Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef SkMatrix44_DEFINED
      9 #define SkMatrix44_DEFINED
     10 
     11 #include "SkMatrix.h"
     12 #include "SkScalar.h"
     13 
     14 #ifdef SK_MSCALAR_IS_DOUBLE
     15 #ifdef SK_MSCALAR_IS_FLOAT
     16     #error "can't define MSCALAR both as DOUBLE and FLOAT"
     17 #endif
     18     typedef double SkMScalar;
     19 
     20     static inline double SkFloatToMScalar(float x) {
     21         return static_cast<double>(x);
     22     }
     23     static inline float SkMScalarToFloat(double x) {
     24         return static_cast<float>(x);
     25     }
     26     static inline double SkDoubleToMScalar(double x) {
     27         return x;
     28     }
     29     static inline double SkMScalarToDouble(double x) {
     30         return x;
     31     }
     32     static inline double SkMScalarAbs(double x) {
     33         return fabs(x);
     34     }
     35     static const SkMScalar SK_MScalarPI = 3.141592653589793;
     36 
     37     #define SkMScalarFloor(x)           sk_double_floor(x)
     38     #define SkMScalarCeil(x)            sk_double_ceil(x)
     39     #define SkMScalarRound(x)           sk_double_round(x)
     40 
     41     #define SkMScalarFloorToInt(x)      sk_double_floor2int(x)
     42     #define SkMScalarCeilToInt(x)       sk_double_ceil2int(x)
     43     #define SkMScalarRoundToInt(x)      sk_double_round2int(x)
     44 
     45 
     46 #elif defined SK_MSCALAR_IS_FLOAT
     47 #ifdef SK_MSCALAR_IS_DOUBLE
     48     #error "can't define MSCALAR both as DOUBLE and FLOAT"
     49 #endif
     50     typedef float SkMScalar;
     51 
     52     static inline float SkFloatToMScalar(float x) {
     53         return x;
     54     }
     55     static inline float SkMScalarToFloat(float x) {
     56         return x;
     57     }
     58     static inline float SkDoubleToMScalar(double x) {
     59         return static_cast<float>(x);
     60     }
     61     static inline double SkMScalarToDouble(float x) {
     62         return static_cast<double>(x);
     63     }
     64     static inline float SkMScalarAbs(float x) {
     65         return sk_float_abs(x);
     66     }
     67     static const SkMScalar SK_MScalarPI = 3.14159265f;
     68 
     69     #define SkMScalarFloor(x)           sk_float_floor(x)
     70     #define SkMScalarCeil(x)            sk_float_ceil(x)
     71     #define SkMScalarRound(x)           sk_float_round(x)
     72 
     73     #define SkMScalarFloorToInt(x)      sk_float_floor2int(x)
     74     #define SkMScalarCeilToInt(x)       sk_float_ceil2int(x)
     75     #define SkMScalarRoundToInt(x)      sk_float_round2int(x)
     76 
     77 #endif
     78 
     79 #define SkIntToMScalar(n)       static_cast<SkMScalar>(n)
     80 
     81 #define SkMScalarToScalar(x)    SkMScalarToFloat(x)
     82 #define SkScalarToMScalar(x)    SkFloatToMScalar(x)
     83 
     84 static const SkMScalar SK_MScalar1 = 1;
     85 
     86 ///////////////////////////////////////////////////////////////////////////////
     87 
     88 struct SkVector4 {
     89     SkScalar fData[4];
     90 
     91     SkVector4() {
     92         this->set(0, 0, 0, 1);
     93     }
     94     SkVector4(const SkVector4& src) {
     95         memcpy(fData, src.fData, sizeof(fData));
     96     }
     97     SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
     98         fData[0] = x;
     99         fData[1] = y;
    100         fData[2] = z;
    101         fData[3] = w;
    102     }
    103 
    104     SkVector4& operator=(const SkVector4& src) {
    105         memcpy(fData, src.fData, sizeof(fData));
    106         return *this;
    107     }
    108 
    109     bool operator==(const SkVector4& v) {
    110         return fData[0] == v.fData[0] && fData[1] == v.fData[1] &&
    111                fData[2] == v.fData[2] && fData[3] == v.fData[3];
    112     }
    113     bool operator!=(const SkVector4& v) {
    114         return !(*this == v);
    115     }
    116     bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
    117         return fData[0] == x && fData[1] == y &&
