1 #include <unistd.h> 2 #include <fcntl.h> 3 #include <string.h> 4 #include <signal.h> 5 #include <time.h> 6 #include <assert.h> 7 8 #include "fio.h" 9 #include "hash.h" 10 #include "verify.h" 11 #include "trim.h" 12 #include "lib/rand.h" 13 #include "lib/axmap.h" 14 #include "err.h" 15 16 struct io_completion_data { 17 int nr; /* input */ 18 19 int error; /* output */ 20 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */ 21 struct timeval time; /* output */ 22 }; 23 24 /* 25 * The ->io_axmap contains a map of blocks we have or have not done io 26 * to yet. Used to make sure we cover the entire range in a fair fashion. 27 */ 28 static int random_map_free(struct fio_file *f, const uint64_t block) 29 { 30 return !axmap_isset(f->io_axmap, block); 31 } 32 33 /* 34 * Mark a given offset as used in the map. 35 */ 36 static void mark_random_map(struct thread_data *td, struct io_u *io_u) 37 { 38 unsigned int min_bs = td->o.rw_min_bs; 39 struct fio_file *f = io_u->file; 40 unsigned int nr_blocks; 41 uint64_t block; 42 43 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs; 44 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs; 45 46 if (!(io_u->flags & IO_U_F_BUSY_OK)) 47 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks); 48 49 if ((nr_blocks * min_bs) < io_u->buflen) 50 io_u->buflen = nr_blocks * min_bs; 51 } 52 53 static uint64_t last_block(struct thread_data *td, struct fio_file *f, 54 enum fio_ddir ddir) 55 { 56 uint64_t max_blocks; 57 uint64_t max_size; 58 59 assert(ddir_rw(ddir)); 60 61 /* 62 * Hmm, should we make sure that ->io_size <= ->real_file_size? 63 */ 64 max_size = f->io_size; 65 if (max_size > f->real_file_size) 66 max_size = f->real_file_size; 67 68 if (td->o.zone_range) 69 max_size = td->o.zone_range; 70 71 if (td->o.min_bs[ddir] > td->o.ba[ddir]) 72 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir]; 73 74 max_blocks = max_size / (uint64_t) td->o.ba[ddir]; 75 if (!max_blocks) 76 return 0; 77 78 return max_blocks; 79 } 80 81 struct rand_off { 82 struct flist_head list; 83 uint64_t off; 84 }; 85 86 static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f, 87 enum fio_ddir ddir, uint64_t *b) 88 { 89 uint64_t r; 90 91 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) { 92 uint64_t lastb; 93 94 lastb = last_block(td, f, ddir); 95 if (!lastb) 96 return 1; 97 98 r = __rand(&td->random_state); 99 100 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r); 101 102 *b = lastb * (r / ((uint64_t) FRAND_MAX + 1.0)); 103 } else { 104 uint64_t off = 0; 105 106 assert(fio_file_lfsr(f)); 107 108 if (lfsr_next(&f->lfsr, &off)) 109 return 1; 110 111 *b = off; 112 } 113 114 /* 115 * if we are not maintaining a random map, we are done. 116 */ 117 if (!file_randommap(td, f)) 118 goto ret; 119 120 /* 121 * calculate map offset and check if it's free 122 */ 123 if (random_map_free(f, *b)) 124 goto ret; 125 126 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n", 127 (unsigned long long) *b); 128 129 *b = axmap_next_free(f->io_axmap, *b); 130 if (*b == (uint64_t) -1ULL) 131 return 1; 132 ret: 133 return 0; 134 } 135 136 static int __get_next_rand_offset_zipf(struct thread_data *td, 137 struct fio_file *f, enum fio_ddir ddir, 138 uint64_t *b) 139 { 140 *b = zipf_next(&f->zipf); 141 return 0; 142 } 143 144 static int __get_next_rand_offset_pareto(struct thread_data *td, 145 struct fio_file *f, enum fio_ddir ddir, 146 uint64_t *b) 147 { 148 *b = pareto_next(&f->zipf); 149 return 0; 150 } 151 152 static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b) 153 { 154 struct rand_off *r1 = flist_entry(a, struct rand_off, list); 155 struct rand_off *r2 = flist_entry(b, struct rand_off, list); 156 157 return r1->off - r2->off; 158 } 159 160 static int get_off_from_method(struct thread_data *td, struct fio_file *f, 161 enum fio_ddir ddir, uint64_t *b) 162 { 163 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) 164 return __get_next_rand_offset(td, f, ddir, b); 165 else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF) 166 return __get_next_rand_offset_zipf(td, f, ddir, b); 167 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO) 168 return __get_next_rand_offset_pareto(td, f, ddir, b); 169 170 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution); 171 return 1; 172 } 173 174 /* 175 * Sort the reads for a verify phase in batches of verifysort_nr, if 176 * specified. 177 */ 178 static inline int should_sort_io(struct thread_data *td) 179 { 180 if (!td->o.verifysort_nr || !td->o.do_verify) 181 return 0; 182 if (!td_random(td)) 183 return 0; 184 if (td->runstate != TD_VERIFYING) 185 return 0; 186 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE) 187 return 0; 188 189 return 1; 190 } 191 192 static int should_do_random(struct thread_data *td, enum fio_ddir ddir) 193 { 194 unsigned int v; 195 unsigned long r; 196 197 if (td->o.perc_rand[ddir] == 100) 198 return 1; 199 200 r = __rand(&td->seq_rand_state[ddir]); 201 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0))); 202 203 return v <= td->o.perc_rand[ddir]; 204 } 205 206 static int get_next_rand_offset(struct thread_data *td, struct fio_file *f, 207 enum fio_ddir ddir, uint64_t *b) 208 { 209 struct rand_off *r; 210 int i, ret = 1; 211 212 if (!should_sort_io(td)) 213 return get_off_from_method(td, f, ddir, b); 214 215 if (!flist_empty(&td->next_rand_list)) { 216 fetch: 217 r = flist_first_entry(&td->next_rand_list, struct rand_off, list); 218 flist_del(&r->list); 219 *b = r->off; 220 free(r); 221 return 0; 222 } 223 224 for (i = 0; i < td->o.verifysort_nr; i++) { 225 r = malloc(sizeof(*r)); 226 227 ret = get_off_from_method(td, f, ddir, &r->off); 228 if (ret) { 229 free(r); 230 break; 231 } 232 233 flist_add(&r->list, &td->next_rand_list); 234 } 235 236 if (ret && !i) 237 return ret; 238 239 assert(!flist_empty(&td->next_rand_list)); 240 flist_sort(NULL, &td->next_rand_list, flist_cmp); 