427 /// Converts an APInt to a string and append it to Str. Str is commonly a 1428 /// SmallString. 1429 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, 1430 bool formatAsCLiteral = false) const; 1431 1432 /// Considers the APInt to be unsigned and converts it into a string in the 1433 /// radix given. The radix can be 2, 8, 10 16, or 36. 1434 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { 1435 toString(Str, Radix, false, false); 1436 } 1437 1438 /// Considers the APInt to be signed and converts it into a string in the 1439 /// radix given. The radix can be 2, 8, 10, 16, or 36. 1440 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { 1441 toString(Str, Radix, true, false); 1442 } 1443 1444 /// \brief Return the APInt as a std::string. 1445 /// 1446 /// Note that this is an inefficient method. It is better to pass in a 1447 /// SmallVector/SmallString to the methods above to avoid thrashing the heap 1448 /// for the string. 1449 std::string toString(unsigned Radix, bool Signed) const; 1450 1451 /// \returns a byte-swapped representation of this APInt Value. 1452 APInt LLVM_ATTRIBUTE_UNUSED_RESULT byteSwap() const; 1453 1454 /// \brief Converts this APInt to a double value. 1455 double roundToDouble(bool isSigned) const; 1456 1457 /// \brief Converts this unsigned APInt to a double value. 1458 double roundToDouble() const { return roundToDouble(false); } 1459 1460 /// \brief Converts this signed APInt to a double value. 1461 double signedRoundToDouble() const { return roundToDouble(true); } 1462 1463 /// \brief Converts APInt bits to a double 1464 /// 1465 /// The conversion does not do a translation from integer to double, it just 1466 /// re-interprets the bits as a double. Note that it is valid to do this on 1467 /// any bit width. Exactly 64 bits will be translated. 1468 double bitsToDouble() const { 1469 union { 1470 uint64_t I; 1471 double D; 1472 } T; 1473 T.I = (isSingleWord() ? VAL : pVal[0]); 1474 return T.D; 1475 } 1476 1477 /// \brief Converts APInt bits to a double 1478 /// 1479 /// The conversion does not do a translation from integer to float, it just 1480 /// re-interprets the bits as a float. Note that it is valid to do this on 1481 /// any bit width. Exactly 32 bits will be translated. 1482 float bitsToFloat() const { 1483 union { 1484 unsigned I; 1485 float F; 1486 } T; 1487 T.I = unsigned((isSingleWord() ? VAL : pVal[0])); 1488 return T.F; 1489 } 1490 1491 /// \brief Converts a double to APInt bits. 1492 /// 1493 /// The conversion does not do a translation from double to integer, it just 1494 /// re-interprets the bits of the double. 1495 static APInt LLVM_ATTRIBUTE_UNUSED_RESULT doubleToBits(double V) { 1496 union { 1497 uint64_t I; 1498 double D; 1499 } T; 1500 T.D = V; 1501 return APInt(sizeof T * CHAR_BIT, T.I); 1502 } 1503 1504 /// \brief Converts a float to APInt bits. 1505 /// 1506 /// The conversion does not do a translation from float to integer, it just 1507 /// re-interprets the bits of the float. 1508 static APInt LLVM_ATTRIBUTE_UNUSED_RESULT floatToBits(float V) { 1509 union { 1510 unsigned I; 1511 float F; 1512 } T; 1513 T.F = V; 1514 return APInt(sizeof T * CHAR_BIT, T.I); 1515 } 1516 1517 /// @} 1518 /// \name Mathematics Operations 1519 /// @{ 1520 1521 /// \returns the floor log base 2 of this APInt. 1522 unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); } 1523 1524 /// \returns the ceil log base 2 of this APInt. 1525 unsigned ceilLogBase2() const { 1526 return BitWidth - (*this - 1).countLeadingZeros(); 1527 } 1528 1529 /// \returns the nearest log base 2 of this APInt. Ties round up. 1530 /// 1531 /// NOTE: When we have a BitWidth of 1, we define: 1532 /// 1533 /// log2(0) = UINT32_MAX 1534 /// log2(1) = 0 1535 /// 1536 /// to get around any mathematical concerns resulting from 1537 /// referencing 2 in a space where 2 does no exist. 1538 unsigned nearestLogBase2() const { 1539 // Special case when we have a bitwidth of 1. If VAL is 1, then we 1540 // get 0. If VAL is 0, we get UINT64_MAX which gets truncated to 1541 // UINT32_MAX. 1542 if (BitWidth == 1) 1543 return VAL - 1; 1544 1545 // Handle the zero case. 1546 if (!getBoolValue()) 1547 return UINT32_MAX; 1548 1549 // The non-zero case is handled by computing: 1550 // 1551 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. 