Home | History | Annotate | Download | only in Core
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_FUNCTORS_H
     11 #define EIGEN_FUNCTORS_H
     12 
     13 namespace Eigen {
     14 
     15 namespace internal {
     16 
     17 // associative functors:
     18 
     19 /** \internal
     20   * \brief Template functor to compute the sum of two scalars
     21   *
     22   * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum()
     23   */
     24 template<typename Scalar> struct scalar_sum_op {
     25   EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op)
     26   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; }
     27   template<typename Packet>
     28   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
     29   { return internal::padd(a,b); }
     30   template<typename Packet>
     31   EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
     32   { return internal::predux(a); }
     33 };
     34 template<typename Scalar>
     35 struct functor_traits<scalar_sum_op<Scalar> > {
     36   enum {
     37     Cost = NumTraits<Scalar>::AddCost,
     38     PacketAccess = packet_traits<Scalar>::HasAdd
     39   };
     40 };
     41 
     42 /** \internal
     43   * \brief Template functor to compute the product of two scalars
     44   *
     45   * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux()
     46   */
     47 template<typename LhsScalar,typename RhsScalar> struct scalar_product_op {
     48   enum {
     49     // TODO vectorize mixed product
     50     Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasMul && packet_traits<RhsScalar>::HasMul
     51   };
     52   typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
     53   EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op)
     54   EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; }
     55   template<typename Packet>
     56   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
     57   { return internal::pmul(a,b); }
     58   template<typename Packet>
     59   EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
     60   { return internal::predux_mul(a); }
     61 };
     62 template<typename LhsScalar,typename RhsScalar>
     63 struct functor_traits<scalar_product_op<LhsScalar,RhsScalar> > {
     64   enum {
     65     Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost)/2, // rough estimate!
     66     PacketAccess = scalar_product_op<LhsScalar,RhsScalar>::Vectorizable
     67   };
     68 };
     69 
     70 /** \internal
     71   * \brief Template functor to compute the conjugate product of two scalars
     72   *
     73   * This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y)
     74   */
     75 template<typename LhsScalar,typename RhsScalar> struct scalar_conj_product_op {
     76 
     77   enum {
     78     Conj = NumTraits<LhsScalar>::IsComplex
     79   };
     80 
     81   typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
     82 
     83   EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op)
     84   EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const
     85   { return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); }
     86 
     87   template<typename Packet>
     88   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
     89   { return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); }
     90 };
     91 template<typename LhsScalar,typename RhsScalar>
     92 struct functor_traits<scalar_conj_product_op<LhsScalar,RhsScalar> > {
     93   enum {
     94     Cost = NumTraits<LhsScalar>::MulCost,
     95     PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMul
     96   };
     97 };
     98 
     99 /** \internal
    100   * \brief Template functor to compute the min of two scalars
    101   *
    102   * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff()
    103   */
    104 template<typename Scalar> struct scalar_min_op {
    105   EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op)
    106   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::min; return (min)(a, b); }
    107   template<typename Packet>
    108   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
    109   { return internal::pmin(a,b); }
    110   template<typename Packet>
    111   EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
    112   { return internal::predux_min(a); }
    113 };
    114 template<typename Scalar>
    115 struct functor_traits<scalar_min_op<Scalar> > {