241 goto fetch; 242 } 243 244 static int get_next_rand_block(struct thread_data *td, struct fio_file *f, 245 enum fio_ddir ddir, uint64_t *b) 246 { 247 if (!get_next_rand_offset(td, f, ddir, b)) 248 return 0; 249 250 if (td->o.time_based) { 251 fio_file_reset(td, f); 252 if (!get_next_rand_offset(td, f, ddir, b)) 253 return 0; 254 } 255 256 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n", 257 f->file_name, (unsigned long long) f->last_pos[ddir], 258 (unsigned long long) f->real_file_size); 259 return 1; 260 } 261 262 static int get_next_seq_offset(struct thread_data *td, struct fio_file *f, 263 enum fio_ddir ddir, uint64_t *offset) 264 { 265 struct thread_options *o = &td->o; 266 267 assert(ddir_rw(ddir)); 268 269 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) && 270 o->time_based) 271 f->last_pos[ddir] = f->last_pos[ddir] - f->io_size; 272 273 if (f->last_pos[ddir] < f->real_file_size) { 274 uint64_t pos; 275 276 if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0) 277 f->last_pos[ddir] = f->real_file_size; 278 279 pos = f->last_pos[ddir] - f->file_offset; 280 if (pos && o->ddir_seq_add) { 281 pos += o->ddir_seq_add; 282 283 /* 284 * If we reach beyond the end of the file 285 * with holed IO, wrap around to the 286 * beginning again. 287 */ 288 if (pos >= f->real_file_size) 289 pos = f->file_offset; 290 } 291 292 *offset = pos; 293 return 0; 294 } 295 296 return 1; 297 } 298 299 static int get_next_block(struct thread_data *td, struct io_u *io_u, 300 enum fio_ddir ddir, int rw_seq, 301 unsigned int *is_random) 302 { 303 struct fio_file *f = io_u->file; 304 uint64_t b, offset; 305 int ret; 306 307 assert(ddir_rw(ddir)); 308 309 b = offset = -1ULL; 310 311 if (rw_seq) { 312 if (td_random(td)) { 313 if (should_do_random(td, ddir)) { 314 ret = get_next_rand_block(td, f, ddir, &b); 315 *is_random = 1; 316 } else { 317 *is_random = 0; 318 io_u->flags |= IO_U_F_BUSY_OK; 319 ret = get_next_seq_offset(td, f, ddir, &offset); 320 if (ret) 321 ret = get_next_rand_block(td, f, ddir, &b); 322 } 323 } else { 324 *is_random = 0; 325 ret = get_next_seq_offset(td, f, ddir, &offset); 326 } 327 } else { 328 io_u->flags |= IO_U_F_BUSY_OK; 329 *is_random = 0; 330 331 if (td->o.rw_seq == RW_SEQ_SEQ) { 332 ret = get_next_seq_offset(td, f, ddir, &offset); 333 if (ret) { 334 ret = get_next_rand_block(td, f, ddir, &b); 335 *is_random = 0; 336 } 337 } else if (td->o.rw_seq == RW_SEQ_IDENT) { 338 if (f->last_start[ddir] != -1ULL) 339 offset = f->last_start[ddir] - f->file_offset; 340 else 341 offset = 0; 342 ret = 0; 343 } else { 344 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq); 345 ret = 1; 346 } 347 } 348 349 if (!ret) { 350 if (offset != -1ULL) 351 io_u->offset = offset; 352 else if (b != -1ULL) 353 io_u->offset = b * td->o.ba[ddir]; 354 else { 355 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b); 356 ret = 1; 357 } 358 } 359 360 return ret; 361 } 362 363 /* 364 * For random io, generate a random new block and see if it's used. Repeat 365 * until we find a free one. For sequential io, just return the end of 366 * the last io issued. 367 */ 368 static int __get_next_offset(struct thread_data *td, struct io_u *io_u, 369 unsigned int *is_random) 370 { 371 struct fio_file *f = io_u->file; 372 enum fio_ddir ddir = io_u->ddir; 373 int rw_seq_hit = 0; 374 375 assert(ddir_rw(ddir)); 376 377 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) { 378 rw_seq_hit = 1; 379 td->ddir_seq_nr = td->o.ddir_seq_nr; 380 } 381 382 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random)) 383 return 1; 384 385 if (io_u->offset >= f->io_size) { 386 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n", 387 (unsigned long long) io_u->offset, 388 (unsigned long long) f->io_size); 389 return 1; 390 } 391 392 io_u->offset += f->file_offset; 393 if (io_u->offset >= f->real_file_size) { 394 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n", 395 (unsigned long long) io_u->offset, 396 (unsigned long long) f->real_file_size); 397 return 1; 398 } 399 400 return 0; 401 } 402 403 static int get_next_offset(struct thread_data *td, struct io_u *io_u, 404 unsigned int *is_random) 405 { 406 if (td->flags & TD_F_PROFILE_OPS) { 407 struct prof_io_ops *ops = &td->prof_io_ops; 408 409 if (ops->fill_io_u_off) 410 return ops->fill_io_u_off(td, io_u, is_random); 411 } 412 413 return __get_next_offset(td, io_u, is_random); 414 } 415 416 static inline int io_u_fits(struct thread_data *td, struct io_u *io_u, 417 unsigned int buflen) 418 { 419 struct fio_file *f = io_u->file; 420 421 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f); 422 } 423 424 static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u, 425 unsigned int is_random) 426 { 427 int ddir = io_u->ddir; 428 unsigned int buflen = 0; 429 unsigned int minbs, maxbs; 430 unsigned long r; 431 432 assert(ddir_rw(ddir)); 433 434 if (td->o.bs_is_seq_rand) 435 ddir = is_random ? DDIR_WRITE: DDIR_READ; 436 437 minbs = td->o.min_bs[ddir]; 438 maxbs = td->o.max_bs[ddir]; 439 440 if (minbs == maxbs) 441 return minbs; 442 443 /* 444 * If we can't satisfy the min block size from here, then fail 445 */ 446 if (!io_u_fits(td, io_u, minbs)) 447 return 0; 448 449 do { 450 r = __rand(&td->bsrange_state); 451 452 if (!td->o.bssplit_nr[ddir]) { 453 buflen = 1 + (unsigned int) ((double) maxbs * 454 (r / (FRAND_MAX + 1.0))); 455 if (buflen < minbs) 456 buflen = minbs; 457 } else { 458 long perc = 0; 459 unsigned int i; 460 461 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) { 462 struct bssplit *bsp = &td->o.bssplit[ddir][i]; 463 464 buflen = bsp->bs; 465 perc += bsp->perc; 466 if ((r <= ((FRAND_MAX / 100L) * perc)) && 467 io_u_fits(td, io_u, buflen)) 468 break; 469 } 470 } 471 472 if (td->o.do_verify && td->o.verify != VERIFY_NONE) 473 buflen = (buflen + td->o.verify_interval - 1) & 474 ~(td->o.verify_interval - 1); 475 476 if (!td->o.bs_unaligned && is_power_of_2(minbs)) 477 buflen = (buflen + minbs - 1) & ~(minbs - 1); 478 479 } while (!io_u_fits(td, io_u, buflen)); 480 481 return buflen; 482 } 483 484 static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u, 485 unsigned int is_random) 486 { 487 if (td->flags & TD_F_PROFILE_OPS) { 488 struct prof_io_ops *ops = &td->prof_io_ops; 489 490 if (ops->fill_io_u_size) 491 return ops->fill_io_u_size(td, io_u, is_random); 492 } 493 494 return __get_next_buflen(td, io_u, is_random); 495 } 496 497 static void set_rwmix_bytes(struct thread_data *td) 498 { 499 unsigned int diff; 500 501 /* 502 * we do time or byte based switch. this is needed because 503 * buffered writes may issue a lot quicker than they complete, 504 * whereas reads do not. 505 */ 506 diff = td->o.rwmix[td->rwmix_ddir ^ 1]; 507 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100; 508 } 509 510 static inline enum fio_ddir get_rand_ddir(struct thread_data *td) 511 { 512 unsigned int v; 513 unsigned long r; 514 515 r = __rand(&td->rwmix_state); 516 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0))); 517 518 if (v <= td->o.rwmix[DDIR_READ]) 519 return DDIR_READ; 520 521 return DDIR_WRITE; 522 } 523 524 void io_u_quiesce(struct thread_data *td) 525 { 526 /* 527 * We are going to sleep, ensure that we flush anything pending as 528 * not to skew our latency numbers. 529 * 530 * Changed to only monitor 'in flight' requests here instead of the 531 * td->cur_depth, b/c td->cur_depth does not accurately represent 532 * io's that have been actually submitted to an async engine, 533 * and cur_depth is meaningless for sync engines. 534 */ 535 if (td->io_u_queued || td->cur_depth) { 536 int fio_unused ret; 537 538 ret = td_io_commit(td); 539 } 540 541 while (td->io_u_in_flight) { 542 int fio_unused ret; 543 544 ret = io_u_queued_complete(td, 1, NULL); 545 } 546 } 547 548 static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir) 549 { 550 enum fio_ddir odir = ddir ^ 1; 551 long usec; 552 553 assert(ddir_rw(ddir)); 554 555 if (td->rate_pending_usleep[ddir] <= 0) 556 return ddir; 557 558 /* 559 * We have too much pending sleep in this direction. See if we 560 * should switch. 561 */ 562 if (td_rw(td) && td->o.rwmix[odir]) { 563 /* 564 * Other direction does not have too much pending, switch 565 */ 566 if (td->rate_pending_usleep[odir] < 100000) 567 return odir; 568 569 /* 570 * Both directions have pending sleep. Sleep the minimum time 571 * and deduct from both. 572 */ 573 if (td->rate_pending_usleep[ddir] <= 574 td->rate_pending_usleep[odir]) { 575 usec = td->rate_pending_usleep[ddir]; 576 } else { 577 usec = td->rate_pending_usleep[odir]; 578 ddir = odir; 579 } 580 } else 581 usec = td->rate_pending_usleep[ddir]; 582 583 io_u_quiesce(td); 584 585 usec = usec_sleep(td, usec); 586 587 td->rate_pending_usleep[ddir] -= usec; 588 589 odir = ddir ^ 1; 590 if (td_rw(td) && __should_check_rate(td, odir)) 591 td->rate_pending_usleep[odir] -= usec; 592 593 if (ddir == DDIR_TRIM) 594 return DDIR_TRIM; 595 596 return ddir; 597 } 598 599 /* 600 * Return the data direction for the next io_u. If the job is a 601 * mixed read/write workload, check the rwmix cycle and switch if 602 * necessary. 603 */ 604 static enum fio_ddir get_rw_ddir(struct thread_data *td) 605 { 606 enum fio_ddir ddir; 607 608 /* 609 * see if it's time to fsync 610 */ 611 if (td->o.fsync_blocks && 612 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks) && 613 td->io_issues[DDIR_WRITE] && should_fsync(td)) 614 return DDIR_SYNC; 615 616 /* 617 * see if it's time to fdatasync 618 */ 619 if (td->o.fdatasync_blocks && 620 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks) && 621 td->io_issues[DDIR_WRITE] && should_fsync(td)) 622 return DDIR_DATASYNC; 623 624 /* 625 * see if it's time to sync_file_range 626 */ 627 if (td->sync_file_range_nr && 628 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr) && 629 td->io_issues[DDIR_WRITE] && should_fsync(td)) 630 return DDIR_SYNC_FILE_RANGE; 631 632 if (td_rw(td)) { 633 /* 634 * Check if it's time to seed a new data direction. 635 */ 636 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) { 637 /* 638 * Put a top limit on how many bytes we do for 639 * one data direction, to avoid overflowing the 640 * ranges too much 641 */ 642 ddir = get_rand_ddir(td); 643 644 if (ddir != td->rwmix_ddir) 645 set_rwmix_bytes(td); 646 647 td->rwmix_ddir = ddir; 648 } 649 ddir = td->rwmix_ddir; 650 } else if (td_read(td)) 651 ddir = DDIR_READ; 652 else if (td_write(td)) 653 ddir = DDIR_WRITE; 654 else 655 ddir = DDIR_TRIM; 656 657 td->rwmix_ddir = rate_ddir(td, ddir); 658 return td->rwmix_ddir; 659 } 660 661 static void set_rw_ddir(struct thread_data *td, struct io_u *io_u) 662 { 663 io_u->ddir = io_u->acct_ddir = get_rw_ddir(td); 664 665 if (io_u->ddir == DDIR_WRITE && (td->io_ops->flags & FIO_BARRIER) && 666 td->o.barrier_blocks && 667 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) && 668 td->io_issues[DDIR_WRITE]) 669 io_u->flags |= IO_U_F_BARRIER; 670 } 671 672 void put_file_log(struct thread_data *td, struct fio_file *f) 673 { 674 unsigned int ret = put_file(td, f); 675 676 if (ret) 677 td_verror(td, ret, "file close"); 678 } 679 680 void put_io_u(struct thread_data *td, struct io_u *io_u) 681 { 682 td_io_u_lock(td); 683 684 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT)) 685 put_file_log(td, io_u->file); 686 687 io_u->file = NULL; 688 io_u->flags |= IO_U_F_FREE; 689 690 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) 691 td->cur_depth--; 692 io_u_qpush(&td->io_u_freelist, io_u); 693 td_io_u_unlock(td); 694 td_io_u_free_notify(td); 695 } 696 697 void clear_io_u(struct thread_data *td, struct io_u *io_u) 698 { 699 io_u->flags &= ~IO_U_F_FLIGHT; 700 put_io_u(td, io_u); 701 } 702 703 void requeue_io_u(struct thread_data *td, struct io_u **io_u) 704 { 705 struct io_u *__io_u = *io_u; 