Home | History | Annotate | Download | only in net
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 package android.net;
     18 
     19 import android.os.SystemClock;
     20 import android.util.Log;
     21 
     22 import java.net.DatagramPacket;
     23 import java.net.DatagramSocket;
     24 import java.net.InetAddress;
     25 import java.util.Arrays;
     26 
     27 /**
     28  * {@hide}
     29  *
     30  * Simple SNTP client class for retrieving network time.
     31  *
     32  * Sample usage:
     33  * <pre>SntpClient client = new SntpClient();
     34  * if (client.requestTime("time.foo.com")) {
     35  *     long now = client.getNtpTime() + SystemClock.elapsedRealtime() - client.getNtpTimeReference();
     36  * }
     37  * </pre>
     38  */
     39 public class SntpClient
     40 {
     41     private static final String TAG = "SntpClient";
     42     private static final boolean DBG = true;
     43 
     44     private static final int REFERENCE_TIME_OFFSET = 16;
     45     private static final int ORIGINATE_TIME_OFFSET = 24;
     46     private static final int RECEIVE_TIME_OFFSET = 32;
     47     private static final int TRANSMIT_TIME_OFFSET = 40;
     48     private static final int NTP_PACKET_SIZE = 48;
     49 
     50     private static final int NTP_PORT = 123;
     51     private static final int NTP_MODE_CLIENT = 3;
     52     private static final int NTP_MODE_SERVER = 4;
     53     private static final int NTP_MODE_BROADCAST = 5;
     54     private static final int NTP_VERSION = 3;
     55 
     56     private static final int NTP_LEAP_NOSYNC = 3;
     57     private static final int NTP_STRATUM_DEATH = 0;
     58     private static final int NTP_STRATUM_MAX = 15;
     59 
     60     // Number of seconds between Jan 1, 1900 and Jan 1, 1970
     61     // 70 years plus 17 leap days
     62     private static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L;
     63 
     64     // system time computed from NTP server response
     65     private long mNtpTime;
     66 
     67     // value of SystemClock.elapsedRealtime() corresponding to mNtpTime
     68     private long mNtpTimeReference;
     69 
     70     // round trip time in milliseconds
     71     private long mRoundTripTime;
     72 
     73     private static class InvalidServerReplyException extends Exception {
     74         public InvalidServerReplyException(String message) {
     75             super(message);
     76         }
     77     }
     78 
     79     /**
     80      * Sends an SNTP request to the given host and processes the response.
     81      *
     82      * @param host host name of the server.
     83      * @param timeout network timeout in milliseconds.
     84      * @return true if the transaction was successful.
     85      */
     86     public boolean requestTime(String host, int timeout) {
     87         InetAddress address = null;
     88         try {
     89             address = InetAddress.getByName(host);
     90         } catch (Exception e) {
     91             if (DBG) Log.d(TAG, "request time failed: " + e);
     92             return false;
     93         }
     94         return requestTime(address, NTP_PORT, timeout);
     95     }
     96 
     97     public boolean requestTime(InetAddress address, int port, int timeout) {
     98         DatagramSocket socket = null;
     99         try {
    100             socket = new DatagramSocket();
    101             socket.setSoTimeout(timeout);
    102             byte[] buffer = new byte[NTP_PACKET_SIZE];
    103             DatagramPacket request = new DatagramPacket(buffer, buffer.length, address, port);
    104 
    105             // set mode = 3 (client) and version = 3
    106             // mode is in low 3 bits of first byte
    107             // version is in bits 3-5 of first byte
    108             buffer[0] = NTP_MODE_CLIENT | (NTP_VERSION << 3);
    109 
    110             // get current time and write it to the request packet
    111             final long requestTime = System.currentTimeMillis();
    112             final long requestTicks = SystemClock.elapsedRealtime();
    113             writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, requestTime);
    114 
    115             socket.send(request);
    116 
    117             // read the response
    118             DatagramPacket response = new DatagramPacket(buffer, buffer.length);
    119             socket.receive(response);
    120             final long responseTicks = SystemClock.elapsedRealtime();
    121             final long responseTime = requestTime + (responseTicks - requestTicks);
    122 
    123             // extract the results
    124             final byte leap = (byte) ((buffer[0] >> 6) & 0x3);
    125             final byte mode = (byte) (buffer[0] & 0x7);
    126             final int stratum = (int) (buffer[1] & 0xff);
    127             final long originateTime = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET);
    128             final long receiveTime = readTimeStamp(buffer, RECEIVE_TIME_OFFSET);
    129             final long transmitTime = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET);
    130 
    131             /* do sanity check according to RFC */
    132             // TODO: validate originateTime == requestTime.