    116   enum {
    117     Cost = NumTraits<Scalar>::AddCost,
    118     PacketAccess = packet_traits<Scalar>::HasMin
    119   };
    120 };
    121 
    122 /** \internal
    123   * \brief Template functor to compute the max of two scalars
    124   *
    125   * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff()
    126   */
    127 template<typename Scalar> struct scalar_max_op {
    128   EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op)
    129   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::max; return (max)(a, b); }
    130   template<typename Packet>
    131   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
    132   { return internal::pmax(a,b); }
    133   template<typename Packet>
    134   EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
    135   { return internal::predux_max(a); }
    136 };
    137 template<typename Scalar>
    138 struct functor_traits<scalar_max_op<Scalar> > {
    139   enum {
    140     Cost = NumTraits<Scalar>::AddCost,
    141     PacketAccess = packet_traits<Scalar>::HasMax
    142   };
    143 };
    144 
    145 /** \internal
    146   * \brief Template functor to compute the hypot of two scalars
    147   *
    148   * \sa MatrixBase::stableNorm(), class Redux
    149   */
    150 template<typename Scalar> struct scalar_hypot_op {
    151   EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op)
    152 //   typedef typename NumTraits<Scalar>::Real result_type;
    153   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const
    154   {
    155     using std::max;
    156     using std::min;
    157     using std::sqrt;
    158     Scalar p = (max)(_x, _y);
    159     Scalar q = (min)(_x, _y);
    160     Scalar qp = q/p;
    161     return p * sqrt(Scalar(1) + qp*qp);
    162   }
    163 };
    164 template<typename Scalar>
    165 struct functor_traits<scalar_hypot_op<Scalar> > {
    166   enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess=0 };
    167 };
    168 
    169 /** \internal
    170   * \brief Template functor to compute the pow of two scalars
    171   */
    172 template<typename Scalar, typename OtherScalar> struct scalar_binary_pow_op {
    173   EIGEN_EMPTY_STRUCT_CTOR(scalar_binary_pow_op)
    174   inline Scalar operator() (const Scalar& a, const OtherScalar& b) const { return numext::pow(a, b); }
    175 };
    176 template<typename Scalar, typename OtherScalar>
    177 struct functor_traits<scalar_binary_pow_op<Scalar,OtherScalar> > {
    178   enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false };
    179 };
    180 
    181 // other binary functors:
    182 
    183 /** \internal
    184   * \brief Template functor to compute the difference of two scalars
    185   *
    186   * \sa class CwiseBinaryOp, MatrixBase::operator-
    187   */
    188 template<typename Scalar> struct scalar_difference_op {
    189   EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op)
    190   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; }
    191   template<typename Packet>
    192   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
    193   { return internal::psub(a,b); }
    194 };
    195 template<typename Scalar>
    196 struct functor_traits<scalar_difference_op<Scalar> > {
    197   enum {
    198     Cost = NumTraits<Scalar>::AddCost,
    199     PacketAccess = packet_traits<Scalar>::HasSub
    200   };
    201 };
    202 
    203 /** \internal
    204   * \brief Template functor to compute the quotient of two scalars
    205   *
    206   * \sa class CwiseBinaryOp, Cwise::operator/()
    207   */
    208 template<typename LhsScalar,typename RhsScalar> struct scalar_quotient_op {
    209   enum {
    210     // TODO vectorize mixed product
    211     Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasDiv && packet_traits<RhsScalar>::HasDiv
    212   };
    213   typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
    214   EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op)
    215   EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a / b; }
    216   template<typename Packet>
    217   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
    218   { return internal::pdiv(a,b); }
    219 };
    220 template<typename LhsScalar,typename RhsScalar>
    221 struct functor_traits<scalar_quotient_op<LhsScalar,RhsScalar> > {
    222   enum {
    223     Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost), // rough estimate!