706 enum fio_ddir ddir = acct_ddir(__io_u); 707 708 dprint(FD_IO, "requeue %p\n", __io_u); 709 710 td_io_u_lock(td); 711 712 __io_u->flags |= IO_U_F_FREE; 713 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir)) 714 td->io_issues[ddir]--; 715 716 __io_u->flags &= ~IO_U_F_FLIGHT; 717 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) 718 td->cur_depth--; 719 720 io_u_rpush(&td->io_u_requeues, __io_u); 721 td_io_u_unlock(td); 722 *io_u = NULL; 723 } 724 725 static int fill_io_u(struct thread_data *td, struct io_u *io_u) 726 { 727 unsigned int is_random; 728 729 if (td->io_ops->flags & FIO_NOIO) 730 goto out; 731 732 set_rw_ddir(td, io_u); 733 734 /* 735 * fsync() or fdatasync() or trim etc, we are done 736 */ 737 if (!ddir_rw(io_u->ddir)) 738 goto out; 739 740 /* 741 * See if it's time to switch to a new zone 742 */ 743 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) { 744 struct fio_file *f = io_u->file; 745 746 td->zone_bytes = 0; 747 f->file_offset += td->o.zone_range + td->o.zone_skip; 748 749 /* 750 * Wrap from the beginning, if we exceed the file size 751 */ 752 if (f->file_offset >= f->real_file_size) 753 f->file_offset = f->real_file_size - f->file_offset; 754 f->last_pos[io_u->ddir] = f->file_offset; 755 td->io_skip_bytes += td->o.zone_skip; 756 } 757 758 /* 759 * No log, let the seq/rand engine retrieve the next buflen and 760 * position. 761 */ 762 if (get_next_offset(td, io_u, &is_random)) { 763 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u); 764 return 1; 765 } 766 767 io_u->buflen = get_next_buflen(td, io_u, is_random); 768 if (!io_u->buflen) { 769 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u); 770 return 1; 771 } 772 773 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) { 774 dprint(FD_IO, "io_u %p, offset too large\n", io_u); 775 dprint(FD_IO, " off=%llu/%lu > %llu\n", 776 (unsigned long long) io_u->offset, io_u->buflen, 777 (unsigned long long) io_u->file->real_file_size); 778 return 1; 779 } 780 781 /* 782 * mark entry before potentially trimming io_u 783 */ 784 if (td_random(td) && file_randommap(td, io_u->file)) 785 mark_random_map(td, io_u); 786 787 out: 788 dprint_io_u(io_u, "fill_io_u"); 789 td->zone_bytes += io_u->buflen; 790 return 0; 791 } 792 793 static void __io_u_mark_map(unsigned int *map, unsigned int nr) 794 { 795 int idx = 0; 796 797 switch (nr) { 798 default: 799 idx = 6; 800 break; 801 case 33 ... 64: 802 idx = 5; 803 break; 804 case 17 ... 32: 805 idx = 4; 806 break; 807 case 9 ... 16: 808 idx = 3; 809 break; 810 case 5 ... 8: 811 idx = 2; 812 break; 813 case 1 ... 4: 814 idx = 1; 815 case 0: 816 break; 817 } 818 819 map[idx]++; 820 } 821 822 void io_u_mark_submit(struct thread_data *td, unsigned int nr) 823 { 824 __io_u_mark_map(td->ts.io_u_submit, nr); 825 td->ts.total_submit++; 826 } 827 828 void io_u_mark_complete(struct thread_data *td, unsigned int nr) 829 { 830 __io_u_mark_map(td->ts.io_u_complete, nr); 831 td->ts.total_complete++; 832 } 833 834 void io_u_mark_depth(struct thread_data *td, unsigned int nr) 835 { 836 int idx = 0; 837 838 switch (td->cur_depth) { 839 default: 840 idx = 6; 841 break; 842 case 32 ... 63: 843 idx = 5; 844 break; 845 case 16 ... 31: 846 idx = 4; 847 break; 848 case 8 ... 15: 849 idx = 3; 850 break; 851 case 4 ... 7: 852 idx = 2; 853 break; 854 case 2 ... 3: 855 idx = 1; 856 case 1: 857 break; 858 } 859 860 td->ts.io_u_map[idx] += nr; 861 } 862 863 static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec) 864 { 865 int idx = 0; 866 867 assert(usec < 1000); 868 869 switch (usec) { 870 case 750 ... 999: 871 idx = 9; 872 break; 873 case 500 ... 749: 874 idx = 8; 875 break; 876 case 250 ... 499: 877 idx = 7; 878 break; 879 case 100 ... 249: 880 idx = 6; 881 break; 882 case 50 ... 99: 883 idx = 5; 884 break; 885 case 20 ... 49: 886 idx = 4; 887 break; 888 case 10 ... 19: 889 idx = 3; 890 break; 891 case 4 ... 9: 892 idx = 2; 893 break; 894 case 2 ... 3: 895 idx = 1; 896 case 0 ... 1: 897 break; 898 } 899 900 assert(idx < FIO_IO_U_LAT_U_NR); 901 td->ts.io_u_lat_u[idx]++; 902 } 903 904 static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec) 905 { 906 int idx = 0; 907 908 switch (msec) { 909 default: 910 idx = 11; 911 break; 912 case 1000 ... 1999: 913 idx = 10; 914 break; 915 case 750 ... 999: 916 idx = 9; 917 break; 918 case 500 ... 749: 919 idx = 8; 920 break; 921 case 250 ... 499: 922 idx = 7; 923 break; 924 case 100 ... 249: 925 idx = 6; 926 break; 927 case 50 ... 99: 928 idx = 5; 929 break; 930 case 20 ... 49: 931 idx = 4; 932 break; 933 case 10 ... 19: 934 idx = 3; 935 break; 936 case 4 ... 9: 937 idx = 2; 938 break; 939 case 2 ... 3: 940 idx = 1; 941 case 0 ... 1: 942 break; 943 } 944 945 assert(idx < FIO_IO_U_LAT_M_NR); 946 td->ts.io_u_lat_m[idx]++; 947 } 948 949 static void io_u_mark_latency(struct thread_data *td, unsigned long usec) 950 { 951 if (usec < 1000) 952 io_u_mark_lat_usec(td, usec); 953 else 954 io_u_mark_lat_msec(td, usec / 1000); 955 } 956 957 /* 958 * Get next file to service by choosing one at random 959 */ 960 static struct fio_file *get_next_file_rand(struct thread_data *td, 961 enum fio_file_flags goodf, 962 enum fio_file_flags badf) 963 { 964 struct fio_file *f; 965 int fno; 966 967 do { 968 int opened = 0; 969 unsigned long r; 970 971 r = __rand(&td->next_file_state); 972 fno = (unsigned int) ((double) td->o.nr_files 973 * (r / (FRAND_MAX + 1.0))); 974 975 f = td->files[fno]; 976 if (fio_file_done(f)) 977 continue; 978 979 if (!fio_file_open(f)) { 980 int err; 981 982 if (td->nr_open_files >= td->o.open_files) 983 return ERR_PTR(-EBUSY); 984 985 err = td_io_open_file(td, f); 986 if (err) 987 continue; 988 opened = 1; 989 } 990 991 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) { 992 dprint(FD_FILE, "get_next_file_rand: %p\n", f); 993 return f; 994 } 995 if (opened) 996 td_io_close_file(td, f); 997 } while (1); 998 } 999 1000 /* 