Home | History | Annotate | Download | only in Utils
      1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The LowerSwitch transformation rewrites switch instructions with a sequence
     11 // of branches, which allows targets to get away with not implementing the
     12 // switch instruction until it is convenient.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/Scalar.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/IR/CFG.h"
     19 #include "llvm/IR/Constants.h"
     20 #include "llvm/IR/Function.h"
     21 #include "llvm/IR/Instructions.h"
     22 #include "llvm/IR/LLVMContext.h"
     23 #include "llvm/Pass.h"
     24 #include "llvm/Support/Compiler.h"
     25 #include "llvm/Support/Debug.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     28 #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
     29 #include <algorithm>
     30 using namespace llvm;
     31 
     32 #define DEBUG_TYPE "lower-switch"
     33 
     34 namespace {
     35   struct IntRange {
     36     int64_t Low, High;
     37   };
     38   // Return true iff R is covered by Ranges.
     39   static bool IsInRanges(const IntRange &R,
     40                          const std::vector<IntRange> &Ranges) {
     41     // Note: Ranges must be sorted, non-overlapping and non-adjacent.
     42 
     43     // Find the first range whose High field is >= R.High,
     44     // then check if the Low field is <= R.Low. If so, we
     45     // have a Range that covers R.
     46     auto I = std::lower_bound(
     47         Ranges.begin(), Ranges.end(), R,
     48         [](const IntRange &A, const IntRange &B) { return A.High < B.High; });
     49     return I != Ranges.end() && I->Low <= R.Low;
     50   }
     51 
     52   /// Replace all SwitchInst instructions with chained branch instructions.
     53   class LowerSwitch : public FunctionPass {
     54   public:
     55     static char ID; // Pass identification, replacement for typeid
     56     LowerSwitch() : FunctionPass(ID) {
     57       initializeLowerSwitchPass(*PassRegistry::getPassRegistry());
     58     }
     59 
     60     bool runOnFunction(Function &F) override;
     61 
     62     void getAnalysisUsage(AnalysisUsage &AU) const override {
     63       // This is a cluster of orthogonal Transforms
     64       AU.addPreserved<UnifyFunctionExitNodes>();
     65       AU.addPreservedID(LowerInvokePassID);
     66     }
     67 
     68     struct CaseRange {
     69       ConstantInt* Low;
     70       ConstantInt* High;
     71       BasicBlock* BB;
     72 
     73       CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
     74           : Low(low), High(high), BB(bb) {}
     75     };
     76 
     77     typedef std::vector<CaseRange> CaseVector;
     78     typedef std::vector<CaseRange>::iterator CaseItr;
     79   private:
     80     void processSwitchInst(SwitchInst *SI, SmallPtrSetImpl<BasicBlock*> &DeleteList);
     81 
     82     BasicBlock *switchConvert(CaseItr Begin, CaseItr End,
     83                               ConstantInt *LowerBound, ConstantInt *UpperBound,
     84                               Value *Val, BasicBlock *Predecessor,
     85                               BasicBlock *OrigBlock, BasicBlock *Default,
     86                               const std::vector<IntRange> &UnreachableRanges);
     87     BasicBlock *newLeafBlock(CaseRange &Leaf, Value *Val, BasicBlock *OrigBlock,
     88                              BasicBlock *Default);
     89     unsigned Clusterify(CaseVector &Cases, SwitchInst *SI);
     90   };
     91 
     92   /// The comparison function for sorting the switch case values in the vector.
     93   /// WARNING: Case ranges should be disjoint!
     94   struct CaseCmp {
     95     bool operator () (const LowerSwitch::CaseRange& C1,
     96                       const LowerSwitch::CaseRange& C2) {
     97 
     98       const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
     99       const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
    100       return CI1->getValue().slt(CI2->getValue());
    101     }
    102   };
    103 }
    104 
    105 char LowerSwitch::ID = 0;
    106 INITIALIZE_PASS(LowerSwitch, "lowerswitch",
    107                 "Lower SwitchInst's to branches", false, false)
    108 
    109 // Publicly exposed interface to pass...
    110 char &llvm::LowerSwitchID = LowerSwitch::ID;
    111 // createLowerSwitchPass - Interface to this file...