    224     PacketAccess = scalar_quotient_op<LhsScalar,RhsScalar>::Vectorizable
    225   };
    226 };
    227 
    228 
    229 
    230 /** \internal
    231   * \brief Template functor to compute the and of two booleans
    232   *
    233   * \sa class CwiseBinaryOp, ArrayBase::operator&&
    234   */
    235 struct scalar_boolean_and_op {
    236   EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op)
    237   EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; }
    238 };
    239 template<> struct functor_traits<scalar_boolean_and_op> {
    240   enum {
    241     Cost = NumTraits<bool>::AddCost,
    242     PacketAccess = false
    243   };
    244 };
    245 
    246 /** \internal
    247   * \brief Template functor to compute the or of two booleans
    248   *
    249   * \sa class CwiseBinaryOp, ArrayBase::operator||
    250   */
    251 struct scalar_boolean_or_op {
    252   EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op)
    253   EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; }
    254 };
    255 template<> struct functor_traits<scalar_boolean_or_op> {
    256   enum {
    257     Cost = NumTraits<bool>::AddCost,
    258     PacketAccess = false
    259   };
    260 };
    261 
    262 /** \internal
    263   * \brief Template functors for comparison of two scalars
    264   * \todo Implement packet-comparisons
    265   */
    266 template<typename Scalar, ComparisonName cmp> struct scalar_cmp_op;
    267 
    268 template<typename Scalar, ComparisonName cmp>
    269 struct functor_traits<scalar_cmp_op<Scalar, cmp> > {
    270   enum {
    271     Cost = NumTraits<Scalar>::AddCost,
    272     PacketAccess = false
    273   };
    274 };
    275 
    276 template<ComparisonName Cmp, typename Scalar>
    277 struct result_of<scalar_cmp_op<Scalar, Cmp>(Scalar,Scalar)> {
    278   typedef bool type;
    279 };
    280 
    281 
    282 template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_EQ> {
    283   EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
    284   EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a==b;}
    285 };
    286 template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_LT> {
    287   EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
    288   EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a<b;}
    289 };
    290 template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_LE> {
    291   EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
    292   EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a<=b;}
    293 };
    294 template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_UNORD> {
    295   EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
    296   EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return !(a<=b || b<=a);}
    297 };
    298 template<typename Scalar> struct scalar_cmp_op<Scalar, cmp_NEQ> {
    299   EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op)
    300   EIGEN_STRONG_INLINE bool operator()(const Scalar& a, const Scalar& b) const {return a!=b;}
    301 };
    302 
    303 // unary functors:
    304 
    305 /** \internal
    306   * \brief Template functor to compute the opposite of a scalar
    307   *
    308   * \sa class CwiseUnaryOp, MatrixBase::operator-
    309   */
    310 template<typename Scalar> struct scalar_opposite_op {
    311   EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op)
    312   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
    313   template<typename Packet>
    314   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
    315   { return internal::pnegate(a); }
    316 };
    317 template<typename Scalar>
    318 struct functor_traits<scalar_opposite_op<Scalar> >
    319 { enum {
    320     Cost = NumTraits<Scalar>::AddCost,
    321     PacketAccess = packet_traits<Scalar>::HasNegate };
    322 };
    323 
    324 /** \internal
    325   * \brief Template functor to compute the absolute value of a scalar
    326   *
    327   * \sa class CwiseUnaryOp, Cwise::abs
    328   */
    329 template<typename Scalar> struct scalar_abs_op {
    330   EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op)
    331   typedef typename NumTraits<Scalar>::Real result_type;
    332   EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { using std::abs; return abs(a); }
    333   template<typename Packet>
    334   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
    335   { return internal::pabs(a); }
    336 };
    337 template<typename Scalar>
    338 struct functor_traits<scalar_abs_op<Scalar> >
    339 {
    340   enum {
    341     Cost = NumTraits<Scalar>::AddCost,
    342     PacketAccess = packet_traits<Scalar>::HasAbs
    343   };
    344 };
    345 
    346 /** \internal
    347   * \brief Template functor to compute the squared absolute value of a scalar
    348   *
    349   * \sa class CwiseUnaryOp, Cwise::abs2
    350   */
    351 template<typename Scalar> struct scalar_abs2_op {
    352   EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op)
    353   typedef typename NumTraits<Scalar>::Real result_type;
    354   EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs2(a); }
    355   template<typename Packet>
    356   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
    357   { return internal::pmul(a,a); }
    358 };
    359 template<typename Scalar>
    360 struct functor_traits<scalar_abs2_op<Scalar> >
    361 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; };
    362 
    363 /** \internal
    364   * \brief Template functor to compute the conjugate of a complex value
    365   *