1001 * Get next file to service by doing round robin between all available ones 1002 */ 1003 static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf, 1004 int badf) 1005 { 1006 unsigned int old_next_file = td->next_file; 1007 struct fio_file *f; 1008 1009 do { 1010 int opened = 0; 1011 1012 f = td->files[td->next_file]; 1013 1014 td->next_file++; 1015 if (td->next_file >= td->o.nr_files) 1016 td->next_file = 0; 1017 1018 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags); 1019 if (fio_file_done(f)) { 1020 f = NULL; 1021 continue; 1022 } 1023 1024 if (!fio_file_open(f)) { 1025 int err; 1026 1027 if (td->nr_open_files >= td->o.open_files) 1028 return ERR_PTR(-EBUSY); 1029 1030 err = td_io_open_file(td, f); 1031 if (err) { 1032 dprint(FD_FILE, "error %d on open of %s\n", 1033 err, f->file_name); 1034 f = NULL; 1035 continue; 1036 } 1037 opened = 1; 1038 } 1039 1040 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf, 1041 f->flags); 1042 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) 1043 break; 1044 1045 if (opened) 1046 td_io_close_file(td, f); 1047 1048 f = NULL; 1049 } while (td->next_file != old_next_file); 1050 1051 dprint(FD_FILE, "get_next_file_rr: %p\n", f); 1052 return f; 1053 } 1054 1055 static struct fio_file *__get_next_file(struct thread_data *td) 1056 { 1057 struct fio_file *f; 1058 1059 assert(td->o.nr_files <= td->files_index); 1060 1061 if (td->nr_done_files >= td->o.nr_files) { 1062 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d," 1063 " nr_files=%d\n", td->nr_open_files, 1064 td->nr_done_files, 1065 td->o.nr_files); 1066 return NULL; 1067 } 1068 1069 f = td->file_service_file; 1070 if (f && fio_file_open(f) && !fio_file_closing(f)) { 1071 if (td->o.file_service_type == FIO_FSERVICE_SEQ) 1072 goto out; 1073 if (td->file_service_left--) 1074 goto out; 1075 } 1076 1077 if (td->o.file_service_type == FIO_FSERVICE_RR || 1078 td->o.file_service_type == FIO_FSERVICE_SEQ) 1079 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing); 1080 else 1081 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing); 1082 1083 if (IS_ERR(f)) 1084 return f; 1085 1086 td->file_service_file = f; 1087 td->file_service_left = td->file_service_nr - 1; 1088 out: 1089 if (f) 1090 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name); 1091 else 1092 dprint(FD_FILE, "get_next_file: NULL\n"); 1093 return f; 1094 } 1095 1096 static struct fio_file *get_next_file(struct thread_data *td) 1097 { 1098 if (td->flags & TD_F_PROFILE_OPS) { 1099 struct prof_io_ops *ops = &td->prof_io_ops; 1100 1101 if (ops->get_next_file) 1102 return ops->get_next_file(td); 1103 } 1104 1105 return __get_next_file(td); 1106 } 1107 1108 static long set_io_u_file(struct thread_data *td, struct io_u *io_u) 1109 { 1110 struct fio_file *f; 1111 1112 do { 1113 f = get_next_file(td); 1114 if (IS_ERR_OR_NULL(f)) 1115 return PTR_ERR(f); 1116 1117 io_u->file = f; 1118 get_file(f); 1119 1120 if (!fill_io_u(td, io_u)) 1121 break; 1122 1123 put_file_log(td, f); 1124 td_io_close_file(td, f); 1125 io_u->file = NULL; 1126 fio_file_set_done(f); 1127 td->nr_done_files++; 1128 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name, 1129 td->nr_done_files, td->o.nr_files); 1130 } while (1); 1131 1132 return 0; 1133 } 1134 1135 static void lat_fatal(struct thread_data *td, struct io_completion_data *icd, 1136 unsigned long tusec, unsigned long max_usec) 1137 { 1138 if (!td->error) 1139 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec); 1140 td_verror(td, ETIMEDOUT, "max latency exceeded"); 1141 icd->error = ETIMEDOUT; 1142 } 1143 1144 static void lat_new_cycle(struct thread_data *td) 1145 { 1146 fio_gettime(&td->latency_ts, NULL); 1147 td->latency_ios = ddir_rw_sum(td->io_blocks); 1148 td->latency_failed = 0; 1149 } 1150 1151 /* 1152 * We had an IO outside the latency target. Reduce the queue depth. If we 1153 * are at QD=1, then it's time to give up. 1154 */ 1155 static int __lat_target_failed(struct thread_data *td) 1156 { 1157 if (td->latency_qd == 1) 1158 return 1; 1159 1160 td->latency_qd_high = td->latency_qd; 1161 1162 if (td->latency_qd == td->latency_qd_low) 1163 td->latency_qd_low--; 1164 1165 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2; 1166 1167 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high); 1168 1169 /* 1170 * When we ramp QD down, quiesce existing IO to prevent 1171 * a storm of ramp downs due to pending higher depth. 1172 */ 1173 io_u_quiesce(td); 1174 lat_new_cycle(td); 1175 return 0; 1176 } 1177 1178 static int lat_target_failed(struct thread_data *td) 1179 { 1180 if (td->o.latency_percentile.u.f == 100.0) 1181 return __lat_target_failed(td); 1182 1183 td->latency_failed++; 1184 return 0; 1185 } 1186 1187 void lat_target_init(struct thread_data *td) 1188 { 1189 td->latency_end_run = 0; 1190 1191 if (td->o.latency_target) { 1192 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target); 1193 fio_gettime(&td->latency_ts, NULL); 1194 td->latency_qd = 1; 1195 td->latency_qd_high = td->o.iodepth; 1196 td->latency_qd_low = 1; 1197 td->latency_ios = ddir_rw_sum(td->io_blocks); 1198 } else 1199 td->latency_qd = td->o.iodepth; 1200 } 1201 1202 void lat_target_reset(struct thread_data *td) 1203 { 1204 if (!td->latency_end_run) 1205 lat_target_init(td); 1206 } 1207 1208 static void lat_target_success(struct thread_data *td) 1209 { 1210 const unsigned int qd = td->latency_qd; 1211 struct thread_options *o = &td->o; 1212 1213 td->latency_qd_low = td->latency_qd; 1214 1215 /* 1216 * If we haven't failed yet, we double up to a failing value instead 1217 * of bisecting from highest possible queue depth. If we have set 1218 * a limit other than td->o.iodepth, bisect between that. 1219 */ 1220 if (td->latency_qd_high != o->iodepth) 1221 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2; 1222 else 1223 td->latency_qd *= 2; 1224 1225 if (td->latency_qd > o->iodepth) 1226 td->latency_qd = o->iodepth; 1227 1228 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high); 1229 1230 /* 1231 * Same as last one, we are done. Let it run a latency cycle, so 1232 * we get only the results from the targeted depth. 