Home | History | Annotate | Download | only in pathops
      1 /*
      2  * Copyright 2012 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 #include "SkOpAngle.h"
      8 #include "SkOpSegment.h"
      9 #include "SkPathOpsCurve.h"
     10 #include "SkTSort.h"
     11 
     12 /* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest
     13    positive y. The largest angle has a positive x and a zero y. */
     14 
     15 #if DEBUG_ANGLE
     16     static bool CompareResult(const char* func, SkString* bugOut, SkString* bugPart, int append,
     17              bool compare) {
     18         SkDebugf("%s %c %d\n", bugOut->c_str(), compare ? 'T' : 'F', append);
     19         SkDebugf("%sPart %s\n", func, bugPart[0].c_str());
     20         SkDebugf("%sPart %s\n", func, bugPart[1].c_str());
     21         SkDebugf("%sPart %s\n", func, bugPart[2].c_str());
     22         return compare;
     23     }
     24 
     25     #define COMPARE_RESULT(append, compare) CompareResult(__FUNCTION__, &bugOut, bugPart, append, \
     26             compare)
     27 #else
     28     #define COMPARE_RESULT(append, compare) compare
     29 #endif
     30 
     31 /*             quarter angle values for sector
     32 
     33 31   x > 0, y == 0              horizontal line (to the right)
     34 0    x > 0, y == epsilon        quad/cubic horizontal tangent eventually going +y
     35 1    x > 0, y > 0, x > y        nearer horizontal angle
     36 2                  x + e == y   quad/cubic 45 going horiz
     37 3    x > 0, y > 0, x == y       45 angle
     38 4                  x == y + e   quad/cubic 45 going vert
     39 5    x > 0, y > 0, x < y        nearer vertical angle
     40 6    x == epsilon, y > 0        quad/cubic vertical tangent eventually going +x
     41 7    x == 0, y > 0              vertical line (to the top)
     42 
     43                                       8  7  6
     44                                  9       |       5
     45                               10         |          4
     46                             11           |            3
     47                           12  \          |           / 2
     48                          13              |              1
     49                         14               |               0
     50                         15 --------------+------------- 31
     51                         16               |              30
     52                          17              |             29
     53                           18  /          |          \ 28
     54                             19           |           27
     55                               20         |         26
     56                                  21      |      25
     57                                      22 23 24
     58 */
     59 
     60 // return true if lh < this < rh
     61 bool SkOpAngle::after(SkOpAngle* test) {
     62     SkOpAngle* lh = test;
     63     SkOpAngle* rh = lh->fNext;
     64     SkASSERT(lh != rh);
     65 #if DEBUG_ANGLE
     66     SkString bugOut;
     67     bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
     68                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
     69                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
     70             lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
     71             lh->fStart->t(), lh->fEnd->t(),
     72             segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
     73             rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
     74             rh->fStart->t(), rh->fEnd->t());
     75     SkString bugPart[3] = { lh->debugPart(), this->debugPart(), rh->debugPart() };
     76 #endif
     77     if (lh->fComputeSector && !lh->computeSector()) {
     78         return COMPARE_RESULT(1, true);
     79     }
     80     if (fComputeSector && !this->computeSector()) {
     81         return COMPARE_RESULT(2, true);
     82     }
     83     if (rh->fComputeSector && !rh->computeSector()) {
     84         return COMPARE_RESULT(3, true);
     85     }
     86 #if DEBUG_ANGLE  // reset bugOut with computed sectors
     87     bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
     88                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
     89                   " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
     90             lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
     91             lh->fStart->t(), lh->fEnd->t(),
     92             segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
     93             rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
     94             rh->fStart->t(), rh->fEnd->t());
     95 #endif
     96     bool ltrOverlap = (lh->fSectorMask | rh->fSectorMask) & fSectorMask;
     97     bool lrOverlap = lh->fSectorMask & rh->fSectorMask;
     98     int lrOrder;  // set to -1 if either order works
     99     if (!lrOverlap) {  // no lh/rh sector overlap
    100         if (!ltrOverlap) {  // no lh/this/rh sector overlap
    101             return COMPARE_RESULT(4,  (lh->fSectorEnd > rh->fSectorStart)
    102                     ^ (fSectorStart > lh->fSectorEnd) ^ (fSectorStart > rh->fSectorStart));
    103         }
    104         int lrGap = (rh->fSectorStart - lh->fSectorStart + 32) & 0x1f;
    105         /* A tiny change can move the start +/- 4. The order can only be determined if
    106            lr gap is not 12 to 20 or -12 to -20.
    107                -31 ..-21      1
    108                -20 ..-12     -1
    109                -11 .. -1      0
    110                  0          shouldn't get here
    111                 11 ..  1      1
    112                 12 .. 20     -1
    113                 21 .. 31      0
    114          */
    115         lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1;
    116     } else {
    117         lrOrder = (int) lh->orderable(rh);
    118         if (!ltrOverlap) {
    119             return COMPARE_RESULT(5, !lrOrder);
    120         }
    121     }
    122     int ltOrder;
    123     SkASSERT((lh->fSectorMask & fSectorMask) || (rh->fSectorMask & fSectorMask));
    124     if (lh->fSectorMask & fSectorMask) {
    125         ltOrder = (int) lh->orderable(this);
    126     } else {
    127         int ltGap = (fSectorStart - lh->fSectorStart + 32) & 0x1f;
    128         ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1;
    129     }
    130     int trOrder;
    131     if (rh->fSectorMask & fSectorMask) {
    132         trOrder = (int) orderable(rh);
    133     } else {
    134         int trGap = (rh->fSectorStart - fSectorStart + 32) & 0x1f;
    135         trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1;
    136     }
    137     if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) {
    138         return COMPARE_RESULT(7, lrOrder ? (ltOrder & trOrder) : (ltOrder | trOrder));
    139     }
    140     SkASSERT(lrOrder >= 0 || ltOrder >= 0 || trOrder >= 0);
    141 // There's not enough information to sort. Get the pairs of angles in opposite planes.