    366   * \sa class CwiseUnaryOp, MatrixBase::conjugate()
    367   */
    368 template<typename Scalar> struct scalar_conjugate_op {
    369   EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op)
    370   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { using numext::conj; return conj(a); }
    371   template<typename Packet>
    372   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); }
    373 };
    374 template<typename Scalar>
    375 struct functor_traits<scalar_conjugate_op<Scalar> >
    376 {
    377   enum {
    378     Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
    379     PacketAccess = packet_traits<Scalar>::HasConj
    380   };
    381 };
    382 
    383 /** \internal
    384   * \brief Template functor to cast a scalar to another type
    385   *
    386   * \sa class CwiseUnaryOp, MatrixBase::cast()
    387   */
    388 template<typename Scalar, typename NewType>
    389 struct scalar_cast_op {
    390   EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
    391   typedef NewType result_type;
    392   EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); }
    393 };
    394 template<typename Scalar, typename NewType>
    395 struct functor_traits<scalar_cast_op<Scalar,NewType> >
    396 { enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };
    397 
    398 /** \internal
    399   * \brief Template functor to extract the real part of a complex
    400   *
    401   * \sa class CwiseUnaryOp, MatrixBase::real()
    402   */
    403 template<typename Scalar>
    404 struct scalar_real_op {
    405   EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op)
    406   typedef typename NumTraits<Scalar>::Real result_type;
    407   EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::real(a); }
    408 };
    409 template<typename Scalar>
    410 struct functor_traits<scalar_real_op<Scalar> >
    411 { enum { Cost = 0, PacketAccess = false }; };
    412 
    413 /** \internal
    414   * \brief Template functor to extract the imaginary part of a complex
    415   *
    416   * \sa class CwiseUnaryOp, MatrixBase::imag()
    417   */
    418 template<typename Scalar>
    419 struct scalar_imag_op {
    420   EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op)
    421   typedef typename NumTraits<Scalar>::Real result_type;
    422   EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::imag(a); }
    423 };
    424 template<typename Scalar>
    425 struct functor_traits<scalar_imag_op<Scalar> >
    426 { enum { Cost = 0, PacketAccess = false }; };
    427 
    428 /** \internal
    429   * \brief Template functor to extract the real part of a complex as a reference
    430   *
    431   * \sa class CwiseUnaryOp, MatrixBase::real()
    432   */
    433 template<typename Scalar>
    434 struct scalar_real_ref_op {
    435   EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op)
    436   typedef typename NumTraits<Scalar>::Real result_type;
    437   EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::real_ref(*const_cast<Scalar*>(&a)); }
    438 };
    439 template<typename Scalar>
    440 struct functor_traits<scalar_real_ref_op<Scalar> >
    441 { enum { Cost = 0, PacketAccess = false }; };
    442 
    443 /** \internal
    444   * \brief Template functor to extract the imaginary part of a complex as a reference
    445   *
    446   * \sa class CwiseUnaryOp, MatrixBase::imag()
    447   */
    448 template<typename Scalar>
    449 struct scalar_imag_ref_op {
    450   EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op)
    451   typedef typename NumTraits<Scalar>::Real result_type;
    452   EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::imag_ref(*const_cast<Scalar*>(&a)); }
    453 };
    454 template<typename Scalar>
    455 struct functor_traits<scalar_imag_ref_op<Scalar> >
    456 { enum { Cost = 0, PacketAccess = false }; };
    457 
    458 /** \internal
    459   *
    460   * \brief Template functor to compute the exponential of a scalar
    461   *
    462   * \sa class CwiseUnaryOp, Cwise::exp()
    463   */
    464 template<typename Scalar> struct scalar_exp_op {
    465   EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op)
    466   inline const Scalar operator() (const Scalar& a) const { using std::exp; return exp(a); }
    467   typedef typename packet_traits<Scalar>::type Packet;
    468   inline Packet packetOp(const Packet& a) const { return internal::pexp(a); }
    469 };
    470 template<typename Scalar>
    471 struct functor_traits<scalar_exp_op<Scalar> >
    472 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasExp }; };
    473 
    474 /** \internal
    475   *
    476   * \brief Template functor to compute the logarithm of a scalar
    477   *
    478   * \sa class CwiseUnaryOp, Cwise::log()
    479   */
    480 template<typename Scalar> struct scalar_log_op {
    481   EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op)
    482   inline const Scalar operator() (const Scalar& a) const { using std::log; return log(a); }
    483   typedef typename packet_traits<Scalar>::type Packet;
    484   inline Packet packetOp(const Packet& a) const { return internal::plog(a); }
    485 };
    486 template<typename Scalar>
    487 struct functor_traits<scalar_log_op<Scalar> >
    488 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog }; };
    489 
    490 /** \internal
    491   * \brief Template functor to multiply a scalar by a fixed other one
    492   *
    493   * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/
    494   */
    495 /* NOTE why doing the pset1() in packetOp *is* an optimization ?