1233 */ 1234 if (td->latency_qd == qd) { 1235 if (td->latency_end_run) { 1236 dprint(FD_RATE, "We are done\n"); 1237 td->done = 1; 1238 } else { 1239 dprint(FD_RATE, "Quiesce and final run\n"); 1240 io_u_quiesce(td); 1241 td->latency_end_run = 1; 1242 reset_all_stats(td); 1243 reset_io_stats(td); 1244 } 1245 } 1246 1247 lat_new_cycle(td); 1248 } 1249 1250 /* 1251 * Check if we can bump the queue depth 1252 */ 1253 void lat_target_check(struct thread_data *td) 1254 { 1255 uint64_t usec_window; 1256 uint64_t ios; 1257 double success_ios; 1258 1259 usec_window = utime_since_now(&td->latency_ts); 1260 if (usec_window < td->o.latency_window) 1261 return; 1262 1263 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios; 1264 success_ios = (double) (ios - td->latency_failed) / (double) ios; 1265 success_ios *= 100.0; 1266 1267 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f); 1268 1269 if (success_ios >= td->o.latency_percentile.u.f) 1270 lat_target_success(td); 1271 else 1272 __lat_target_failed(td); 1273 } 1274 1275 /* 1276 * If latency target is enabled, we might be ramping up or down and not 1277 * using the full queue depth available. 1278 */ 1279 int queue_full(const struct thread_data *td) 1280 { 1281 const int qempty = io_u_qempty(&td->io_u_freelist); 1282 1283 if (qempty) 1284 return 1; 1285 if (!td->o.latency_target) 1286 return 0; 1287 1288 return td->cur_depth >= td->latency_qd; 1289 } 1290 1291 struct io_u *__get_io_u(struct thread_data *td) 1292 { 1293 struct io_u *io_u = NULL; 1294 1295 if (td->stop_io) 1296 return NULL; 1297 1298 td_io_u_lock(td); 1299 1300 again: 1301 if (!io_u_rempty(&td->io_u_requeues)) 1302 io_u = io_u_rpop(&td->io_u_requeues); 1303 else if (!queue_full(td)) { 1304 io_u = io_u_qpop(&td->io_u_freelist); 1305 1306 io_u->file = NULL; 1307 io_u->buflen = 0; 1308 io_u->resid = 0; 1309 io_u->end_io = NULL; 1310 } 1311 1312 if (io_u) { 1313 assert(io_u->flags & IO_U_F_FREE); 1314 io_u->flags &= ~(IO_U_F_FREE | IO_U_F_NO_FILE_PUT | 1315 IO_U_F_TRIMMED | IO_U_F_BARRIER | 1316 IO_U_F_VER_LIST); 1317 1318 io_u->error = 0; 1319 io_u->acct_ddir = -1; 1320 td->cur_depth++; 1321 io_u->flags |= IO_U_F_IN_CUR_DEPTH; 1322 io_u->ipo = NULL; 1323 } else if (td->o.verify_async) { 1324 /* 1325 * We ran out, wait for async verify threads to finish and 1326 * return one 1327 */ 1328 pthread_cond_wait(&td->free_cond, &td->io_u_lock); 1329 goto again; 1330 } 1331 1332 td_io_u_unlock(td); 1333 return io_u; 1334 } 1335 1336 static int check_get_trim(struct thread_data *td, struct io_u *io_u) 1337 { 1338 if (!(td->flags & TD_F_TRIM_BACKLOG)) 1339 return 0; 1340 1341 if (td->trim_entries) { 1342 int get_trim = 0; 1343 1344 if (td->trim_batch) { 1345 td->trim_batch--; 1346 get_trim = 1; 1347 } else if (!(td->io_hist_len % td->o.trim_backlog) && 1348 td->last_ddir != DDIR_READ) { 1349 td->trim_batch = td->o.trim_batch; 1350 if (!td->trim_batch) 1351 td->trim_batch = td->o.trim_backlog; 1352 get_trim = 1; 1353 } 1354 1355 if (get_trim && !get_next_trim(td, io_u)) 1356 return 1; 1357 } 1358 1359 return 0; 1360 } 1361 1362 static int check_get_verify(struct thread_data *td, struct io_u *io_u) 1363 { 1364 if (!(td->flags & TD_F_VER_BACKLOG)) 1365 return 0; 1366 1367 if (td->io_hist_len) { 1368 int get_verify = 0; 1369 1370 if (td->verify_batch) 1371 get_verify = 1; 1372 else if (!(td->io_hist_len % td->o.verify_backlog) && 1373 td->last_ddir != DDIR_READ) { 1374 td->verify_batch = td->o.verify_batch; 1375 if (!td->verify_batch) 1376 td->verify_batch = td->o.verify_backlog; 1377 get_verify = 1; 1378 } 1379 1380 if (get_verify && !get_next_verify(td, io_u)) { 1381 td->verify_batch--; 1382 return 1; 1383 } 1384 } 1385 1386 return 0; 1387 } 1388 1389 /* 1390 * Fill offset and start time into the buffer content, to prevent too 1391 * easy compressible data for simple de-dupe attempts. Do this for every 1392 * 512b block in the range, since that should be the smallest block size 1393 * we can expect from a device. 1394 */ 1395 static void small_content_scramble(struct io_u *io_u) 1396 { 1397 unsigned int i, nr_blocks = io_u->buflen / 512; 1398 uint64_t boffset; 1399 unsigned int offset; 1400 void *p, *end; 1401 1402 if (!nr_blocks) 1403 return; 1404 1405 p = io_u->xfer_buf; 1406 boffset = io_u->offset; 1407 io_u->buf_filled_len = 0; 1408 1409 for (i = 0; i < nr_blocks; i++) { 1410 /* 1411 * Fill the byte offset into a "random" start offset of 1412 * the buffer, given by the product of the usec time 1413 * and the actual offset. 1414 */ 1415 offset = (io_u->start_time.tv_usec ^ boffset) & 511; 1416 offset &= ~(sizeof(uint64_t) - 1); 1417 if (offset >= 512 - sizeof(uint64_t)) 1418 offset -= sizeof(uint64_t); 1419 memcpy(p + offset, &boffset, sizeof(boffset)); 1420 1421 end = p + 512 - sizeof(io_u->start_time); 1422 memcpy(end, &io_u->start_time, sizeof(io_u->start_time)); 1423 p += 512; 1424 boffset += 512; 1425 } 1426 } 1427 1428 /* 1429 * Return an io_u to be processed. Gets a buflen and offset, sets direction, 1430 * etc. The returned io_u is fully ready to be prepped and submitted. 1431 */ 1432 struct io_u *get_io_u(struct thread_data *td) 1433 { 1434 struct fio_file *f; 1435 struct io_u *io_u; 1436 int do_scramble = 0; 1437 long ret = 0; 1438 1439 io_u = __get_io_u(td); 1440 if (!io_u) { 1441 dprint(FD_IO, "__get_io_u failed\n"); 1442 return NULL; 1443 } 1444 1445 if (check_get_verify(td, io_u)) 1446 goto out; 1447 if (check_get_trim(td, io_u)) 1448 goto out; 1449 1450 /* 1451 * from a requeue, io_u already setup 1452 */ 1453 if (io_u->file) 1454 goto out; 1455 1456 /* 1457 * If using an iolog, grab next piece if any available. 