1552 // 1553 // where x[i] is referring to the value of the ith bit of x. 1554 unsigned lg = logBase2(); 1555 return lg + unsigned((*this)[lg - 1]); 1556 } 1557 1558 /// \returns the log base 2 of this APInt if its an exact power of two, -1 1559 /// otherwise 1560 int32_t exactLogBase2() const { 1561 if (!isPowerOf2()) 1562 return -1; 1563 return logBase2(); 1564 } 1565 1566 /// \brief Compute the square root 1567 APInt LLVM_ATTRIBUTE_UNUSED_RESULT sqrt() const; 1568 1569 /// \brief Get the absolute value; 1570 /// 1571 /// If *this is < 0 then return -(*this), otherwise *this; 1572 APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const { 1573 if (isNegative()) 1574 return -(*this); 1575 return *this; 1576 } 1577 1578 /// \returns the multiplicative inverse for a given modulo. 1579 APInt multiplicativeInverse(const APInt &modulo) const; 1580 1581 /// @} 1582 /// \name Support for division by constant 1583 /// @{ 1584 1585 /// Calculate the magic number for signed division by a constant. 1586 struct ms; 1587 ms magic() const; 1588 1589 /// Calculate the magic number for unsigned division by a constant. 1590 struct mu; 1591 mu magicu(unsigned LeadingZeros = 0) const; 1592 1593 /// @} 1594 /// \name Building-block Operations for APInt and APFloat 1595 /// @{ 1596 1597 // These building block operations operate on a representation of arbitrary 1598 // precision, two's-complement, bignum integer values. They should be 1599 // sufficient to implement APInt and APFloat bignum requirements. Inputs are 1600 // generally a pointer to the base of an array of integer parts, representing 1601 // an unsigned bignum, and a count of how many parts there are. 1602 1603 /// Sets the least significant part of a bignum to the input value, and zeroes 1604 /// out higher parts. 1605 static void tcSet(integerPart *, integerPart, unsigned int); 1606 1607 /// Assign one bignum to another. 1608 static void tcAssign(integerPart *, const integerPart *, unsigned int); 1609 1610 /// Returns true if a bignum is zero, false otherwise. 1611 static bool tcIsZero(const integerPart *, unsigned int); 1612 1613 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. 1614 static int tcExtractBit(const integerPart *, unsigned int bit); 1615 1616 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to 1617 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least 1618 /// significant bit of DST. All high bits above srcBITS in DST are 1619 /// zero-filled. 1620 static void tcExtract(integerPart *, unsigned int dstCount, 1621 const integerPart *, unsigned int srcBits, 1622 unsigned int srcLSB); 1623 1624 /// Set the given bit of a bignum. Zero-based. 1625 static void tcSetBit(integerPart *, unsigned int bit); 1626 1627 /// Clear the given bit of a bignum. Zero-based. 1628 static void tcClearBit(integerPart *, unsigned int bit); 1629 1630 /// Returns the bit number of the least or most significant set bit of a 1631 /// number. If the input number has no bits set -1U is returned. 1632 static unsigned int tcLSB(const integerPart *, unsigned int); 1633 static unsigned int tcMSB(const integerPart *parts, unsigned int n); 1634 1635 /// Negate a bignum in-place. 1636 static void tcNegate(integerPart *, unsigned int); 1637 1638 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. 1639 static integerPart tcAdd(integerPart *, const integerPart *, 1640 integerPart carry, unsigned); 1641 1642 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. 1643 static integerPart tcSubtract(integerPart *, const integerPart *, 1644 integerPart carry, unsigned); 1645 1646 /// DST += SRC * MULTIPLIER + PART if add is true 1647 /// DST = SRC * MULTIPLIER + PART if add is false 1648 /// 1649 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must 1650 /// start at the same point, i.e. DST == SRC. 1651 /// 1652 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. 1653 /// Otherwise DST is filled with the least significant DSTPARTS parts of the 1654 /// result, and if all of the omitted higher parts were zero return zero, 1655 /// otherwise overflow occurred and return one. 1656 static int tcMultiplyPart(integerPart *dst, const integerPart *src, 1657 integerPart multiplier, integerPart carry, 1658 unsigned int srcParts, unsigned int dstParts, 1659 bool add); 1660 1661 /// DST = LHS * RHS, where DST has the same width as the operands and is 1662 /// filled with the least significant parts of the result. Returns one if 1663 /// overflow occurred, otherwise zero. DST must be disjoint from both 1664 /// operands. 1665 static int tcMultiply(integerPart *, const integerPart *, const integerPart *, 1666 unsigned); 1667 1668 /// DST = LHS * RHS, where DST has width the sum of the widths of the 1669 /// operands. No overflow occurs. DST must be disjoint from both 1670 /// operands. Returns the number of parts required to hold the result. 