    496  * indeed it seems better to declare m_other as a Packet and do the pset1() once
    497  * in the constructor. However, in practice:
    498  *  - GCC does not like m_other as a Packet and generate a load every time it needs it
    499  *  - on the other hand GCC is able to moves the pset1() outside the loop :)
    500  *  - simpler code ;)
    501  * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y)
    502  */
    503 template<typename Scalar>
    504 struct scalar_multiple_op {
    505   typedef typename packet_traits<Scalar>::type Packet;
    506   // FIXME default copy constructors seems bugged with std::complex<>
    507   EIGEN_STRONG_INLINE scalar_multiple_op(const scalar_multiple_op& other) : m_other(other.m_other) { }
    508   EIGEN_STRONG_INLINE scalar_multiple_op(const Scalar& other) : m_other(other) { }
    509   EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
    510   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
    511   { return internal::pmul(a, pset1<Packet>(m_other)); }
    512   typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
    513 };
    514 template<typename Scalar>
    515 struct functor_traits<scalar_multiple_op<Scalar> >
    516 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
    517 
    518 template<typename Scalar1, typename Scalar2>
    519 struct scalar_multiple2_op {
    520   typedef typename scalar_product_traits<Scalar1,Scalar2>::ReturnType result_type;
    521   EIGEN_STRONG_INLINE scalar_multiple2_op(const scalar_multiple2_op& other) : m_other(other.m_other) { }
    522   EIGEN_STRONG_INLINE scalar_multiple2_op(const Scalar2& other) : m_other(other) { }
    523   EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; }
    524   typename add_const_on_value_type<typename NumTraits<Scalar2>::Nested>::type m_other;
    525 };
    526 template<typename Scalar1,typename Scalar2>
    527 struct functor_traits<scalar_multiple2_op<Scalar1,Scalar2> >
    528 { enum { Cost = NumTraits<Scalar1>::MulCost, PacketAccess = false }; };
    529 
    530 /** \internal
    531   * \brief Template functor to divide a scalar by a fixed other one
    532   *
    533   * This functor is used to implement the quotient of a matrix by
    534   * a scalar where the scalar type is not necessarily a floating point type.
    535   *
    536   * \sa class CwiseUnaryOp, MatrixBase::operator/
    537   */
    538 template<typename Scalar>
    539 struct scalar_quotient1_op {
    540   typedef typename packet_traits<Scalar>::type Packet;
    541   // FIXME default copy constructors seems bugged with std::complex<>
    542   EIGEN_STRONG_INLINE scalar_quotient1_op(const scalar_quotient1_op& other) : m_other(other.m_other) { }
    543   EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other) : m_other(other) {}
    544   EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
    545   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
    546   { return internal::pdiv(a, pset1<Packet>(m_other)); }
    547   typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
    548 };
    549 template<typename Scalar>
    550 struct functor_traits<scalar_quotient1_op<Scalar> >
    551 { enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
    552 
    553 // nullary functors
    554 
    555 template<typename Scalar>
    556 struct scalar_constant_op {
    557   typedef typename packet_traits<Scalar>::type Packet;
    558   EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { }
    559   EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { }
    560   template<typename Index>
    561   EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; }
    562   template<typename Index>
    563   EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return internal::pset1<Packet>(m_other); }
    564   const Scalar m_other;
    565 };
    566 template<typename Scalar>
    567 struct functor_traits<scalar_constant_op<Scalar> >
    568 // FIXME replace this packet test by a safe one
    569 { enum { Cost = 1, PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };
    570 
    571 template<typename Scalar> struct scalar_identity_op {
    572   EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op)
    573   template<typename Index>
    574   EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); }
    575 };
    576 template<typename Scalar>
    577 struct functor_traits<scalar_identity_op<Scalar> >
    578 { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
    579 
    580 template <typename Scalar, bool RandomAccess> struct linspaced_op_impl;
    581 
    582 // linear access for packet ops:
    583 // 1) initialization
    584 //   base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0])
    585 // 2) each step (where size is 1 for coeff access or PacketSize for packet access)
    586 //   base += [size*step, ..., size*step]
    587 //
    588 // TODO: Perhaps it's better to initialize lazily (so not in the constructor but in packetOp)
    589 //       in order to avoid the padd() in operator() ?