    118                fData[2] == z && fData[3] == w;
    119     }
    120 
    121     void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
    122         fData[0] = x;
    123         fData[1] = y;
    124         fData[2] = z;
    125         fData[3] = w;
    126     }
    127 };
    128 
    129 class SK_API SkMatrix44 {
    130 public:
    131 
    132     enum Uninitialized_Constructor {
    133         kUninitialized_Constructor
    134     };
    135     enum Identity_Constructor {
    136         kIdentity_Constructor
    137     };
    138 
    139     SkMatrix44(Uninitialized_Constructor) { }
    140     SkMatrix44(Identity_Constructor) { this->setIdentity(); }
    141 
    142     SK_ATTR_DEPRECATED("use the constructors that take an enum")
    143     SkMatrix44() { this->setIdentity(); }
    144 
    145     SkMatrix44(const SkMatrix44& src) {
    146         memcpy(fMat, src.fMat, sizeof(fMat));
    147         fTypeMask = src.fTypeMask;
    148     }
    149 
    150     SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) {
    151         this->setConcat(a, b);
    152     }
    153 
    154     SkMatrix44& operator=(const SkMatrix44& src) {
    155         if (&src != this) {
    156             memcpy(fMat, src.fMat, sizeof(fMat));
    157             fTypeMask = src.fTypeMask;
    158         }
    159         return *this;
    160     }
    161 
    162     bool operator==(const SkMatrix44& other) const;
    163     bool operator!=(const SkMatrix44& other) const {
    164         return !(other == *this);
    165     }
    166 
    167     /* When converting from SkMatrix44 to SkMatrix, the third row and
    168      * column is dropped.  When converting from SkMatrix to SkMatrix44
    169      * the third row and column remain as identity:
    170      * [ a b c ]      [ a b 0 c ]
    171      * [ d e f ]  ->  [ d e 0 f ]
    172      * [ g h i ]      [ 0 0 1 0 ]
    173      *                [ g h 0 i ]
    174      */
    175     SkMatrix44(const SkMatrix&);
    176     SkMatrix44& operator=(const SkMatrix& src);
    177     operator SkMatrix() const;
    178 
    179     /**
    180      *  Return a reference to a const identity matrix
    181      */
    182     static const SkMatrix44& I();
    183 
    184     enum TypeMask {
    185         kIdentity_Mask      = 0,
    186         kTranslate_Mask     = 0x01,  //!< set if the matrix has translation
    187         kScale_Mask         = 0x02,  //!< set if the matrix has any scale != 1
    188         kAffine_Mask        = 0x04,  //!< set if the matrix skews or rotates
    189         kPerspective_Mask   = 0x08   //!< set if the matrix is in perspective
    190     };
    191 
    192     /**
    193      *  Returns a bitfield describing the transformations the matrix may
    194      *  perform. The bitfield is computed conservatively, so it may include
    195      *  false positives. For example, when kPerspective_Mask is true, all
    196      *  other bits may be set to true even in the case of a pure perspective
    197      *  transform.
    198      */
    199     inline TypeMask getType() const {
    200         if (fTypeMask & kUnknown_Mask) {
    201             fTypeMask = this->computeTypeMask();
    202         }
    203         SkASSERT(!(fTypeMask & kUnknown_Mask));
    204         return (TypeMask)fTypeMask;
    205     }
    206 
    207     /**
    208      *  Return true if the matrix is identity.
    209      */
    210     inline bool isIdentity() const {
    211         return kIdentity_Mask == this->getType();
    212     }
    213 
    214     /**
    215      *  Return true if the matrix contains translate or is identity.
    216      */
    217     inline bool isTranslate() const {
    218         return !(this->getType() & ~kTranslate_Mask);
    219     }
    220 
    221     /**
    222      *  Return true if the matrix only contains scale or translate or is identity.
    223      */
    224     inline bool isScaleTranslate() const {
    225         return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
    226     }
    227 
    228     /**
    229      *  Returns true if the matrix only contains scale or is identity.