1458 */ 1459 if (td->flags & TD_F_READ_IOLOG) { 1460 if (read_iolog_get(td, io_u)) 1461 goto err_put; 1462 } else if (set_io_u_file(td, io_u)) { 1463 ret = -EBUSY; 1464 dprint(FD_IO, "io_u %p, setting file failed\n", io_u); 1465 goto err_put; 1466 } 1467 1468 f = io_u->file; 1469 if (!f) { 1470 dprint(FD_IO, "io_u %p, setting file failed\n", io_u); 1471 goto err_put; 1472 } 1473 1474 assert(fio_file_open(f)); 1475 1476 if (ddir_rw(io_u->ddir)) { 1477 if (!io_u->buflen && !(td->io_ops->flags & FIO_NOIO)) { 1478 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u); 1479 goto err_put; 1480 } 1481 1482 f->last_start[io_u->ddir] = io_u->offset; 1483 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen; 1484 1485 if (io_u->ddir == DDIR_WRITE) { 1486 if (td->flags & TD_F_REFILL_BUFFERS) { 1487 io_u_fill_buffer(td, io_u, 1488 td->o.min_bs[DDIR_WRITE], 1489 io_u->xfer_buflen); 1490 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) && 1491 !(td->flags & TD_F_COMPRESS)) 1492 do_scramble = 1; 1493 if (td->flags & TD_F_VER_NONE) { 1494 populate_verify_io_u(td, io_u); 1495 do_scramble = 0; 1496 } 1497 } else if (io_u->ddir == DDIR_READ) { 1498 /* 1499 * Reset the buf_filled parameters so next time if the 1500 * buffer is used for writes it is refilled. 1501 */ 1502 io_u->buf_filled_len = 0; 1503 } 1504 } 1505 1506 /* 1507 * Set io data pointers. 1508 */ 1509 io_u->xfer_buf = io_u->buf; 1510 io_u->xfer_buflen = io_u->buflen; 1511 1512 out: 1513 assert(io_u->file); 1514 if (!td_io_prep(td, io_u)) { 1515 if (!td->o.disable_slat) 1516 fio_gettime(&io_u->start_time, NULL); 1517 if (do_scramble) 1518 small_content_scramble(io_u); 1519 return io_u; 1520 } 1521 err_put: 1522 dprint(FD_IO, "get_io_u failed\n"); 1523 put_io_u(td, io_u); 1524 return ERR_PTR(ret); 1525 } 1526 1527 void io_u_log_error(struct thread_data *td, struct io_u *io_u) 1528 { 1529 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error); 1530 1531 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump) 1532 return; 1533 1534 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n", 1535 io_u->file ? " on file " : "", 1536 io_u->file ? io_u->file->file_name : "", 1537 strerror(io_u->error), 1538 io_ddir_name(io_u->ddir), 1539 io_u->offset, io_u->xfer_buflen); 1540 1541 if (!td->error) 1542 td_verror(td, io_u->error, "io_u error"); 1543 } 1544 1545 static inline int gtod_reduce(struct thread_data *td) 1546 { 1547 return td->o.disable_clat && td->o.disable_lat && td->o.disable_slat 1548 && td->o.disable_bw; 1549 } 1550 1551 static void account_io_completion(struct thread_data *td, struct io_u *io_u, 1552 struct io_completion_data *icd, 1553 const enum fio_ddir idx, unsigned int bytes) 1554 { 1555 unsigned long lusec = 0; 1556 1557 if (!gtod_reduce(td)) 1558 lusec = utime_since(&io_u->issue_time, &icd->time); 1559 1560 if (!td->o.disable_lat) { 1561 unsigned long tusec; 1562 1563 tusec = utime_since(&io_u->start_time, &icd->time); 1564 add_lat_sample(td, idx, tusec, bytes, io_u->offset); 1565 1566 if (td->flags & TD_F_PROFILE_OPS) { 1567 struct prof_io_ops *ops = &td->prof_io_ops; 1568 1569 if (ops->io_u_lat) 1570 icd->error = ops->io_u_lat(td, tusec); 1571 } 1572 1573 if (td->o.max_latency && tusec > td->o.max_latency) 1574 lat_fatal(td, icd, tusec, td->o.max_latency); 1575 if (td->o.latency_target && tusec > td->o.latency_target) { 1576 if (lat_target_failed(td)) 1577 lat_fatal(td, icd, tusec, td->o.latency_target); 1578 } 1579 } 1580 1581 if (!td->o.disable_clat) { 1582 add_clat_sample(td, idx, lusec, bytes, io_u->offset); 1583 io_u_mark_latency(td, lusec); 1584 } 1585 1586 if (!td->o.disable_bw) 1587 add_bw_sample(td, idx, bytes, &icd->time); 1588 1589 if (!gtod_reduce(td)) 1590 add_iops_sample(td, idx, bytes, &icd->time); 1591 } 1592 1593 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir) 1594 { 1595 uint64_t secs, remainder, bps, bytes; 1596 1597 bytes = td->this_io_bytes[ddir]; 1598 bps = td->rate_bps[ddir]; 1599 secs = bytes / bps; 1600 remainder = bytes % bps; 1601 return remainder * 1000000 / bps + secs * 1000000; 1602 } 1603 1604 static void io_completed(struct thread_data *td, struct io_u **io_u_ptr, 1605 struct io_completion_data *icd) 1606 { 1607 struct io_u *io_u = *io_u_ptr; 1608 enum fio_ddir ddir = io_u->ddir; 1609 struct fio_file *f = io_u->file; 1610 1611 dprint_io_u(io_u, "io complete"); 1612 1613 td_io_u_lock(td); 1614 assert(io_u->flags & IO_U_F_FLIGHT); 1615 io_u->flags &= ~(IO_U_F_FLIGHT | IO_U_F_BUSY_OK); 1616 1617 /* 1618 * Mark IO ok to verify 1619 */ 1620 if (io_u->ipo) { 1621 /* 1622 * Remove errored entry from the verification list 1623 */ 1624 if (io_u->error) 1625 unlog_io_piece(td, io_u); 1626 else { 1627 io_u->ipo->flags &= ~IP_F_IN_FLIGHT; 1628 write_barrier(); 1629 } 1630 } 1631 1632 td_io_u_unlock(td); 1633 1634 if (ddir_sync(ddir)) { 1635 td->last_was_sync = 1; 1636 if (f) { 1637 f->first_write = -1ULL; 1638 f->last_write = -1ULL; 1639 } 1640 return; 1641 } 1642 1643 td->last_was_sync = 0; 1644 td->last_ddir = ddir; 1645 1646 if (!io_u->error && ddir_rw(ddir)) { 1647 unsigned int bytes = io_u->buflen - io_u->resid; 1648 const enum fio_ddir oddir = ddir ^ 1; 1649 int ret; 1650 1651 td->io_blocks[ddir]++; 1652 td->this_io_blocks[ddir]++; 1653 td->io_bytes[ddir] += bytes; 1654 1655 if (!