Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file builds on the ADT/GraphTraits.h file to build a generic graph
     11 // post order iterator.  This should work over any graph type that has a
     12 // GraphTraits specialization.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_ADT_POSTORDERITERATOR_H
     17 #define LLVM_ADT_POSTORDERITERATOR_H
     18 
     19 #include "llvm/ADT/GraphTraits.h"
     20 #include "llvm/ADT/SmallPtrSet.h"
     21 #include "llvm/ADT/iterator_range.h"
     22 #include <set>
     23 #include <vector>
     24 
     25 namespace llvm {
     26 
     27 // The po_iterator_storage template provides access to the set of already
     28 // visited nodes during the po_iterator's depth-first traversal.
     29 //
     30 // The default implementation simply contains a set of visited nodes, while
     31 // the Extended=true version uses a reference to an external set.
     32 //
     33 // It is possible to prune the depth-first traversal in several ways:
     34 //
     35 // - When providing an external set that already contains some graph nodes,
     36 //   those nodes won't be visited again. This is useful for restarting a
     37 //   post-order traversal on a graph with nodes that aren't dominated by a
     38 //   single node.
     39 //
     40 // - By providing a custom SetType class, unwanted graph nodes can be excluded
     41 //   by having the insert() function return false. This could for example
     42 //   confine a CFG traversal to blocks in a specific loop.
     43 //
     44 // - Finally, by specializing the po_iterator_storage template itself, graph
     45 //   edges can be pruned by returning false in the insertEdge() function. This
     46 //   could be used to remove loop back-edges from the CFG seen by po_iterator.
     47 //
     48 // A specialized po_iterator_storage class can observe both the pre-order and
     49 // the post-order. The insertEdge() function is called in a pre-order, while
     50 // the finishPostorder() function is called just before the po_iterator moves
     51 // on to the next node.
     52 
     53 /// Default po_iterator_storage implementation with an internal set object.
     54 template<class SetType, bool External>
     55 class po_iterator_storage {
     56   SetType Visited;
     57 public:
     58   // Return true if edge destination should be visited.
     59   template<typename NodeType>
     60   bool insertEdge(NodeType *From, NodeType *To) {
     61     return Visited.insert(To).second;
     62   }
     63 
     64   // Called after all children of BB have been visited.
     65   template<typename NodeType>
     66   void finishPostorder(NodeType *BB) {}
     67 };
     68 
     69 /// Specialization of po_iterator_storage that references an external set.
     70 template<class SetType>
     71 class po_iterator_storage<SetType, true> {
     72   SetType &Visited;
     73 public:
     74   po_iterator_storage(SetType &VSet) : Visited(VSet) {}
     75   po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
     76 
     77   // Return true if edge destination should be visited, called with From = 0 for
     78   // the root node.
     79   // Graph edges can be pruned by specializing this function.
     80   template <class NodeType> bool insertEdge(NodeType *From, NodeType *To) {
     81     return Visited.insert(To).second;
     82   }
     83 
     84   // Called after all children of BB have been visited.
     85   template<class NodeType>
     86   void finishPostorder(NodeType *BB) {}
     87 };
     88 
     89 template<class GraphT,
     90   class SetType = llvm::SmallPtrSet<typename GraphTraits<GraphT>::NodeType*, 8>,
     91   bool ExtStorage = false,
     92   class GT = GraphTraits<GraphT> >
     93 class po_iterator : public std::iterator<std::forward_iterator_tag,
     94                                          typename GT::NodeType, ptrdiff_t>,
     95                     public po_iterator_storage<SetType, ExtStorage> {
     96   typedef std::iterator<std::forward_iterator_tag,
     97                         typename GT::NodeType, ptrdiff_t> super;
     98   typedef typename GT::NodeType          NodeType;
     99   typedef typename GT::ChildIteratorType ChildItTy;
    100 
    101   // VisitStack - Used to maintain the ordering.  Top = current block
    102   // First element is basic block pointer, second is the 'next child' to visit
    103   std::vector<std::pair<NodeType *, ChildItTy> > VisitStack;
    104 
    105   void traverseChild() {
    106     while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
    107       NodeType *BB = *VisitStack.back().second++;
    108       if (this->insertEdge(VisitStack.back().first, BB)) {
    109         // If the block is not visited...