    142 // If an order is < 0, the pair is already in an opposite plane. Check the remaining pairs.
    143     // FIXME : once all variants are understood, rewrite this more simply
    144     if (ltOrder == 0 && lrOrder == 0) {
    145         SkASSERT(trOrder < 0);
    146         // FIXME : once this is verified to work, remove one opposite angle call
    147         SkDEBUGCODE(bool lrOpposite = lh->oppositePlanes(rh));
    148         bool ltOpposite = lh->oppositePlanes(this);
    149         SkASSERT(lrOpposite != ltOpposite);
    150         return COMPARE_RESULT(8, ltOpposite);
    151     } else if (ltOrder == 1 && trOrder == 0) {
    152         SkASSERT(lrOrder < 0);
    153         SkDEBUGCODE(bool ltOpposite = lh->oppositePlanes(this));
    154         bool trOpposite = oppositePlanes(rh);
    155         SkASSERT(ltOpposite != trOpposite);
    156         return COMPARE_RESULT(9, trOpposite);
    157     } else if (lrOrder == 1 && trOrder == 1) {
    158         SkASSERT(ltOrder < 0);
    159         SkDEBUGCODE(bool trOpposite = oppositePlanes(rh));
    160         bool lrOpposite = lh->oppositePlanes(rh);
    161         SkASSERT(lrOpposite != trOpposite);
    162         return COMPARE_RESULT(10, lrOpposite);
    163     }
    164     if (lrOrder < 0) {
    165         if (ltOrder < 0) {
    166             return COMPARE_RESULT(11, trOrder);
    167         }
    168         return COMPARE_RESULT(12, ltOrder);
    169     }
    170     return COMPARE_RESULT(13, !lrOrder);
    171 }
    172 
    173 // given a line, see if the opposite curve's convex hull is all on one side
    174 // returns -1=not on one side    0=this CW of test   1=this CCW of test
    175 int SkOpAngle::allOnOneSide(const SkOpAngle* test) {
    176     SkASSERT(!fIsCurve);
    177     SkASSERT(test->fIsCurve);
    178     const SkDPoint& origin = test->fCurvePart[0];
    179     SkVector line;
    180     if (segment()->verb() == SkPath::kLine_Verb) {
    181         const SkPoint* linePts = segment()->pts();
    182         int lineStart = fStart->t() < fEnd->t() ? 0 : 1;
    183         line = linePts[lineStart ^ 1] - linePts[lineStart];
    184     } else {
    185         line = (fCurvePart[1] - fCurvePart[0]).asSkVector();
    186     }
    187     float crosses[3];
    188     SkPath::Verb testVerb = test->segment()->verb();
    189     int iMax = SkPathOpsVerbToPoints(testVerb);
    190 //    SkASSERT(origin == test.fCurveHalf[0]);
    191     const SkDCurve& testCurve = test->fCurvePart;
    192     for (int index = 1; index <= iMax; ++index) {
    193         float xy1 = (float) (line.fX * (testCurve[index].fY - origin.fY));
    194         float xy2 = (float) (line.fY * (testCurve[index].fX - origin.fX));
    195         crosses[index - 1] = AlmostEqualUlps(xy1, xy2) ? 0 : xy1 - xy2;
    196     }
    197     if (crosses[0] * crosses[1] < 0) {
    198         return -1;
    199     }
    200     if (SkPath::kCubic_Verb == testVerb) {
    201         if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) {
    202             return -1;
    203         }
    204     }
    205     if (crosses[0]) {
    206         return crosses[0] < 0;
    207     }
    208     if (crosses[1]) {
    209         return crosses[1] < 0;
    210     }
    211     if (SkPath::kCubic_Verb == testVerb && crosses[2]) {
    212         return crosses[2] < 0;
    213     }
    214     fUnorderable = true;
    215     return -1;
    216 }
    217 
    218 bool SkOpAngle::checkCrossesZero() const {
    219     int start = SkTMin(fSectorStart, fSectorEnd);
    220     int end = SkTMax(fSectorStart, fSectorEnd);
    221     bool crossesZero = end - start > 16;
    222     return crossesZero;
    223 }
    224 
    225 bool SkOpAngle::checkParallel(SkOpAngle* rh) {
    226     SkDVector scratch[2];
    227     const SkDVector* sweep, * tweep;
    228     if (!this->fUnorderedSweep) {
    229         sweep = this->fSweep;
    230     } else {
    231         scratch[0] = this->fCurvePart[1] - this->fCurvePart[0];
    232         sweep = &scratch[0];
    233     }
    234     if (!rh->fUnorderedSweep) {
    235         tweep = rh->fSweep;
    236     } else {
    237         scratch[1] = rh->fCurvePart[1] - rh->fCurvePart[0];
    238         tweep = &scratch[1];
    239     }
    240     double s0xt0 = sweep->crossCheck(*tweep);
    241     if (tangentsDiverge(rh, s0xt0)) {
    242         return s0xt0 < 0;
    243     }
    244     // compute the perpendicular to the endpoints and see where it intersects the opposite curve
    245     // if the intersections within the t range, do a cross check on those
    246     bool inside;
    247     if (!fCurvePart[SkPathOpsVerbToPoints(this->segment()->verb())].approximatelyEqual(
    248             rh->fCurvePart[SkPathOpsVerbToPoints(rh->segment()->verb())])) {
    249         if (this->endToSide(rh, &inside)) {
    250             return inside;
    251         }
    252         if (rh->endToSide(this, &inside)) {
    253             return !inside;
    254         }
    255     }
    256     if (this->midToSide(rh, &inside)) {
    257         return inside;
    258     }
    259     if (rh->midToSide(this, &inside)) {
    260         return !inside;
    261     }
    262     // compute the cross check from the mid T values (last resort)
    263     SkDVector m0 = segment()->dPtAtT(this->midT()) - this->fCurvePart[0];
    264     SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fCurvePart[0];
    265     double m0xm1 = m0.crossCheck(m1);
    266     if (m0xm1 == 0) {
    267         this->fUnorderable = true;
    268         rh->fUnorderable = true;