    133             checkValidServerReply(leap, mode, stratum, transmitTime);
    134 
    135             long roundTripTime = responseTicks - requestTicks - (transmitTime - receiveTime);
    136             // receiveTime = originateTime + transit + skew
    137             // responseTime = transmitTime + transit - skew
    138             // clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2
    139             //             = ((originateTime + transit + skew - originateTime) +
    140             //                (transmitTime - (transmitTime + transit - skew)))/2
    141             //             = ((transit + skew) + (transmitTime - transmitTime - transit + skew))/2
    142             //             = (transit + skew - transit + skew)/2
    143             //             = (2 * skew)/2 = skew
    144             long clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2;
    145             if (DBG) {
    146                 Log.d(TAG, "round trip: " + roundTripTime + "ms, " +
    147                         "clock offset: " + clockOffset + "ms");
    148             }
    149 
    150             // save our results - use the times on this side of the network latency
    151             // (response rather than request time)
    152             mNtpTime = responseTime + clockOffset;
    153             mNtpTimeReference = responseTicks;
    154             mRoundTripTime = roundTripTime;
    155         } catch (Exception e) {
    156             if (DBG) Log.d(TAG, "request time failed: " + e);
    157             return false;
    158         } finally {
    159             if (socket != null) {
    160                 socket.close();
    161             }
    162         }
    163 
    164         return true;
    165     }
    166 
    167     /**
    168      * Returns the time computed from the NTP transaction.
    169      *
    170      * @return time value computed from NTP server response.
    171      */
    172     public long getNtpTime() {
    173         return mNtpTime;
    174     }
    175 
    176     /**
    177      * Returns the reference clock value (value of SystemClock.elapsedRealtime())
    178      * corresponding to the NTP time.
    179      *
    180      * @return reference clock corresponding to the NTP time.
    181      */
    182     public long getNtpTimeReference() {
    183         return mNtpTimeReference;
    184     }
    185 
    186     /**
    187      * Returns the round trip time of the NTP transaction
    188      *
    189      * @return round trip time in milliseconds.
    190      */
    191     public long getRoundTripTime() {
    192         return mRoundTripTime;
    193     }
    194 
    195     private static void checkValidServerReply(
    196             byte leap, byte mode, int stratum, long transmitTime)
    197             throws InvalidServerReplyException {
    198         if (leap == NTP_LEAP_NOSYNC) {
    199             throw new InvalidServerReplyException("unsynchronized server");
    200         }
    201         if ((mode != NTP_MODE_SERVER) && (mode != NTP_MODE_BROADCAST)) {
    202             throw new InvalidServerReplyException("untrusted mode: " + mode);
    203         }
    204         if ((stratum == NTP_STRATUM_DEATH) || (stratum > NTP_STRATUM_MAX)) {
    205             throw new InvalidServerReplyException("untrusted stratum: " + stratum);
    206         }
    207         if (transmitTime == 0) {
    208             throw new InvalidServerReplyException("zero transmitTime");
    209         }
    210     }
    211 
    212     /**
    213      * Reads an unsigned 32 bit big endian number from the given offset in the buffer.
    214      */
    215     private long read32(byte[] buffer, int offset) {
    216         byte b0 = buffer[offset];
    217         byte b1 = buffer[offset+1];
    218         byte b2 = buffer[offset+2];
    219         byte b3 = buffer[offset+3];
    220 
    221         // convert signed bytes to unsigned values
    222         int i0 = ((b0 & 0x80) == 0x80 ? (b0 & 0x7F) + 0x80 : b0);
    223         int i1 = ((b1 & 0x80) == 0x80 ? (b1 & 0x7F) + 0x80 : b1);
    224         int i2 = ((b2 & 0x80) == 0x80 ? (b2 & 0x7F) + 0x80 : b2);
    225         int i3 = ((b3 & 0x80) == 0x80 ? (b3 & 0x7F) + 0x80 : b3);
    226 
    227         return ((long)i0 << 24) + ((long)i1 << 16) + ((long)i2 << 8) + (long)i3;
    228     }
    229 
    230     /**
    231      * Reads the NTP time stamp at the given offset in the buffer and returns
    232      * it as a system time (milliseconds since January 1, 1970).
    233      */
    234     private long readTimeStamp(byte[] buffer, int offset) {
    235         long seconds = read32(buffer, offset);
    236         long fraction = read32(buffer, offset + 4);
    237         // Special case: zero means zero.
    238         if (seconds == 0 && fraction == 0) {
    239             return 0;
    240         }
    241         return ((seconds - OFFSET_1900_TO_1970) * 1000) + ((fraction * 1000L) / 0x100000000L);
    242     }
    243 
    244     /**
    245      * Writes system time (milliseconds since January 1, 1970) as an NTP time stamp
    246      * at the given offset in the buffer.
    247      */
    248     private void writeTimeStamp(byte[] buffer, int offset, long time) {
    249         // Special case: zero means zero.
    250         if (time == 0) {
    251             Arrays.fill(buffer, offset, offset + 8, (byte) 0x00);
    252             return;
    253         }
    254 
    255         long seconds = time / 1000L;
    256         long milliseconds = time - seconds * 1000L;
    257         seconds += OFFSET_1900_TO_1970;
    258 
    259         // write seconds in big endian format
    260         buffer[offset++] = (byte)(seconds >> 24);
    261         buffer[offset++] = (byte)(seconds >> 16);
    262         buffer[offset++] = (byte)(seconds >> 8);
    263         buffer[offset++] = (byte)(seconds >> 0);
    264 
    265         long fraction = milliseconds * 0x100000000L / 1000L;
    266         // write fraction in big endian format
    267         buffer[offset++] = (byte)(fraction >> 24);
    268         buffer[offset++] = (byte)(fraction >> 16);
    269         buffer[offset++] = (byte)(fraction >> 8);
    270         // low order bits should be random data
    271         buffer[offset++] = (byte)(Math.random() * 255.0);
    272     }
    273 }
    274