    590 template <typename Scalar>
    591 struct linspaced_op_impl<Scalar,false>
    592 {
    593   typedef typename packet_traits<Scalar>::type Packet;
    594 
    595   linspaced_op_impl(const Scalar& low, const Scalar& step) :
    596   m_low(low), m_step(step),
    597   m_packetStep(pset1<Packet>(packet_traits<Scalar>::size*step)),
    598   m_base(padd(pset1<Packet>(low), pmul(pset1<Packet>(step),plset<Scalar>(-packet_traits<Scalar>::size)))) {}
    599 
    600   template<typename Index>
    601   EIGEN_STRONG_INLINE const Scalar operator() (Index i) const
    602   {
    603     m_base = padd(m_base, pset1<Packet>(m_step));
    604     return m_low+Scalar(i)*m_step;
    605   }
    606 
    607   template<typename Index>
    608   EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = padd(m_base,m_packetStep); }
    609 
    610   const Scalar m_low;
    611   const Scalar m_step;
    612   const Packet m_packetStep;
    613   mutable Packet m_base;
    614 };
    615 
    616 // random access for packet ops:
    617 // 1) each step
    618 //   [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
    619 template <typename Scalar>
    620 struct linspaced_op_impl<Scalar,true>
    621 {
    622   typedef typename packet_traits<Scalar>::type Packet;
    623 
    624   linspaced_op_impl(const Scalar& low, const Scalar& step) :
    625   m_low(low), m_step(step),
    626   m_lowPacket(pset1<Packet>(m_low)), m_stepPacket(pset1<Packet>(m_step)), m_interPacket(plset<Scalar>(0)) {}
    627 
    628   template<typename Index>
    629   EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }
    630 
    631   template<typename Index>
    632   EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
    633   { return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(Scalar(i)),m_interPacket))); }
    634 
    635   const Scalar m_low;
    636   const Scalar m_step;
    637   const Packet m_lowPacket;
    638   const Packet m_stepPacket;
    639   const Packet m_interPacket;
    640 };
    641 
    642 // ----- Linspace functor ----------------------------------------------------------------
    643 
    644 // Forward declaration (we default to random access which does not really give
    645 // us a speed gain when using packet access but it allows to use the functor in
    646 // nested expressions).
    647 template <typename Scalar, bool RandomAccess = true> struct linspaced_op;
    648 template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_op<Scalar,RandomAccess> >
    649 { enum { Cost = 1, PacketAccess = packet_traits<Scalar>::HasSetLinear, IsRepeatable = true }; };
    650 template <typename Scalar, bool RandomAccess> struct linspaced_op
    651 {
    652   typedef typename packet_traits<Scalar>::type Packet;
    653   linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1))) {}
    654 
    655   template<typename Index>
    656   EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }
    657 
    658   // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
    659   // there row==0 and col is used for the actual iteration.
    660   template<typename Index>
    661   EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const
    662   {
    663     eigen_assert(col==0 || row==0);
    664     return impl(col + row);
    665   }
    666 
    667   template<typename Index>
    668   EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); }
    669 
    670   // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
    671   // there row==0 and col is used for the actual iteration.
    672   template<typename Index>
    673   EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const
    674   {
    675     eigen_assert(col==0 || row==0);
    676     return impl.packetOp(col + row);
    677   }
    678 
    679   // This proxy object handles the actual required temporaries, the different
    680   // implementations (random vs. sequential access) as well as the
    681   // correct piping to size 2/4 packet operations.