    269         return true;
    270     }
    271     return m0xm1 < 0;
    272 }
    273 
    274 // the original angle is too short to get meaningful sector information
    275 // lengthen it until it is long enough to be meaningful or leave it unset if lengthening it
    276 // would cause it to intersect one of the adjacent angles
    277 bool SkOpAngle::computeSector() {
    278     if (fComputedSector) {
    279         return !fUnorderable;
    280     }
    281     fComputedSector = true;
    282     bool stepUp = fStart->t() < fEnd->t();
    283     const SkOpSpanBase* checkEnd = fEnd;
    284     if (checkEnd->final() && stepUp) {
    285         fUnorderable = true;
    286         return false;
    287     }
    288     do {
    289 // advance end
    290         const SkOpSegment* other = checkEnd->segment();
    291         const SkOpSpanBase* oSpan = other->head();
    292         do {
    293             if (oSpan->segment() != segment()) {
    294                 continue;
    295             }
    296             if (oSpan == checkEnd) {
    297                 continue;
    298             }
    299             if (!approximately_equal(oSpan->t(), checkEnd->t())) {
    300                 continue;
    301             }
    302             goto recomputeSector;
    303         } while (!oSpan->final() && (oSpan = oSpan->upCast()->next()));
    304         checkEnd = stepUp ? !checkEnd->final()
    305                 ? checkEnd->upCast()->next() : nullptr
    306                 : checkEnd->prev();
    307     } while (checkEnd);
    308 recomputeSector:
    309     SkOpSpanBase* computedEnd = stepUp ? checkEnd ? checkEnd->prev() : fEnd->segment()->head()
    310             : checkEnd ? checkEnd->upCast()->next() : fEnd->segment()->tail();
    311     if (checkEnd == fEnd || computedEnd == fEnd || computedEnd == fStart) {
    312         fUnorderable = true;
    313         return false;
    314     }
    315     if (stepUp != (fStart->t() < computedEnd->t())) {
    316         fUnorderable = true;
    317         return false;
    318     }
    319     SkOpSpanBase* saveEnd = fEnd;
    320     fComputedEnd = fEnd = computedEnd;
    321     setSpans();
    322     setSector();
    323     fEnd = saveEnd;
    324     return !fUnorderable;
    325 }
    326 
    327 int SkOpAngle::convexHullOverlaps(const SkOpAngle* rh) const {
    328     const SkDVector* sweep = this->fSweep;
    329     const SkDVector* tweep = rh->fSweep;
    330     double s0xs1 = sweep[0].crossCheck(sweep[1]);
    331     double s0xt0 = sweep[0].crossCheck(tweep[0]);
    332     double s1xt0 = sweep[1].crossCheck(tweep[0]);
    333     bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0;
    334     double s0xt1 = sweep[0].crossCheck(tweep[1]);
    335     double s1xt1 = sweep[1].crossCheck(tweep[1]);
    336     tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0;
    337     double t0xt1 = tweep[0].crossCheck(tweep[1]);
    338     if (tBetweenS) {
    339         return -1;
    340     }
    341     if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) {  // s0 to s1 equals t0 to t1
    342         return -1;
    343     }
    344     bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0;
    345     sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0;
    346     if (sBetweenT) {
    347         return -1;
    348     }
    349     // if all of the sweeps are in the same half plane, then the order of any pair is enough
    350     if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) {
    351         return 0;
    352     }
    353     if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) {
    354         return 1;
    355     }
    356     // if the outside sweeps are greater than 180 degress:
    357         // first assume the inital tangents are the ordering
    358         // if the midpoint direction matches the inital order, that is enough
    359     SkDVector m0 = this->segment()->dPtAtT(this->midT()) - this->fCurvePart[0];
    360     SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fCurvePart[0];
    361     double m0xm1 = m0.crossCheck(m1);
    362     if (s0xt0 > 0 && m0xm1 > 0) {
    363         return 0;
    364     }
    365     if (s0xt0 < 0 && m0xm1 < 0) {
    366         return 1;
    367     }
    368     if (tangentsDiverge(rh, s0xt0)) {
    369         return s0xt0 < 0;
    370     }
    371     return m0xm1 < 0;
    372 }
    373 
    374 // OPTIMIZATION: longest can all be either lazily computed here or precomputed in setup
    375 double SkOpAngle::distEndRatio(double dist) const {
    376     double longest = 0;
    377     const SkOpSegment& segment = *this->segment();
    378     int ptCount = SkPathOpsVerbToPoints(segment.verb());
    379     const SkPoint* pts = segment.pts();
    380     for (int idx1 = 0; idx1 <= ptCount - 1; ++idx1) {
    381         for (int idx2 = idx1 + 1; idx2 <= ptCount; ++idx2) {
    382             if (idx1 == idx2) {
    383                 continue;
    384             }
    385             SkDVector v;
    386             v.set(pts[idx2] - pts[idx1]);
    387             double lenSq = v.lengthSquared();
    388             longest = SkTMax(longest, lenSq);
    389         }
    390     }
    391     return sqrt(longest) / dist;
    392 }
    393 
    394 bool SkOpAngle::endsIntersect(SkOpAngle* rh) {
    395     SkPath::Verb lVerb = this->segment()->verb();
    396     SkPath::Verb rVerb = rh->segment()->verb();
    397     int lPts = SkPathOpsVerbToPoints(lVerb);
    398     int rPts = SkPathOpsVerbToPoints(rVerb);