    112 FunctionPass *llvm::createLowerSwitchPass() {
    113   return new LowerSwitch();
    114 }
    115 
    116 bool LowerSwitch::runOnFunction(Function &F) {
    117   bool Changed = false;
    118   SmallPtrSet<BasicBlock*, 8> DeleteList;
    119 
    120   for (Function::iterator I = F.begin(), E = F.end(); I != E; ) {
    121     BasicBlock *Cur = &*I++; // Advance over block so we don't traverse new blocks
    122 
    123     // If the block is a dead Default block that will be deleted later, don't
    124     // waste time processing it.
    125     if (DeleteList.count(Cur))
    126       continue;
    127 
    128     if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
    129       Changed = true;
    130       processSwitchInst(SI, DeleteList);
    131     }
    132   }
    133 
    134   for (BasicBlock* BB: DeleteList) {
    135     DeleteDeadBlock(BB);
    136   }
    137 
    138   return Changed;
    139 }
    140 
    141 /// Used for debugging purposes.
    142 static raw_ostream& operator<<(raw_ostream &O,
    143                                const LowerSwitch::CaseVector &C)
    144     LLVM_ATTRIBUTE_USED;
    145 static raw_ostream& operator<<(raw_ostream &O,
    146                                const LowerSwitch::CaseVector &C) {
    147   O << "[";
    148 
    149   for (LowerSwitch::CaseVector::const_iterator B = C.begin(),
    150          E = C.end(); B != E; ) {
    151     O << *B->Low << " -" << *B->High;
    152     if (++B != E) O << ", ";
    153   }
    154 
    155   return O << "]";
    156 }
    157 
    158 /// \brief Update the first occurrence of the "switch statement" BB in the PHI
    159 /// node with the "new" BB. The other occurrences will:
    160 ///
    161 /// 1) Be updated by subsequent calls to this function.  Switch statements may
    162 /// have more than one outcoming edge into the same BB if they all have the same
    163 /// value. When the switch statement is converted these incoming edges are now
    164 /// coming from multiple BBs.
    165 /// 2) Removed if subsequent incoming values now share the same case, i.e.,
    166 /// multiple outcome edges are condensed into one. This is necessary to keep the
    167 /// number of phi values equal to the number of branches to SuccBB.
    168 static void fixPhis(BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
    169                     unsigned NumMergedCases) {
    170   for (BasicBlock::iterator I = SuccBB->begin(),
    171                             IE = SuccBB->getFirstNonPHI()->getIterator();
    172        I != IE; ++I) {
    173     PHINode *PN = cast<PHINode>(I);
    174 
    175     // Only update the first occurrence.
    176     unsigned Idx = 0, E = PN->getNumIncomingValues();
    177     unsigned LocalNumMergedCases = NumMergedCases;
    178     for (; Idx != E; ++Idx) {
    179       if (PN->getIncomingBlock(Idx) == OrigBB) {
    180         PN->setIncomingBlock(Idx, NewBB);
    181         break;
    182       }
    183     }
    184 
    185     // Remove additional occurrences coming from condensed cases and keep the
    186     // number of incoming values equal to the number of branches to SuccBB.
    187     SmallVector<unsigned, 8> Indices;
    188     for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
    189       if (PN->getIncomingBlock(Idx) == OrigBB) {
    190         Indices.push_back(Idx);
    191         LocalNumMergedCases--;
    192       }
    193     // Remove incoming values in the reverse order to prevent invalidating
    194     // *successive* index.
    195     for (auto III = Indices.rbegin(), IIE = Indices.rend(); III != IIE; ++III)
    196       PN->removeIncomingValue(*III);
    197   }
    198 }
    199 
    200 /// Convert the switch statement into a binary lookup of the case values.
    201 /// The function recursively builds this tree. LowerBound and UpperBound are
    202 /// used to keep track of the bounds for Val that have already been checked by
    203 /// a block emitted by one of the previous calls to switchConvert in the call
    204 /// stack.
    205 BasicBlock *
    206 LowerSwitch::switchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
    207                            ConstantInt *UpperBound, Value *Val,
    208                            BasicBlock *Predecessor, BasicBlock *OrigBlock,
    209                            BasicBlock *Default,
    210                            const std::vector<IntRange> &UnreachableRanges) {
    211   unsigned Size = End - Begin;
    212 
    213   if (Size == 1) {
    214     // Check if the Case Range is perfectly squeezed in between
    215     // already checked Upper and Lower bounds. If it is then we can avoid
    216     // emitting the code that checks if the value actually falls in the range
    217     // because the bounds already tell us so.