    682   const linspaced_op_impl<Scalar,RandomAccess> impl;
    683 };
    684 
    685 // all functors allow linear access, except scalar_identity_op. So we fix here a quick meta
    686 // to indicate whether a functor allows linear access, just always answering 'yes' except for
    687 // scalar_identity_op.
    688 // FIXME move this to functor_traits adding a functor_default
    689 template<typename Functor> struct functor_has_linear_access { enum { ret = 1 }; };
    690 template<typename Scalar> struct functor_has_linear_access<scalar_identity_op<Scalar> > { enum { ret = 0 }; };
    691 
    692 // In Eigen, any binary op (Product, CwiseBinaryOp) require the Lhs and Rhs to have the same scalar type, except for multiplication
    693 // where the mixing of different types is handled by scalar_product_traits
    694 // In particular, real * complex<real> is allowed.
    695 // FIXME move this to functor_traits adding a functor_default
    696 template<typename Functor> struct functor_is_product_like { enum { ret = 0 }; };
    697 template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
    698 template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_conj_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
    699 template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_quotient_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
    700 
    701 
    702 /** \internal
    703   * \brief Template functor to add a scalar to a fixed other one
    704   * \sa class CwiseUnaryOp, Array::operator+
    705   */
    706 /* If you wonder why doing the pset1() in packetOp() is an optimization check scalar_multiple_op */
    707 template<typename Scalar>
    708 struct scalar_add_op {
    709   typedef typename packet_traits<Scalar>::type Packet;
    710   // FIXME default copy constructors seems bugged with std::complex<>
    711   inline scalar_add_op(const scalar_add_op& other) : m_other(other.m_other) { }
    712   inline scalar_add_op(const Scalar& other) : m_other(other) { }
    713   inline Scalar operator() (const Scalar& a) const { return a + m_other; }
    714   inline const Packet packetOp(const Packet& a) const
    715   { return internal::padd(a, pset1<Packet>(m_other)); }
    716   const Scalar m_other;
    717 };
    718 template<typename Scalar>
    719 struct functor_traits<scalar_add_op<Scalar> >
    720 { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasAdd }; };
    721 
    722 /** \internal
    723   * \brief Template functor to compute the square root of a scalar
    724   * \sa class CwiseUnaryOp, Cwise::sqrt()
    725   */
    726 template<typename Scalar> struct scalar_sqrt_op {
    727   EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
    728   inline const Scalar operator() (const Scalar& a) const { using std::sqrt; return sqrt(a); }
    729   typedef typename packet_traits<Scalar>::type Packet;
    730   inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); }
    731 };
    732 template<typename Scalar>
    733 struct functor_traits<scalar_sqrt_op<Scalar> >
    734 { enum {
    735     Cost = 5 * NumTraits<Scalar>::MulCost,
    736     PacketAccess = packet_traits<Scalar>::HasSqrt
    737   };
    738 };
    739 
    740 /** \internal
    741   * \brief Template functor to compute the cosine of a scalar
    742   * \sa class CwiseUnaryOp, ArrayBase::cos()
    743   */
    744 template<typename Scalar> struct scalar_cos_op {
    745   EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op)
    746   inline Scalar operator() (const Scalar& a) const { using std::cos; return cos(a); }
    747   typedef typename packet_traits<Scalar>::type Packet;
    748   inline Packet packetOp(const Packet& a) const { return internal::pcos(a); }
    749 };
    750 template<typename Scalar>
    751 struct functor_traits<scalar_cos_op<Scalar> >
    752 {
    753   enum {
    754     Cost = 5 * NumTraits<Scalar>::MulCost,
    755     PacketAccess = packet_traits<Scalar>::HasCos
    756   };
    757 };
    758 
    759 /** \internal
    760   * \brief Template functor to compute the sine of a scalar
    761   * \sa class CwiseUnaryOp, ArrayBase::sin()