    399     SkDLine rays[] = {{{this->fCurvePart[0], rh->fCurvePart[rPts]}},
    400             {{this->fCurvePart[0], this->fCurvePart[lPts]}}};
    401     if (rays[0][1] == rays[1][1]) {
    402         return checkParallel(rh);
    403     }
    404     double smallTs[2] = {-1, -1};
    405     bool limited[2] = {false, false};
    406     for (int index = 0; index < 2; ++index) {
    407         SkPath::Verb cVerb = index ? rVerb : lVerb;
    408         // if the curve is a line, then the line and the ray intersect only at their crossing
    409         if (cVerb == SkPath::kLine_Verb) {
    410             continue;
    411         }
    412         const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
    413         SkIntersections i;
    414         (*CurveIntersectRay[cVerb])(segment.pts(), segment.weight(), rays[index], &i);
    415         double tStart = index ? rh->fStart->t() : this->fStart->t();
    416         double tEnd = index ? rh->fComputedEnd->t() : this->fComputedEnd->t();
    417         bool testAscends = tStart < (index ? rh->fComputedEnd->t() : this->fComputedEnd->t());
    418         double t = testAscends ? 0 : 1;
    419         for (int idx2 = 0; idx2 < i.used(); ++idx2) {
    420             double testT = i[0][idx2];
    421             if (!approximately_between_orderable(tStart, testT, tEnd)) {
    422                 continue;
    423             }
    424             if (approximately_equal_orderable(tStart, testT)) {
    425                 continue;
    426             }
    427             smallTs[index] = t = testAscends ? SkTMax(t, testT) : SkTMin(t, testT);
    428             limited[index] = approximately_equal_orderable(t, tEnd);
    429         }
    430     }
    431     bool sRayLonger = false;
    432     SkDVector sCept = {0, 0};
    433     double sCeptT = -1;
    434     int sIndex = -1;
    435     bool useIntersect = false;
    436     for (int index = 0; index < 2; ++index) {
    437         if (smallTs[index] < 0) {
    438             continue;
    439         }
    440         const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
    441         const SkDPoint& dPt = segment.dPtAtT(smallTs[index]);
    442         SkDVector cept = dPt - rays[index][0];
    443         // If this point is on the curve, it should have been detected earlier by ordinary
    444         // curve intersection. This may be hard to determine in general, but for lines,
    445         // the point could be close to or equal to its end, but shouldn't be near the start.
    446         if ((index ? lPts : rPts) == 1) {
    447             SkDVector total = rays[index][1] - rays[index][0];
    448             if (cept.lengthSquared() * 2 < total.lengthSquared()) {
    449                 continue;
    450             }
    451         }
    452         SkDVector end = rays[index][1] - rays[index][0];
    453         if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) {
    454             continue;
    455         }
    456         double rayDist = cept.length();
    457         double endDist = end.length();
    458         bool rayLonger = rayDist > endDist;
    459         if (limited[0] && limited[1] && rayLonger) {
    460             useIntersect = true;
    461             sRayLonger = rayLonger;
    462             sCept = cept;
    463             sCeptT = smallTs[index];
    464             sIndex = index;
    465             break;
    466         }
    467         double delta = fabs(rayDist - endDist);
    468         double minX, minY, maxX, maxY;
    469         minX = minY = SK_ScalarInfinity;
    470         maxX = maxY = -SK_ScalarInfinity;
    471         const SkDCurve& curve = index ? rh->fCurvePart : this->fCurvePart;
    472         int ptCount = index ? rPts : lPts;
    473         for (int idx2 = 0; idx2 <= ptCount; ++idx2) {
    474             minX = SkTMin(minX, curve[idx2].fX);
    475             minY = SkTMin(minY, curve[idx2].fY);
    476             maxX = SkTMax(maxX, curve[idx2].fX);
    477             maxY = SkTMax(maxY, curve[idx2].fY);
    478         }
    479         double maxWidth = SkTMax(maxX - minX, maxY - minY);
    480         delta /= maxWidth;
    481         if (delta > 1e-3 && (useIntersect ^= true)) {  // FIXME: move this magic number
    482             sRayLonger = rayLonger;
    483             sCept = cept;
    484             sCeptT = smallTs[index];
    485             sIndex = index;
    486         }
    487     }
    488     if (useIntersect) {
    489         const SkDCurve& curve = sIndex ? rh->fCurvePart : this->fCurvePart;
    490         const SkOpSegment& segment = sIndex ? *rh->segment() : *this->segment();
    491         double tStart = sIndex ? rh->fStart->t() : fStart->t();
    492         SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0];
    493         double septDir = mid.crossCheck(sCept);
    494         if (!septDir) {
    495             return checkParallel(rh);
    496         }
    497         return sRayLonger ^ (sIndex == 0) ^ (septDir < 0);
    498     } else {
    499         return checkParallel(rh);
    500     }
    501 }
    502 
    503 bool SkOpAngle::endToSide(const SkOpAngle* rh, bool* inside) const {
    504     const SkOpSegment* segment = this->segment();
    505     SkPath::Verb verb = segment->verb();
    506     SkDLine rayEnd;
    507     rayEnd[0].set(this->fEnd->pt());
    508     rayEnd[1] = rayEnd[0];
    509     SkDVector slopeAtEnd = (*CurveDSlopeAtT[verb])(segment->pts(), segment->weight(),
    510             this->fEnd->t());
    511     rayEnd[1].fX += slopeAtEnd.fY;
    512     rayEnd[1].fY -= slopeAtEnd.fX;