    218     if (Begin->Low == LowerBound && Begin->High == UpperBound) {
    219       unsigned NumMergedCases = 0;
    220       if (LowerBound && UpperBound)
    221         NumMergedCases =
    222             UpperBound->getSExtValue() - LowerBound->getSExtValue();
    223       fixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
    224       return Begin->BB;
    225     }
    226     return newLeafBlock(*Begin, Val, OrigBlock, Default);
    227   }
    228 
    229   unsigned Mid = Size / 2;
    230   std::vector<CaseRange> LHS(Begin, Begin + Mid);
    231   DEBUG(dbgs() << "LHS: " << LHS << "\n");
    232   std::vector<CaseRange> RHS(Begin + Mid, End);
    233   DEBUG(dbgs() << "RHS: " << RHS << "\n");
    234 
    235   CaseRange &Pivot = *(Begin + Mid);
    236   DEBUG(dbgs() << "Pivot ==> "
    237                << Pivot.Low->getValue()
    238                << " -" << Pivot.High->getValue() << "\n");
    239 
    240   // NewLowerBound here should never be the integer minimal value.
    241   // This is because it is computed from a case range that is never
    242   // the smallest, so there is always a case range that has at least
    243   // a smaller value.
    244   ConstantInt *NewLowerBound = Pivot.Low;
    245 
    246   // Because NewLowerBound is never the smallest representable integer
    247   // it is safe here to subtract one.
    248   ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
    249                                                 NewLowerBound->getValue() - 1);
    250 
    251   if (!UnreachableRanges.empty()) {
    252     // Check if the gap between LHS's highest and NewLowerBound is unreachable.
    253     int64_t GapLow = LHS.back().High->getSExtValue() + 1;
    254     int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
    255     IntRange Gap = { GapLow, GapHigh };
    256     if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
    257       NewUpperBound = LHS.back().High;
    258   }
    259 
    260   DEBUG(dbgs() << "LHS Bounds ==> ";
    261         if (LowerBound) {
    262           dbgs() << LowerBound->getSExtValue();
    263         } else {
    264           dbgs() << "NONE";
    265         }
    266         dbgs() << " - " << NewUpperBound->getSExtValue() << "\n";
    267         dbgs() << "RHS Bounds ==> ";
    268         dbgs() << NewLowerBound->getSExtValue() << " - ";
    269         if (UpperBound) {
    270           dbgs() << UpperBound->getSExtValue() << "\n";
    271         } else {
    272           dbgs() << "NONE\n";
    273         });
    274 
    275   // Create a new node that checks if the value is < pivot. Go to the
    276   // left branch if it is and right branch if not.
    277   Function* F = OrigBlock->getParent();
    278   BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
    279 
    280   ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
    281                                 Val, Pivot.Low, "Pivot");
    282 
    283   BasicBlock *LBranch = switchConvert(LHS.begin(), LHS.end(), LowerBound,
    284                                       NewUpperBound, Val, NewNode, OrigBlock,
    285                                       Default, UnreachableRanges);
    286   BasicBlock *RBranch = switchConvert(RHS.begin(), RHS.end(), NewLowerBound,
    287                                       UpperBound, Val, NewNode, OrigBlock,
    288                                       Default, UnreachableRanges);
    289 
    290   F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
    291   NewNode->getInstList().push_back(Comp);
    292 
    293   BranchInst::Create(LBranch, RBranch, Comp, NewNode);
    294   return NewNode;
    295 }
    296 
    297 /// Create a new leaf block for the binary lookup tree. It checks if the
    298 /// switch's value == the case's value. If not, then it jumps to the default
    299 /// branch. At this point in the tree, the value can't be another valid case
    300 /// value, so the jump to the "default" branch is warranted.
    301 BasicBlock* LowerSwitch::newLeafBlock(CaseRange& Leaf, Value* Val,
    302                                       BasicBlock* OrigBlock,
    303                                       BasicBlock* Default)
    304 {
    305   Function* F = OrigBlock->getParent();
    306   BasicBlock* NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
    307   F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);
    308 
    309   // Emit comparison
    310   ICmpInst* Comp = nullptr;
    311   if (Leaf.Low == Leaf.High) {
    312     // Make the seteq instruction...