    230      */
    231     inline bool isScale() const {
    232             return !(this->getType() & ~kScale_Mask);
    233     }
    234 
    235     inline bool hasPerspective() const {
    236         return SkToBool(this->getType() & kPerspective_Mask);
    237     }
    238 
    239     void setIdentity();
    240     inline void reset() { this->setIdentity();}
    241 
    242     /**
    243      *  get a value from the matrix. The row,col parameters work as follows:
    244      *  (0, 0)  scale-x
    245      *  (0, 3)  translate-x
    246      *  (3, 0)  perspective-x
    247      */
    248     inline SkMScalar get(int row, int col) const {
    249         SkASSERT((unsigned)row <= 3);
    250         SkASSERT((unsigned)col <= 3);
    251         return fMat[col][row];
    252     }
    253 
    254     /**
    255      *  set a value in the matrix. The row,col parameters work as follows:
    256      *  (0, 0)  scale-x
    257      *  (0, 3)  translate-x
    258      *  (3, 0)  perspective-x
    259      */
    260     inline void set(int row, int col, SkMScalar value) {
    261         SkASSERT((unsigned)row <= 3);
    262         SkASSERT((unsigned)col <= 3);
    263         fMat[col][row] = value;
    264         this->dirtyTypeMask();
    265     }
    266 
    267     inline double getDouble(int row, int col) const {
    268         return SkMScalarToDouble(this->get(row, col));
    269     }
    270     inline void setDouble(int row, int col, double value) {
    271         this->set(row, col, SkDoubleToMScalar(value));
    272     }
    273     inline float getFloat(int row, int col) const {
    274         return SkMScalarToFloat(this->get(row, col));
    275     }
    276     inline void setFloat(int row, int col, float value) {
    277         this->set(row, col, SkFloatToMScalar(value));
    278     }
    279 
    280     /** These methods allow one to efficiently read matrix entries into an
    281      *  array. The given array must have room for exactly 16 entries. Whenever
    282      *  possible, they will try to use memcpy rather than an entry-by-entry
    283      *  copy.
    284      */
    285     void asColMajorf(float[]) const;
    286     void asColMajord(double[]) const;
    287     void asRowMajorf(float[]) const;
    288     void asRowMajord(double[]) const;
    289 
    290     /** These methods allow one to efficiently set all matrix entries from an
    291      *  array. The given array must have room for exactly 16 entries. Whenever
    292      *  possible, they will try to use memcpy rather than an entry-by-entry
    293      *  copy.
    294      */
    295     void setColMajorf(const float[]);
    296     void setColMajord(const double[]);
    297     void setRowMajorf(const float[]);
    298     void setRowMajord(const double[]);
    299 
    300 #ifdef SK_MSCALAR_IS_FLOAT
    301     void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); }
    302     void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); }
    303 #else
    304     void setColMajor(const SkMScalar data[]) { this->setColMajord(data); }
    305     void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); }
    306 #endif
    307 
    308     /* This sets the top-left of the matrix and clears the translation and
    309      * perspective components (with [3][3] set to 1). */
    310     void set3x3(SkMScalar m00, SkMScalar m01, SkMScalar m02,
    311                 SkMScalar m10, SkMScalar m11, SkMScalar m12,
    312                 SkMScalar m20, SkMScalar m21, SkMScalar m22);
    313 
    314     void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
    315     void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
    316     void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
    317 
    318     void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
    319     void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
    320     void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
    321 
    322     inline void setScale(SkMScalar scale) {
    323         this->setScale(scale, scale, scale);
    324     }
    325     inline void preScale(SkMScalar scale) {
    326         this->preScale(scale, scale, scale);
    327     }
    328     inline void postScale(SkMScalar scale) {
    329         this->postScale(scale, scale, scale);
    330     }
    331 
    332     void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z,
    333                                SkMScalar degrees) {
    334         this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180);
    335     }
    336 
    337     /** Rotate about the vector [x,y,z]. If that vector is not unit-length,
    338         it will be automatically resized.
    339      */
    340     void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z,
    341                         SkMScalar radians);
    342     /** Rotate about the vector [x,y,z]. Does not check the length of the
    343         vector, assuming it is unit-length.
    344      */
    345     void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z,
    346                             SkMScalar radians);
    347 
    348     void setConcat(const SkMatrix44& a, const SkMatrix44& b);
    349     inline void preConcat(const SkMatrix44& m) {
    350         this->setConcat(*this, m);
    351     }
    352     inline void postConcat(const SkMatrix44& m) {
    353         this->setConcat(m, *this);
    354     }
    355 
    356     friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) {
    357         return SkMatrix44(a, b);
    358     }
    359 
    360     /** If this is invertible, return that in inverse and return true. If it is
    361         not invertible, return false and leave the inverse parameter in an
    362         unspecified state.