    513     SkIntersections iEnd;
    514     const SkOpSegment* oppSegment = rh->segment();
    515     SkPath::Verb oppVerb = oppSegment->verb();
    516     (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayEnd, &iEnd);
    517     double endDist;
    518     int closestEnd = iEnd.closestTo(rh->fStart->t(), rh->fEnd->t(), rayEnd[0], &endDist);
    519     if (closestEnd < 0) {
    520         return false;
    521     }
    522     if (!endDist) {
    523         return false;
    524     }
    525     SkDPoint start;
    526     start.set(this->fStart->pt());
    527     // OPTIMIZATION: multiple times in the code we find the max scalar
    528     double minX, minY, maxX, maxY;
    529     minX = minY = SK_ScalarInfinity;
    530     maxX = maxY = -SK_ScalarInfinity;
    531     const SkDCurve& curve = rh->fCurvePart;
    532     int oppPts = SkPathOpsVerbToPoints(oppVerb);
    533     for (int idx2 = 0; idx2 <= oppPts; ++idx2) {
    534         minX = SkTMin(minX, curve[idx2].fX);
    535         minY = SkTMin(minY, curve[idx2].fY);
    536         maxX = SkTMax(maxX, curve[idx2].fX);
    537         maxY = SkTMax(maxY, curve[idx2].fY);
    538     }
    539     double maxWidth = SkTMax(maxX - minX, maxY - minY);
    540     endDist /= maxWidth;
    541     if (endDist < 5e-11) {  // empirically found
    542         return false;
    543     }
    544     const SkDPoint* endPt = &rayEnd[0];
    545     SkDPoint oppPt = iEnd.pt(closestEnd);
    546     SkDVector vLeft = *endPt - start;
    547     SkDVector vRight = oppPt - start;
    548     double dir = vLeft.crossCheck(vRight);
    549     if (!dir) {
    550         return false;
    551     }
    552     *inside = dir < 0;
    553     return true;
    554 }
    555 
    556 /*      y<0 y==0 y>0  x<0 x==0 x>0 xy<0 xy==0 xy>0
    557     0    x                      x               x
    558     1    x                      x          x
    559     2    x                      x    x
    560     3    x                  x        x
    561     4    x             x             x
    562     5    x             x                   x
    563     6    x             x                        x
    564     7         x        x                        x
    565     8             x    x                        x
    566     9             x    x                   x
    567     10            x    x             x
    568     11            x         x        x
    569     12            x             x    x
    570     13            x             x          x
    571     14            x             x               x
    572     15        x                 x               x
    573 */
    574 int SkOpAngle::findSector(SkPath::Verb verb, double x, double y) const {
    575     double absX = fabs(x);
    576     double absY = fabs(y);
    577     double xy = SkPath::kLine_Verb == verb || !AlmostEqualUlps(absX, absY) ? absX - absY : 0;
    578     // If there are four quadrants and eight octants, and since the Latin for sixteen is sedecim,
    579     // one could coin the term sedecimant for a space divided into 16 sections.
    580    // http://english.stackexchange.com/questions/133688/word-for-something-partitioned-into-16-parts
    581     static const int sedecimant[3][3][3] = {
    582     //       y<0           y==0           y>0
    583     //   x<0 x==0 x>0  x<0 x==0 x>0  x<0 x==0 x>0
    584         {{ 4,  3,  2}, { 7, -1, 15}, {10, 11, 12}},  // abs(x) <  abs(y)
    585         {{ 5, -1,  1}, {-1, -1, -1}, { 9, -1, 13}},  // abs(x) == abs(y)
    586         {{ 6,  3,  0}, { 7, -1, 15}, { 8, 11, 14}},  // abs(x) >  abs(y)
    587     };
    588     int sector = sedecimant[(xy >= 0) + (xy > 0)][(y >= 0) + (y > 0)][(x >= 0) + (x > 0)] * 2 + 1;
    589 //    SkASSERT(SkPath::kLine_Verb == verb || sector >= 0);
    590     return sector;
    591 }
    592 
    593 SkOpGlobalState* SkOpAngle::globalState() const {
    594     return this->segment()->globalState();
    595 }
    596 
    597 
    598 // OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side
    599 // OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side
    600 void SkOpAngle::insert(SkOpAngle* angle) {
    601     if (angle->fNext) {
    602         if (loopCount() >= angle->loopCount()) {
    603             if (!merge(angle)) {
    604                 return;
    605             }
    606         } else if (fNext) {
    607             if (!angle->merge(this)) {
    608                 return;
    609             }
    610         } else {
    611             angle->insert(this);
    612         }
    613         return;
    614     }
    615     bool singleton = nullptr == fNext;
    616     if (singleton) {
    617         fNext = this;
    618     }
    619     SkOpAngle* next = fNext;
    620     if (next->fNext == this) {
    621         if (singleton || angle->after(this)) {
    622             this->fNext = angle;
    623             angle->fNext = next;
    624         } else {
    625             next->fNext = angle;
    626             angle->fNext = this;
    627         }
    628         debugValidateNext();
    629         return;
    630     }
    631     SkOpAngle* last = this;
    632     do {
    633         SkASSERT(last->fNext == next);
    634         if (angle->after(last)) {
    635             last->fNext = angle;
    636             angle->fNext = next;
    637             debugValidateNext();
    638             return;
    639         }
    640         last = next;
    641         next = next->fNext;
    642         if (last == this) {
    643             if (next->fUnorderable) {
    644                 fUnorderable = true;