    110         VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
    111       }
    112     }
    113   }
    114 
    115   po_iterator(NodeType *BB) {
    116     this->insertEdge((NodeType*)nullptr, BB);
    117     VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
    118     traverseChild();
    119   }
    120   po_iterator() {} // End is when stack is empty.
    121 
    122   po_iterator(NodeType *BB, SetType &S)
    123       : po_iterator_storage<SetType, ExtStorage>(S) {
    124     if (this->insertEdge((NodeType*)nullptr, BB)) {
    125       VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
    126       traverseChild();
    127     }
    128   }
    129 
    130   po_iterator(SetType &S)
    131       : po_iterator_storage<SetType, ExtStorage>(S) {
    132   } // End is when stack is empty.
    133 public:
    134   typedef typename super::pointer pointer;
    135 
    136   // Provide static "constructors"...
    137   static po_iterator begin(GraphT G) {
    138     return po_iterator(GT::getEntryNode(G));
    139   }
    140   static po_iterator end(GraphT G) { return po_iterator(); }
    141 
    142   static po_iterator begin(GraphT G, SetType &S) {
    143     return po_iterator(GT::getEntryNode(G), S);
    144   }
    145   static po_iterator end(GraphT G, SetType &S) { return po_iterator(S); }
    146 
    147   bool operator==(const po_iterator &x) const {
    148     return VisitStack == x.VisitStack;
    149   }
    150   bool operator!=(const po_iterator &x) const { return !(*this == x); }
    151 
    152   pointer operator*() const { return VisitStack.back().first; }
    153 
    154   // This is a nonstandard operator-> that dereferences the pointer an extra
    155   // time... so that you can actually call methods ON the BasicBlock, because
    156   // the contained type is a pointer.  This allows BBIt->getTerminator() f.e.
    157   //
    158   NodeType *operator->() const { return **this; }
    159 
    160   po_iterator &operator++() { // Preincrement
    161     this->finishPostorder(VisitStack.back().first);
    162     VisitStack.pop_back();
    163     if (!VisitStack.empty())
    164       traverseChild();
    165     return *this;
    166   }
    167 
    168   po_iterator operator++(int) { // Postincrement
    169     po_iterator tmp = *this;
    170     ++*this;
    171     return tmp;
    172   }
    173 };
    174 
    175 // Provide global constructors that automatically figure out correct types...
    176 //
    177 template <class T>
    178 po_iterator<T> po_begin(const T &G) { return po_iterator<T>::begin(G); }
    179 template <class T>
    180 po_iterator<T> po_end  (const T &G) { return po_iterator<T>::end(G); }
    181 
    182 template <class T> iterator_range<po_iterator<T>> post_order(const T &G) {
    183   return make_range(po_begin(G), po_end(G));
    184 }
    185 
    186 // Provide global definitions of external postorder iterators...
    187 template<class T, class SetType=std::set<typename GraphTraits<T>::NodeType*> >
    188 struct po_ext_iterator : public po_iterator<T, SetType, true> {
    189   po_ext_iterator(const po_iterator<T, SetType, true> &V) :
    190   po_iterator<T, SetType, true>(V) {}
    191 };
    192 
    193 template<class T, class SetType>
    194 po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
    195   return po_ext_iterator<T, SetType>::begin(G, S);
    196 }
    197 
    198 template<class T, class SetType>
    199 po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
    200   return po_ext_iterator<T, SetType>::end(G, S);
    201 }
    202 
    203 template <class T, class SetType>
    204 iterator_range<po_ext_iterator<T, SetType>> post_order_ext(const T &G, SetType &S) {
    205   return make_range(po_ext_begin(G, S), po_ext_end(G, S));
    206 }
    207 
    208 // Provide global definitions of inverse post order iterators...