    313     Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val,
    314                         Leaf.Low, "SwitchLeaf");
    315   } else {
    316     // Make range comparison
    317     if (Leaf.Low->isMinValue(true /*isSigned*/)) {
    318       // Val >= Min && Val <= Hi --> Val <= Hi
    319       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
    320                           "SwitchLeaf");
    321     } else if (Leaf.Low->isZero()) {
    322       // Val >= 0 && Val <= Hi --> Val <=u Hi
    323       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
    324                           "SwitchLeaf");
    325     } else {
    326       // Emit V-Lo <=u Hi-Lo
    327       Constant* NegLo = ConstantExpr::getNeg(Leaf.Low);
    328       Instruction* Add = BinaryOperator::CreateAdd(Val, NegLo,
    329                                                    Val->getName()+".off",
    330                                                    NewLeaf);
    331       Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
    332       Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
    333                           "SwitchLeaf");
    334     }
    335   }
    336 
    337   // Make the conditional branch...
    338   BasicBlock* Succ = Leaf.BB;
    339   BranchInst::Create(Succ, Default, Comp, NewLeaf);
    340 
    341   // If there were any PHI nodes in this successor, rewrite one entry
    342   // from OrigBlock to come from NewLeaf.
    343   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
    344     PHINode* PN = cast<PHINode>(I);
    345     // Remove all but one incoming entries from the cluster
    346     uint64_t Range = Leaf.High->getSExtValue() -
    347                      Leaf.Low->getSExtValue();
    348     for (uint64_t j = 0; j < Range; ++j) {
    349       PN->removeIncomingValue(OrigBlock);
    350     }
    351 
    352     int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
    353     assert(BlockIdx != -1 && "Switch didn't go to this successor??");
    354     PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
    355   }
    356 
    357   return NewLeaf;
    358 }
    359 
    360 /// Transform simple list of Cases into list of CaseRange's.
    361 unsigned LowerSwitch::Clusterify(CaseVector& Cases, SwitchInst *SI) {
    362   unsigned numCmps = 0;
    363 
    364   // Start with "simple" cases
    365   for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
    366     Cases.push_back(CaseRange(i.getCaseValue(), i.getCaseValue(),
    367                               i.getCaseSuccessor()));
    368 
    369   std::sort(Cases.begin(), Cases.end(), CaseCmp());
    370 
    371   // Merge case into clusters
    372   if (Cases.size() >= 2) {
    373     CaseItr I = Cases.begin();
    374     for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
    375       int64_t nextValue = J->Low->getSExtValue();
    376       int64_t currentValue = I->High->getSExtValue();
    377       BasicBlock* nextBB = J->BB;
    378       BasicBlock* currentBB = I->BB;
    379 
    380       // If the two neighboring cases go to the same destination, merge them
    381       // into a single case.
    382       assert(nextValue > currentValue && "Cases should be strictly ascending");
    383       if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
    384         I->High = J->High;
    385         // FIXME: Combine branch weights.
    386       } else if (++I != J) {
    387         *I = *J;
    388       }
    389     }
    390     Cases.erase(std::next(I), Cases.end());
    391   }
    392 
    393   for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
    394     if (I->Low != I->High)
    395       // A range counts double, since it requires two compares.
    396       ++numCmps;
    397   }
    398 
    399   return numCmps;
    400 }
    401 
    402 /// Replace the specified switch instruction with a sequence of chained if-then
    403 /// insts in a balanced binary search.
    404 void LowerSwitch::processSwitchInst(SwitchInst *SI,
    405                                     SmallPtrSetImpl<BasicBlock*> &DeleteList) {
    406   BasicBlock *CurBlock = SI->getParent();
    407   BasicBlock *OrigBlock = CurBlock;
    408   Function *F = CurBlock->getParent();
    409   Value *Val = SI->getCondition();  // The value we are switching on...
    410   BasicBlock* Default = SI->getDefaultDest();
    411 
    412   // If there is only the default destination, just branch.
    413   if (!SI->getNumCases()) {
    414     BranchInst::Create(Default, CurBlock);
    415     SI->eraseFromParent();
    416     return;
    417   }
    418 
    419   // Prepare cases vector.