    645             } else {
    646                 globalState()->setAngleCoincidence();
    647                 this->fNext = angle;
    648                 angle->fNext = next;
    649                 angle->fCheckCoincidence = true;
    650             }
    651             return;
    652         }
    653     } while (true);
    654 }
    655 
    656 SkOpSpanBase* SkOpAngle::lastMarked() const {
    657     if (fLastMarked) {
    658         if (fLastMarked->chased()) {
    659             return nullptr;
    660         }
    661         fLastMarked->setChased(true);
    662     }
    663     return fLastMarked;
    664 }
    665 
    666 bool SkOpAngle::loopContains(const SkOpAngle* angle) const {
    667     if (!fNext) {
    668         return false;
    669     }
    670     const SkOpAngle* first = this;
    671     const SkOpAngle* loop = this;
    672     const SkOpSegment* tSegment = angle->fStart->segment();
    673     double tStart = angle->fStart->t();
    674     double tEnd = angle->fEnd->t();
    675     do {
    676         const SkOpSegment* lSegment = loop->fStart->segment();
    677         if (lSegment != tSegment) {
    678             continue;
    679         }
    680         double lStart = loop->fStart->t();
    681         if (lStart != tEnd) {
    682             continue;
    683         }
    684         double lEnd = loop->fEnd->t();
    685         if (lEnd == tStart) {
    686             return true;
    687         }
    688     } while ((loop = loop->fNext) != first);
    689     return false;
    690 }
    691 
    692 int SkOpAngle::loopCount() const {
    693     int count = 0;
    694     const SkOpAngle* first = this;
    695     const SkOpAngle* next = this;
    696     do {
    697         next = next->fNext;
    698         ++count;
    699     } while (next && next != first);
    700     return count;
    701 }
    702 
    703 bool SkOpAngle::merge(SkOpAngle* angle) {
    704     SkASSERT(fNext);
    705     SkASSERT(angle->fNext);
    706     SkOpAngle* working = angle;
    707     do {
    708         if (this == working) {
    709             return false;
    710         }
    711         working = working->fNext;
    712     } while (working != angle);
    713     do {
    714         SkOpAngle* next = working->fNext;
    715         working->fNext = nullptr;
    716         insert(working);
    717         working = next;
    718     } while (working != angle);
    719     // it's likely that a pair of the angles are unorderable
    720     debugValidateNext();
    721     return true;
    722 }
    723 
    724 double SkOpAngle::midT() const {
    725     return (fStart->t() + fEnd->t()) / 2;
    726 }
    727 
    728 bool SkOpAngle::midToSide(const SkOpAngle* rh, bool* inside) const {
    729     const SkOpSegment* segment = this->segment();
    730     SkPath::Verb verb = segment->verb();
    731     const SkPoint& startPt = this->fStart->pt();
    732     const SkPoint& endPt = this->fEnd->pt();
    733     SkDPoint dStartPt;
    734     dStartPt.set(startPt);
    735     SkDLine rayMid;
    736     rayMid[0].fX = (startPt.fX + endPt.fX) / 2;
    737     rayMid[0].fY = (startPt.fY + endPt.fY) / 2;
    738     rayMid[1].fX = rayMid[0].fX + (endPt.fY - startPt.fY);
    739     rayMid[1].fY = rayMid[0].fY - (endPt.fX - startPt.fX);
    740     SkIntersections iMid;
    741     (*CurveIntersectRay[verb])(segment->pts(), segment->weight(), rayMid, &iMid);
    742     int iOutside = iMid.mostOutside(this->fStart->t(), this->fEnd->t(), dStartPt);
    743     if (iOutside < 0) {
    744         return false;
    745     }
    746     const SkOpSegment* oppSegment = rh->segment();
    747     SkPath::Verb oppVerb = oppSegment->verb();
    748     SkIntersections oppMid;
    749     (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayMid, &oppMid);
    750     int oppOutside = oppMid.mostOutside(rh->fStart->t(), rh->fEnd->t(), dStartPt);
    751     if (oppOutside < 0) {
    752         return false;
    753     }
    754     SkDVector iSide = iMid.pt(iOutside) - dStartPt;
    755     SkDVector oppSide = oppMid.pt(oppOutside) - dStartPt;
    756     double dir = iSide.crossCheck(oppSide);
    757     if (!dir) {
    758         return false;
    759     }
    760     *inside = dir < 0;
    761     return true;
    762 }
    763 
    764 bool SkOpAngle::oppositePlanes(const SkOpAngle* rh) const {
    765     int startSpan = SkTAbs(rh->fSectorStart - fSectorStart);
    766     return startSpan >= 8;
    767 }
    768 
    769 bool SkOpAngle::orderable(SkOpAngle* rh) {
    770     int result;
    771     if (!fIsCurve) {
    772         if (!rh->fIsCurve) {
    773             double leftX = fTangentHalf.dx();
    774             double leftY = fTangentHalf.dy();
    775             double rightX = rh->fTangentHalf.dx();
    776             double rightY = rh->fTangentHalf.dy();
    777             double x_ry = leftX * rightY;
    778             double rx_y = rightX * leftY;
    779             if (x_ry == rx_y) {
    780                 if (leftX * rightX < 0 || leftY * rightY < 0) {
    781                     return true;  // exactly 180 degrees apart
    782                 }
    783                 goto unorderable;
    784             }
    785             SkASSERT(x_ry != rx_y); // indicates an undetected coincidence -- worth finding earlier
    786             return x_ry < rx_y;
    787         }
    788         if ((result = allOnOneSide(rh)) >= 0) {
    789             return result;
    790         }
    791         if (fUnorderable || approximately_zero(rh->fSide)) {