    209 template <class T,
    210           class SetType = std::set<typename GraphTraits<T>::NodeType*>,
    211           bool External = false>
    212 struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External > {
    213   ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
    214      po_iterator<Inverse<T>, SetType, External> (V) {}
    215 };
    216 
    217 template <class T>
    218 ipo_iterator<T> ipo_begin(const T &G) {
    219   return ipo_iterator<T>::begin(G);
    220 }
    221 
    222 template <class T>
    223 ipo_iterator<T> ipo_end(const T &G){
    224   return ipo_iterator<T>::end(G);
    225 }
    226 
    227 template <class T>
    228 iterator_range<ipo_iterator<T>> inverse_post_order(const T &G) {
    229   return make_range(ipo_begin(G), ipo_end(G));
    230 }
    231 
    232 // Provide global definitions of external inverse postorder iterators...
    233 template <class T,
    234           class SetType = std::set<typename GraphTraits<T>::NodeType*> >
    235 struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
    236   ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
    237     ipo_iterator<T, SetType, true>(V) {}
    238   ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
    239     ipo_iterator<T, SetType, true>(V) {}
    240 };
    241 
    242 template <class T, class SetType>
    243 ipo_ext_iterator<T, SetType> ipo_ext_begin(const T &G, SetType &S) {
    244   return ipo_ext_iterator<T, SetType>::begin(G, S);
    245 }
    246 
    247 template <class T, class SetType>
    248 ipo_ext_iterator<T, SetType> ipo_ext_end(const T &G, SetType &S) {
    249   return ipo_ext_iterator<T, SetType>::end(G, S);
    250 }
    251 
    252 template <class T, class SetType>
    253 iterator_range<ipo_ext_iterator<T, SetType>>
    254 inverse_post_order_ext(const T &G, SetType &S) {
    255   return make_range(ipo_ext_begin(G, S), ipo_ext_end(G, S));
    256 }
    257 
    258 //===--------------------------------------------------------------------===//
    259 // Reverse Post Order CFG iterator code
    260 //===--------------------------------------------------------------------===//
    261 //
    262 // This is used to visit basic blocks in a method in reverse post order.  This
    263 // class is awkward to use because I don't know a good incremental algorithm to
    264 // computer RPO from a graph.  Because of this, the construction of the
    265 // ReversePostOrderTraversal object is expensive (it must walk the entire graph
    266 // with a postorder iterator to build the data structures).  The moral of this
    267 // story is: Don't create more ReversePostOrderTraversal classes than necessary.
    268 //
    269 // This class should be used like this:
    270 // {
    271 //   ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
    272 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
    273 //      ...
    274 //   }
    275 //   for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
    276 //      ...
    277 //   }
    278 // }
    279 //
    280 
    281 template<class GraphT, class GT = GraphTraits<GraphT> >
    282 class ReversePostOrderTraversal {
    283   typedef typename GT::NodeType NodeType;
    284   std::vector<NodeType*> Blocks;       // Block list in normal PO order
    285   void Initialize(NodeType *BB) {
    286     std::copy(po_begin(BB), po_end(BB), std::back_inserter(Blocks));
    287   }
    288 public:
    289   typedef typename std::vector<NodeType*>::reverse_iterator rpo_iterator;
    290 
    291   ReversePostOrderTraversal(GraphT G) { Initialize(GT::getEntryNode(G)); }
    292 
    293   // Because we want a reverse post order, use reverse iterators from the vector
    294   rpo_iterator begin() { return Blocks.rbegin(); }
    295   rpo_iterator end() { return Blocks.rend(); }
    296 };
    297 
    298 } // End llvm namespace
    299 
    300 #endif
    301