    363      */
    364     bool invert(SkMatrix44* inverse) const;
    365 
    366     /** Transpose this matrix in place. */
    367     void transpose();
    368 
    369     /** Apply the matrix to the src vector, returning the new vector in dst.
    370         It is legal for src and dst to point to the same memory.
    371      */
    372     void mapScalars(const SkScalar src[4], SkScalar dst[4]) const;
    373     inline void mapScalars(SkScalar vec[4]) const {
    374         this->mapScalars(vec, vec);
    375     }
    376 
    377     SK_ATTR_DEPRECATED("use mapScalars")
    378     void map(const SkScalar src[4], SkScalar dst[4]) const {
    379         this->mapScalars(src, dst);
    380     }
    381 
    382     SK_ATTR_DEPRECATED("use mapScalars")
    383     void map(SkScalar vec[4]) const {
    384         this->mapScalars(vec, vec);
    385     }
    386 
    387 #ifdef SK_MSCALAR_IS_DOUBLE
    388     void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const;
    389 #elif defined SK_MSCALAR_IS_FLOAT
    390     inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const {
    391         this->mapScalars(src, dst);
    392     }
    393 #endif
    394     inline void mapMScalars(SkMScalar vec[4]) const {
    395         this->mapMScalars(vec, vec);
    396     }
    397 
    398     friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) {
    399         SkVector4 dst;
    400         m.mapScalars(src.fData, dst.fData);
    401         return dst;
    402     }
    403 
    404     /**
    405      *  map an array of [x, y, 0, 1] through the matrix, returning an array
    406      *  of [x', y', z', w'].
    407      *
    408      *  @param src2     array of [x, y] pairs, with implied z=0 and w=1
    409      *  @param count    number of [x, y] pairs in src2
    410      *  @param dst4     array of [x', y', z', w'] quads as the output.
    411      */
    412     void map2(const float src2[], int count, float dst4[]) const;
    413     void map2(const double src2[], int count, double dst4[]) const;
    414 
    415     /** Returns true if transformating an axis-aligned square in 2d by this matrix
    416         will produce another 2d axis-aligned square; typically means the matrix
    417         is a scale with perhaps a 90-degree rotation. A 3d rotation through 90
    418         degrees into a perpendicular plane collapses a square to a line, but
    419         is still considered to be axis-aligned.
    420 
    421         By default, tolerates very slight error due to float imprecisions;
    422         a 90-degree rotation can still end up with 10^-17 of
    423         "non-axis-aligned" result.
    424      */
    425     bool preserves2dAxisAlignment(SkMScalar epsilon = SK_ScalarNearlyZero) const;
    426 
    427     void dump() const;
    428 
    429     double determinant() const;
    430 
    431 private:
    432     SkMScalar           fMat[4][4];
    433     mutable unsigned    fTypeMask;
    434 
    435     enum {
    436         kUnknown_Mask = 0x80,
    437 
    438         kAllPublic_Masks = 0xF
    439     };
    440 
    441     SkMScalar transX() const { return fMat[3][0]; }
    442     SkMScalar transY() const { return fMat[3][1]; }
    443     SkMScalar transZ() const { return fMat[3][2]; }
    444 
    445     SkMScalar scaleX() const { return fMat[0][0]; }
    446     SkMScalar scaleY() const { return fMat[1][1]; }
    447     SkMScalar scaleZ() const { return fMat[2][2]; }
    448 
    449     SkMScalar perspX() const { return fMat[0][3]; }
    450     SkMScalar perspY() const { return fMat[1][3]; }
    451     SkMScalar perspZ() const { return fMat[2][3]; }
    452 
    453     int computeTypeMask() const;
    454 
    455     inline void dirtyTypeMask() {
    456         fTypeMask = kUnknown_Mask;
    457     }
    458 
    459     inline void setTypeMask(int mask) {
    460         SkASSERT(0 == (~(kAllPublic_Masks | kUnknown_Mask) & mask));
    461         fTypeMask = mask;
    462     }
    463 
    464     /**
    465      *  Does not take the time to 'compute' the typemask. Only returns true if
    466      *  we already know that this matrix is identity.
    467      */
    468     inline bool isTriviallyIdentity() const {
    469         return 0 == fTypeMask;
    470     }
    471 };
    472 
    473 #endif
    474