    792             goto unorderable;
    793         }
    794     } else if (!rh->fIsCurve) {
    795         if ((result = rh->allOnOneSide(this)) >= 0) {
    796             return !result;
    797         }
    798         if (rh->fUnorderable || approximately_zero(fSide)) {
    799             goto unorderable;
    800         }
    801     }
    802     if ((result = convexHullOverlaps(rh)) >= 0) {
    803         return result;
    804     }
    805     return endsIntersect(rh);
    806 unorderable:
    807     fUnorderable = true;
    808     rh->fUnorderable = true;
    809     return true;
    810 }
    811 
    812 // OPTIMIZE: if this shows up in a profile, add a previous pointer
    813 // as is, this should be rarely called
    814 SkOpAngle* SkOpAngle::previous() const {
    815     SkOpAngle* last = fNext;
    816     do {
    817         SkOpAngle* next = last->fNext;
    818         if (next == this) {
    819             return last;
    820         }
    821         last = next;
    822     } while (true);
    823 }
    824 
    825 SkOpSegment* SkOpAngle::segment() const {
    826     return fStart->segment();
    827 }
    828 
    829 void SkOpAngle::set(SkOpSpanBase* start, SkOpSpanBase* end) {
    830     fStart = start;
    831     fComputedEnd = fEnd = end;
    832     SkASSERT(start != end);
    833     fNext = nullptr;
    834     fComputeSector = fComputedSector = fCheckCoincidence = false;
    835     setSpans();
    836     setSector();
    837     SkDEBUGCODE(fID = start ? start->globalState()->nextAngleID() : -1);
    838 }
    839 
    840 void SkOpAngle::setCurveHullSweep() {
    841     fUnorderedSweep = false;
    842     fSweep[0] = fCurvePart[1] - fCurvePart[0];
    843     const SkOpSegment* segment = fStart->segment();
    844     if (SkPath::kLine_Verb == segment->verb()) {
    845         fSweep[1] = fSweep[0];
    846         return;
    847     }
    848     fSweep[1] = fCurvePart[2] - fCurvePart[0];
    849     if (SkPath::kCubic_Verb != segment->verb()) {
    850         if (!fSweep[0].fX && !fSweep[0].fY) {
    851             fSweep[0] = fSweep[1];
    852         }
    853         return;
    854     }
    855     SkDVector thirdSweep = fCurvePart[3] - fCurvePart[0];
    856     if (fSweep[0].fX == 0 && fSweep[0].fY == 0) {
    857         fSweep[0] = fSweep[1];
    858         fSweep[1] = thirdSweep;
    859         if (fSweep[0].fX == 0 && fSweep[0].fY == 0) {
    860             fSweep[0] = fSweep[1];
    861             fCurvePart[1] = fCurvePart[3];
    862             fIsCurve = false;
    863         }
    864         return;
    865     }
    866     double s1x3 = fSweep[0].crossCheck(thirdSweep);
    867     double s3x2 = thirdSweep.crossCheck(fSweep[1]);
    868     if (s1x3 * s3x2 >= 0) {  // if third vector is on or between first two vectors
    869         return;
    870     }
    871     double s2x1 = fSweep[1].crossCheck(fSweep[0]);
    872     // FIXME: If the sweep of the cubic is greater than 180 degrees, we're in trouble
    873     // probably such wide sweeps should be artificially subdivided earlier so that never happens
    874     SkASSERT(s1x3 * s2x1 < 0 || s1x3 * s3x2 < 0);
    875     if (s3x2 * s2x1 < 0) {
    876         SkASSERT(s2x1 * s1x3 > 0);
    877         fSweep[0] = fSweep[1];
    878         fUnorderedSweep = true;
    879     }
    880     fSweep[1] = thirdSweep;
    881 }
    882 
    883 void SkOpAngle::setSpans() {
    884     fUnorderable = false;
    885     fLastMarked = nullptr;
    886     if (!fStart) {
    887         fUnorderable = true;
    888         return;
    889     }
    890     const SkOpSegment* segment = fStart->segment();
    891     const SkPoint* pts = segment->pts();
    892     SkDEBUGCODE(fCurvePart.fVerb = SkPath::kCubic_Verb);
    893     SkDEBUGCODE(fCurvePart[2].fX = fCurvePart[2].fY = fCurvePart[3].fX = fCurvePart[3].fY
    894             = SK_ScalarNaN);
    895     SkDEBUGCODE(fCurvePart.fVerb = segment->verb());
    896     segment->subDivide(fStart, fEnd, &fCurvePart);
    897     setCurveHullSweep();
    898     const SkPath::Verb verb = segment->verb();
    899     if (verb != SkPath::kLine_Verb
    900             && !(fIsCurve = fSweep[0].crossCheck(fSweep[1]) != 0)) {
    901         SkDLine lineHalf;
    902         lineHalf[0].set(fCurvePart[0].asSkPoint());
    903         lineHalf[1].set(fCurvePart[SkPathOpsVerbToPoints(verb)].asSkPoint());
    904         fTangentHalf.lineEndPoints(lineHalf);
    905         fSide = 0;
    906     }
    907     switch (verb) {
    908     case SkPath::kLine_Verb: {
    909         SkASSERT(fStart != fEnd);
    910         const SkPoint& cP1 = pts[fStart->t() < fEnd->t()];
    911         SkDLine lineHalf;
    912         lineHalf[0].set(fStart->pt());
    913         lineHalf[1].set(cP1);
    914         fTangentHalf.lineEndPoints(lineHalf);
    915         fSide = 0;
    916         fIsCurve = false;
    917         } return;
    918     case SkPath::kQuad_Verb:
    919     case SkPath::kConic_Verb: {
    920         SkLineParameters tangentPart;
    921         (void) tangentPart.quadEndPoints(fCurvePart.fQuad);
    922         fSide = -tangentPart.pointDistance(fCurvePart[2]);  // not normalized -- compare sign only
    923         } break;
    924     case SkPath::kCubic_Verb: {
    925         SkLineParameters tangentPart;
    926         (void) tangentPart.cubicPart(fCurvePart.fCubic);
    927         fSide = -tangentPart.pointDistance(fCurvePart[3]);
    928         double testTs[4];
    929         // OPTIMIZATION: keep inflections precomputed with cubic segment?