    420   CaseVector Cases;
    421   unsigned numCmps = Clusterify(Cases, SI);
    422   DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
    423                << ". Total compares: " << numCmps << "\n");
    424   DEBUG(dbgs() << "Cases: " << Cases << "\n");
    425   (void)numCmps;
    426 
    427   ConstantInt *LowerBound = nullptr;
    428   ConstantInt *UpperBound = nullptr;
    429   std::vector<IntRange> UnreachableRanges;
    430 
    431   if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
    432     // Make the bounds tightly fitted around the case value range, because we
    433     // know that the value passed to the switch must be exactly one of the case
    434     // values.
    435     assert(!Cases.empty());
    436     LowerBound = Cases.front().Low;
    437     UpperBound = Cases.back().High;
    438 
    439     DenseMap<BasicBlock *, unsigned> Popularity;
    440     unsigned MaxPop = 0;
    441     BasicBlock *PopSucc = nullptr;
    442 
    443     IntRange R = { INT64_MIN, INT64_MAX };
    444     UnreachableRanges.push_back(R);
    445     for (const auto &I : Cases) {
    446       int64_t Low = I.Low->getSExtValue();
    447       int64_t High = I.High->getSExtValue();
    448 
    449       IntRange &LastRange = UnreachableRanges.back();
    450       if (LastRange.Low == Low) {
    451         // There is nothing left of the previous range.
    452         UnreachableRanges.pop_back();
    453       } else {
    454         // Terminate the previous range.
    455         assert(Low > LastRange.Low);
    456         LastRange.High = Low - 1;
    457       }
    458       if (High != INT64_MAX) {
    459         IntRange R = { High + 1, INT64_MAX };
    460         UnreachableRanges.push_back(R);
    461       }
    462 
    463       // Count popularity.
    464       int64_t N = High - Low + 1;
    465       unsigned &Pop = Popularity[I.BB];
    466       if ((Pop += N) > MaxPop) {
    467         MaxPop = Pop;
    468         PopSucc = I.BB;
    469       }
    470     }
    471 #ifndef NDEBUG
    472     /* UnreachableRanges should be sorted and the ranges non-adjacent. */
    473     for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
    474          I != E; ++I) {
    475       assert(I->Low <= I->High);
    476       auto Next = I + 1;
    477       if (Next != E) {
    478         assert(Next->Low > I->High);
    479       }
    480     }
    481 #endif
    482 
    483     // Use the most popular block as the new default, reducing the number of
    484     // cases.
    485     assert(MaxPop > 0 && PopSucc);
    486     Default = PopSucc;
    487     Cases.erase(std::remove_if(
    488                     Cases.begin(), Cases.end(),
    489                     [PopSucc](const CaseRange &R) { return R.BB == PopSucc; }),
    490                 Cases.end());
    491 
    492     // If there are no cases left, just branch.
    493     if (Cases.empty()) {
    494       BranchInst::Create(Default, CurBlock);
    495       SI->eraseFromParent();
    496       return;
    497     }
    498   }
    499 
    500   // Create a new, empty default block so that the new hierarchy of
    501   // if-then statements go to this and the PHI nodes are happy.
    502   BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
    503   F->getBasicBlockList().insert(Default->getIterator(), NewDefault);
    504   BranchInst::Create(Default, NewDefault);
    505 
    506   // If there is an entry in any PHI nodes for the default edge, make sure
    507   // to update them as well.
    508   for (BasicBlock::iterator I = Default->begin(); isa<PHINode>(I); ++I) {
    509     PHINode *PN = cast<PHINode>(I);
    510     int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
    511     assert(BlockIdx != -1 && "Switch didn't go to this successor??");
    512     PN->setIncomingBlock((unsigned)BlockIdx, NewDefault);
    513   }
    514 
    515   BasicBlock *SwitchBlock =
    516       switchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
    517                     OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
    518 
    519   // Branch to our shiny new if-then stuff...
    520   BranchInst::Create(SwitchBlock, OrigBlock);
    521 
    522   // We are now done with the switch instruction, delete it.
    523   BasicBlock *OldDefault = SI->getDefaultDest();
    524   CurBlock->getInstList().erase(SI);
    525 
    526   // If the Default block has no more predecessors just add it to DeleteList.
    527   if (pred_begin(OldDefault) == pred_end(OldDefault))
    528     DeleteList.insert(OldDefault);
    529 }
    530