(io_u->flags & IO_U_F_VER_LIST)) 1656 td->this_io_bytes[ddir] += bytes; 1657 1658 if (ddir == DDIR_WRITE) { 1659 if (f) { 1660 if (f->first_write == -1ULL || 1661 io_u->offset < f->first_write) 1662 f->first_write = io_u->offset; 1663 if (f->last_write == -1ULL || 1664 ((io_u->offset + bytes) > f->last_write)) 1665 f->last_write = io_u->offset + bytes; 1666 } 1667 if (td->last_write_comp) { 1668 int idx = td->last_write_idx++; 1669 1670 td->last_write_comp[idx] = io_u->offset; 1671 if (td->last_write_idx == td->o.iodepth) 1672 td->last_write_idx = 0; 1673 } 1674 } 1675 1676 if (ramp_time_over(td) && (td->runstate == TD_RUNNING || 1677 td->runstate == TD_VERIFYING)) { 1678 account_io_completion(td, io_u, icd, ddir, bytes); 1679 1680 if (__should_check_rate(td, ddir)) { 1681 td->rate_pending_usleep[ddir] = 1682 (usec_for_io(td, ddir) - 1683 utime_since_now(&td->start)); 1684 } 1685 if (ddir != DDIR_TRIM && 1686 __should_check_rate(td, oddir)) { 1687 td->rate_pending_usleep[oddir] = 1688 (usec_for_io(td, oddir) - 1689 utime_since_now(&td->start)); 1690 } 1691 } 1692 1693 icd->bytes_done[ddir] += bytes; 1694 1695 if (io_u->end_io) { 1696 ret = io_u->end_io(td, io_u_ptr); 1697 io_u = *io_u_ptr; 1698 if (ret && !icd->error) 1699 icd->error = ret; 1700 } 1701 } else if (io_u->error) { 1702 icd->error = io_u->error; 1703 io_u_log_error(td, io_u); 1704 } 1705 if (icd->error) { 1706 enum error_type_bit eb = td_error_type(ddir, icd->error); 1707 1708 if (!td_non_fatal_error(td, eb, icd->error)) 1709 return; 1710 1711 /* 1712 * If there is a non_fatal error, then add to the error count 1713 * and clear all the errors. 1714 */ 1715 update_error_count(td, icd->error); 1716 td_clear_error(td); 1717 icd->error = 0; 1718 if (io_u) 1719 io_u->error = 0; 1720 } 1721 } 1722 1723 static void init_icd(struct thread_data *td, struct io_completion_data *icd, 1724 int nr) 1725 { 1726 int ddir; 1727 1728 if (!gtod_reduce(td)) 1729 fio_gettime(&icd->time, NULL); 1730 1731 icd->nr = nr; 1732 1733 icd->error = 0; 1734 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) 1735 icd->bytes_done[ddir] = 0; 1736 } 1737 1738 static void ios_completed(struct thread_data *td, 1739 struct io_completion_data *icd) 1740 { 1741 struct io_u *io_u; 1742 int i; 1743 1744 for (i = 0; i < icd->nr; i++) { 1745 io_u = td->io_ops->event(td, i); 1746 1747 io_completed(td, &io_u, icd); 1748 1749 if (io_u) 1750 put_io_u(td, io_u); 1751 } 1752 } 1753 1754 /* 1755 * Complete a single io_u for the sync engines. 1756 */ 1757 int io_u_sync_complete(struct thread_data *td, struct io_u *io_u, 1758 uint64_t *bytes) 1759 { 1760 struct io_completion_data icd; 1761 1762 init_icd(td, &icd, 1); 1763 io_completed(td, &io_u, &icd); 1764 1765 if (io_u) 1766 put_io_u(td, io_u); 1767 1768 if (icd.error) { 1769 td_verror(td, icd.error, "io_u_sync_complete"); 1770 return -1; 1771 } 1772 1773 if (bytes) { 1774 int ddir; 1775 1776 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) 1777 bytes[ddir] += icd.bytes_done[ddir]; 1778 } 1779 1780 return 0; 1781 } 1782 1783 /* 1784 * Called to complete min_events number of io for the async engines. 1785 */ 1786 int io_u_queued_complete(struct thread_data *td, int min_evts, 1787 uint64_t *bytes) 1788 { 1789 struct io_completion_data icd; 1790 struct timespec *tvp = NULL; 1791 int ret; 1792 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, }; 1793 1794 dprint(FD_IO, "io_u_queued_completed: min=%d\n", min_evts); 1795 1796 if (!min_evts) 1797 tvp = &ts; 1798 else if (min_evts > td->cur_depth) 1799 min_evts = td->cur_depth; 1800 1801 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete, tvp); 1802 if (ret < 0) { 1803 td_verror(td, -ret, "td_io_getevents"); 1804 return ret; 1805 } else if (!ret) 1806 return ret; 1807 1808 init_icd(td, &icd, ret); 1809 ios_completed(td, &icd); 1810 if (icd.error) { 1811 td_verror(td, icd.error, "io_u_queued_complete"); 1812 return -1; 1813 } 1814 1815 if (bytes) { 1816 int ddir; 1817 1818 for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) 1819 bytes[ddir] += icd.bytes_done[ddir]; 1820 } 1821 1822 return 0; 1823 } 1824 1825 /* 1826 * Call when io_u is really queued, to update the submission latency. 1827 */ 1828 void io_u_queued(struct thread_data *td, struct io_u *io_u) 1829 { 1830 if (!td->o.disable_slat) { 1831 unsigned long slat_time; 1832 1833 slat_time = utime_since(&io_u->start_time, &io_u->issue_time); 1834 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen, 1835 io_u->offset); 1836 } 1837 } 1838 1839 /* 1840 * See if we should reuse the last seed, if dedupe is enabled 1841 */ 1842 static struct frand_state *get_buf_state(struct thread_data *td) 1843 { 1844 unsigned int v; 1845 unsigned long r; 1846 1847 if (!td->o.dedupe_percentage) 1848 return &td->buf_state; 1849 else if (td->o.dedupe_percentage == 100) 1850 return &td->buf_state_prev; 1851 1852 r = __rand(&td->dedupe_state); 1853 v = 1 + (int) (100.0 * (r / (FRAND_MAX + 1.0))); 1854 1855 if (v <= td->o.dedupe_percentage) 1856 return &td->buf_state_prev; 1857 1858 return &td->buf_state; 1859 } 1860 1861 static void save_buf_state(struct thread_data *td, struct frand_state *rs) 1862 { 1863 if (rs == &td->buf_state) 1864 frand_copy(&td->buf_state_prev, rs); 1865 } 1866 1867 void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write, 1868 unsigned int max_bs) 1869 { 1870 struct thread_options *o = &td->o; 1871 1872 if (o->compress_percentage || o->dedupe_percentage) { 1873 unsigned int perc = td->o.compress_percentage; 1874 struct frand_state *rs; 1875 unsigned int left = max_bs; 1876 1877 do { 1878 rs = get_buf_state(td); 1879 1880 min_write = min(min_write, left); 1881 1882 if (perc) { 1883 unsigned int seg = min_write; 1884 1885 seg = min(min_write, td->o.compress_chunk); 1886 if (!seg) 1887 seg = min_write; 1888 1889 fill_random_buf_percentage(rs, buf, perc, seg, 1890 min_write, o->buffer_pattern, 1891 o->buffer_pattern_bytes); 1892 } else 1893 fill_random_buf(rs, buf, min_write); 1894 1895 buf += min_write; 1896 left -= min_write; 1897 save_buf_state(td, rs); 1898 } while (left); 1899 } else if (o->buffer_pattern_bytes) 1900 fill_buffer_pattern(td, buf, max_bs); 1901 else 1902 memset(buf, 0, max_bs); 1903 } 1904 1905 /* 1906 * "randomly" fill the buffer contents 1907 */ 1908 void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u, 1909 unsigned int min_write, unsigned int max_bs) 1910 { 1911 io_u->buf_filled_len = 0; 1912 fill_io_buffer(td, io_u->buf, min_write, max_bs); 1913 } 1914