    930         int testCount = SkDCubic::FindInflections(pts, testTs);
    931         double startT = fStart->t();
    932         double endT = fEnd->t();
    933         double limitT = endT;
    934         int index;
    935         for (index = 0; index < testCount; ++index) {
    936             if (!::between(startT, testTs[index], limitT)) {
    937                 testTs[index] = -1;
    938             }
    939         }
    940         testTs[testCount++] = startT;
    941         testTs[testCount++] = endT;
    942         SkTQSort<double>(testTs, &testTs[testCount - 1]);
    943         double bestSide = 0;
    944         int testCases = (testCount << 1) - 1;
    945         index = 0;
    946         while (testTs[index] < 0) {
    947             ++index;
    948         }
    949         index <<= 1;
    950         for (; index < testCases; ++index) {
    951             int testIndex = index >> 1;
    952             double testT = testTs[testIndex];
    953             if (index & 1) {
    954                 testT = (testT + testTs[testIndex + 1]) / 2;
    955             }
    956             // OPTIMIZE: could avoid call for t == startT, endT
    957             SkDPoint pt = dcubic_xy_at_t(pts, segment->weight(), testT);
    958             SkLineParameters tangentPart;
    959             tangentPart.cubicEndPoints(fCurvePart.fCubic);
    960             double testSide = tangentPart.pointDistance(pt);
    961             if (fabs(bestSide) < fabs(testSide)) {
    962                 bestSide = testSide;
    963             }
    964         }
    965         fSide = -bestSide;  // compare sign only
    966         } break;
    967     default:
    968         SkASSERT(0);
    969     }
    970 }
    971 
    972 void SkOpAngle::setSector() {
    973     if (!fStart) {
    974         fUnorderable = true;
    975         return;
    976     }
    977     const SkOpSegment* segment = fStart->segment();
    978     SkPath::Verb verb = segment->verb();
    979     fSectorStart = this->findSector(verb, fSweep[0].fX, fSweep[0].fY);
    980     if (fSectorStart < 0) {
    981         goto deferTilLater;
    982     }
    983     if (!fIsCurve) {  // if it's a line or line-like, note that both sectors are the same
    984         SkASSERT(fSectorStart >= 0);
    985         fSectorEnd = fSectorStart;
    986         fSectorMask = 1 << fSectorStart;
    987         return;
    988     }
    989     SkASSERT(SkPath::kLine_Verb != verb);
    990     fSectorEnd = this->findSector(verb, fSweep[1].fX, fSweep[1].fY);
    991     if (fSectorEnd < 0) {
    992 deferTilLater:
    993         fSectorStart = fSectorEnd = -1;
    994         fSectorMask = 0;
    995         fComputeSector = true;  // can't determine sector until segment length can be found
    996         return;
    997     }
    998     if (fSectorEnd == fSectorStart
    999             && (fSectorStart & 3) != 3) { // if the sector has no span, it can't be an exact angle
   1000         fSectorMask = 1 << fSectorStart;
   1001         return;
   1002     }
   1003     bool crossesZero = this->checkCrossesZero();
   1004     int start = SkTMin(fSectorStart, fSectorEnd);
   1005     bool curveBendsCCW = (fSectorStart == start) ^ crossesZero;
   1006     // bump the start and end of the sector span if they are on exact compass points
   1007     if ((fSectorStart & 3) == 3) {
   1008         fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f;
   1009     }
   1010     if ((fSectorEnd & 3) == 3) {
   1011         fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f;
   1012     }
   1013     crossesZero = this->checkCrossesZero();
   1014     start = SkTMin(fSectorStart, fSectorEnd);
   1015     int end = SkTMax(fSectorStart, fSectorEnd);
   1016     if (!crossesZero) {
   1017         fSectorMask = (unsigned) -1 >> (31 - end + start) << start;
   1018     } else {
   1019         fSectorMask = (unsigned) -1 >> (31 - start) | ((unsigned) -1 << end);
   1020     }
   1021 }
   1022 
   1023 SkOpSpan* SkOpAngle::starter() {
   1024     return fStart->starter(fEnd);
   1025 }
   1026 
   1027 bool SkOpAngle::tangentsDiverge(const SkOpAngle* rh, double s0xt0) const {
   1028     if (s0xt0 == 0) {
   1029         return false;
   1030     }
   1031     // if the ctrl tangents are not nearly parallel, use them
   1032     // solve for opposite direction displacement scale factor == m
   1033     // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
   1034     // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
   1035     // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
   1036     //                       v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
   1037     // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
   1038     // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
   1039     // m = v1.cross(v2) / v1.dot(v2)
   1040     const SkDVector* sweep = fSweep;
   1041     const SkDVector* tweep = rh->fSweep;
   1042     double s0dt0 = sweep[0].dot(tweep[0]);
   1043     if (!s0dt0) {
   1044         return true;
   1045     }
   1046     SkASSERT(s0dt0 != 0);
   1047     double m = s0xt0 / s0dt0;
   1048     double sDist = sweep[0].length() * m;
   1049     double tDist = tweep[0].length() * m;
   1050     bool useS = fabs(sDist) < fabs(tDist);
   1051     double mFactor = fabs(useS ? this->distEndRatio(sDist) : rh->distEndRatio(tDist));
   1052     return mFactor < 2400;  // empirically found limit
   1053 }
   1054