1671 static unsigned int tcFullMultiply(integerPart *, const integerPart *, 1672 const integerPart *, unsigned, unsigned); 1673 1674 /// If RHS is zero LHS and REMAINDER are left unchanged, return one. 1675 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set 1676 /// REMAINDER to the remainder, return zero. i.e. 1677 /// 1678 /// OLD_LHS = RHS * LHS + REMAINDER 1679 /// 1680 /// SCRATCH is a bignum of the same size as the operands and result for use by 1681 /// the routine; its contents need not be initialized and are destroyed. LHS, 1682 /// REMAINDER and SCRATCH must be distinct. 1683 static int tcDivide(integerPart *lhs, const integerPart *rhs, 1684 integerPart *remainder, integerPart *scratch, 1685 unsigned int parts); 1686 1687 /// Shift a bignum left COUNT bits. Shifted in bits are zero. There are no 1688 /// restrictions on COUNT. 1689 static void tcShiftLeft(integerPart *, unsigned int parts, 1690 unsigned int count); 1691 1692 /// Shift a bignum right COUNT bits. Shifted in bits are zero. There are no 1693 /// restrictions on COUNT. 1694 static void tcShiftRight(integerPart *, unsigned int parts, 1695 unsigned int count); 1696 1697 /// The obvious AND, OR and XOR and complement operations. 1698 static void tcAnd(integerPart *, const integerPart *, unsigned int); 1699 static void tcOr(integerPart *, const integerPart *, unsigned int); 1700 static void tcXor(integerPart *, const integerPart *, unsigned int); 1701 static void tcComplement(integerPart *, unsigned int); 1702 1703 /// Comparison (unsigned) of two bignums. 1704 static int tcCompare(const integerPart *, const integerPart *, unsigned int); 1705 1706 /// Increment a bignum in-place. Return the carry flag. 1707 static integerPart tcIncrement(integerPart *, unsigned int); 1708 1709 /// Decrement a bignum in-place. Return the borrow flag. 1710 static integerPart tcDecrement(integerPart *, unsigned int); 1711 1712 /// Set the least significant BITS and clear the rest. 1713 static void tcSetLeastSignificantBits(integerPart *, unsigned int, 1714 unsigned int bits); 1715 1716 /// \brief debug method 1717 void dump() const; 1718 1719 /// @} 1720 }; 1721 1722 /// Magic data for optimising signed division by a constant. 1723 struct APInt::ms { 1724 APInt m; ///< magic number 1725 unsigned s; ///< shift amount 1726 }; 1727 1728 /// Magic data for optimising unsigned division by a constant. 1729 struct APInt::mu { 1730 APInt m; ///< magic number 1731 bool a; ///< add indicator 1732 unsigned s; ///< shift amount 1733 }; 1734 1735 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } 1736 1737 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } 1738 1739 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { 1740 I.print(OS, true); 1741 return OS; 1742 } 1743 1744 namespace APIntOps { 1745 1746 /// \brief Determine the smaller of two APInts considered to be signed. 1747 inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; } 1748 1749 /// \brief Determine the larger of two APInts considered to be signed. 1750 inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; } 1751 1752 /// \brief Determine the smaller of two APInts considered to be signed. 1753 inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; } 1754 1755 /// \brief Determine the larger of two APInts considered to be unsigned. 1756 inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; } 1757 1758 /// \brief Check if the specified APInt has a N-bits unsigned integer value. 1759 inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); } 1760 1761 /// \brief Check if the specified APInt has a N-bits signed integer value. 1762 inline bool isSignedIntN(unsigned N, const APInt &APIVal) { 1763 return APIVal.isSignedIntN(N); 1764 } 1765 1766 /// \returns true if the argument APInt value is a sequence of ones starting at 1767 /// the least significant bit with the remainder zero. 1768 inline bool isMask(unsigned numBits, const APInt &APIVal) { 1769 return numBits <= APIVal.getBitWidth() && 1770 APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits); 1771 } 1772 1773 /// \brief Return true if the argument APInt value contains a sequence of ones 1774 /// with the remainder zero. 1775 inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) { 1776 return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal); 1777 } 1778 1779 /// \brief Returns a byte-swapped representation of the specified APInt Value. 1780 inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); } 1781 1782 /// \brief Returns the floor log base 2 of the specified APInt value. 1783 inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); } 1784 1785 /// \brief Compute GCD of two APInt values. 1786 /// 1787 /// This function returns the greatest common divisor of the two APInt values 1788 /// using Euclid's algorithm. 1789 /// 1790 /// \returns the greatest common divisor of Val1 and Val2 1791 APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2); 1792 1793 /// \brief Converts the given APInt to a double value. 1794 /// 1795 /// Treats the APInt as an unsigned value for conversion purposes. 1796 inline double RoundAPIntToDouble(const APInt &APIVal) { 1797 return APIVal.roundToDouble(); 1798 } 1799 1800 /// \brief Converts the given APInt to a double value. 1801 /// 1802 /// Treats the APInt as a signed value for conversion purposes. 1803 inline double RoundSignedAPIntToDouble(const APInt &APIVal) { 1804 return APIVal.signedRoundToDouble(); 1805 } 1806 1807 /// \brief Converts the given APInt to a float vlalue. 1808 inline float RoundAPIntToFloat(const APInt &APIVal) { 1809 return float(RoundAPIntToDouble(APIVal)); 1810 } 1811 1812 /// \brief Converts the given APInt to a float value. 1813 /// 1814 /// Treast the APInt as a signed value for conversion purposes. 1815 inline float RoundSignedAPIntToFloat(const APInt &APIVal) { 1816 return float(APIVal.signedRoundToDouble()); 1817 } 1818 1819 /// \brief Converts the given double value into a APInt. 1820 /// 1821 /// This function convert a double value to an APInt value. 1822 APInt RoundDoubleToAPInt(double Double, unsigned width); 1823 1824 /// \brief Converts a float value into a APInt. 1825 /// 1826 /// Converts a float value into an APInt value. 1827 inline APInt RoundFloatToAPInt(float Float, unsigned width) { 1828 return RoundDoubleToAPInt(double(Float), width); 1829 } 1830 1831 /// \brief Arithmetic right-shift function. 1832 /// 1833 /// Arithmetic right-shift the APInt by shiftAmt. 1834 inline APInt ashr(const APInt &LHS, unsigned shiftAmt) { 1835 return LHS.ashr(shiftAmt); 1836 } 1837 1838 /// \brief Logical right-shift function. 1839 /// 1840 /// Logical right-shift the APInt by shiftAmt. 1841 inline APInt lshr(const APInt &LHS, unsigned shiftAmt) { 1842 return LHS.lshr(shiftAmt); 1843 } 1844 1845 /// \brief Left-shift function. 1846 /// 1847 /// Left-shift the APInt by shiftAmt. 1848 inline APInt shl(const APInt &LHS, unsigned shiftAmt) { 1849 return LHS.shl(shiftAmt); 1850 } 1851 1852 /// \brief Signed division function for APInt. 1853 /// 1854 /// Signed divide APInt LHS by APInt RHS. 1855 inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); } 1856 1857 /// \brief Unsigned division function for APInt. 1858 /// 1859 /// Unsigned divide APInt LHS by APInt RHS. 1860 inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); } 1861 1862 /// \brief Function for signed remainder operation. 1863 /// 1864 /// Signed remainder operation on APInt. 1865 inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); } 1866 1867 /// \brief Function for unsigned remainder operation. 1868 /// 1869 /// Unsigned remainder operation on APInt. 1870 inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); } 1871 1872 /// \brief Function for multiplication operation. 1873 /// 1874 /// Performs multiplication on APInt values. 1875 inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; } 1876 1877 /// \brief Function for addition operation. 1878 /// 1879 /// Performs addition on APInt values. 1880 inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; } 1881 1882 /// \brief Function for subtraction operation. 1883 /// 1884 /// Performs subtraction on APInt values. 1885 inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; } 1886 1887 /// \brief Bitwise AND function for APInt. 1888 /// 1889 /// Performs bitwise AND operation on APInt LHS and 1890 /// APInt RHS. 1891 inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; } 1892 1893 /// \brief Bitwise OR function for APInt. 1894 /// 1895 /// Performs bitwise OR operation on APInt LHS and APInt RHS. 1896 inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; } 1897 1898 /// \brief Bitwise XOR function for APInt. 1899 /// 1900 /// Performs bitwise XOR operation on APInt. 1901 inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; } 1902 1903 /// \brief Bitwise complement function. 1904 /// 1905 /// Performs a bitwise complement operation on APInt. 1906 inline APInt Not(const APInt &APIVal) { return ~APIVal; } 1907 1908 } // End of APIntOps namespace 1909 1910 // See friend declaration above. This additional declaration is required in 1911 // order to compile LLVM with IBM xlC compiler. 1912 hash_code hash_value(const APInt &Arg); 1913 } // End of llvm namespace 1914 1915 #endif 1916