    762   */
    763 template<typename Scalar> struct scalar_sin_op {
    764   EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op)
    765   inline const Scalar operator() (const Scalar& a) const { using std::sin; return sin(a); }
    766   typedef typename packet_traits<Scalar>::type Packet;
    767   inline Packet packetOp(const Packet& a) const { return internal::psin(a); }
    768 };
    769 template<typename Scalar>
    770 struct functor_traits<scalar_sin_op<Scalar> >
    771 {
    772   enum {
    773     Cost = 5 * NumTraits<Scalar>::MulCost,
    774     PacketAccess = packet_traits<Scalar>::HasSin
    775   };
    776 };
    777 
    778 
    779 /** \internal
    780   * \brief Template functor to compute the tan of a scalar
    781   * \sa class CwiseUnaryOp, ArrayBase::tan()
    782   */
    783 template<typename Scalar> struct scalar_tan_op {
    784   EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op)
    785   inline const Scalar operator() (const Scalar& a) const { using std::tan; return tan(a); }
    786   typedef typename packet_traits<Scalar>::type Packet;
    787   inline Packet packetOp(const Packet& a) const { return internal::ptan(a); }
    788 };
    789 template<typename Scalar>
    790 struct functor_traits<scalar_tan_op<Scalar> >
    791 {
    792   enum {
    793     Cost = 5 * NumTraits<Scalar>::MulCost,
    794     PacketAccess = packet_traits<Scalar>::HasTan
    795   };
    796 };
    797 
    798 /** \internal
    799   * \brief Template functor to compute the arc cosine of a scalar
    800   * \sa class CwiseUnaryOp, ArrayBase::acos()
    801   */
    802 template<typename Scalar> struct scalar_acos_op {
    803   EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op)
    804   inline const Scalar operator() (const Scalar& a) const { using std::acos; return acos(a); }
    805   typedef typename packet_traits<Scalar>::type Packet;
    806   inline Packet packetOp(const Packet& a) const { return internal::pacos(a); }
    807 };
    808 template<typename Scalar>
    809 struct functor_traits<scalar_acos_op<Scalar> >
    810 {
    811   enum {
    812     Cost = 5 * NumTraits<Scalar>::MulCost,
    813     PacketAccess = packet_traits<Scalar>::HasACos
    814   };
    815 };
    816 
    817 /** \internal
    818   * \brief Template functor to compute the arc sine of a scalar
    819   * \sa class CwiseUnaryOp, ArrayBase::asin()
    820   */
    821 template<typename Scalar> struct scalar_asin_op {
    822   EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op)
    823   inline const Scalar operator() (const Scalar& a) const { using std::asin; return asin(a); }
    824   typedef typename packet_traits<Scalar>::type Packet;
    825   inline Packet packetOp(const Packet& a) const { return internal::pasin(a); }
    826 };
    827 template<typename Scalar>
    828 struct functor_traits<scalar_asin_op<Scalar> >
    829 {
    830   enum {
    831     Cost = 5 * NumTraits<Scalar>::MulCost,
    832     PacketAccess = packet_traits<Scalar>::HasASin
    833   };
    834 };
    835 
    836 /** \internal
    837   * \brief Template functor to raise a scalar to a power
    838   * \sa class CwiseUnaryOp, Cwise::pow
    839   */
    840 template<typename Scalar>
    841 struct scalar_pow_op {
    842   // FIXME default copy constructors seems bugged with std::complex<>
    843   inline scalar_pow_op(const scalar_pow_op& other) : m_exponent(other.m_exponent) { }
    844   inline scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {}
    845   inline Scalar operator() (const Scalar& a) const { return numext::pow(a, m_exponent); }
    846   const Scalar m_exponent;
    847 };
    848 template<typename Scalar>
    849 struct functor_traits<scalar_pow_op<Scalar> >
    850 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
    851 
    852 /** \internal
    853   * \brief Template functor to compute the quotient between a scalar and array entries.
    854   * \sa class CwiseUnaryOp, Cwise::inverse()
    855   */
    856 template<typename Scalar>
    857 struct scalar_inverse_mult_op {
    858   scalar_inverse_mult_op(const Scalar& other) : m_other(other) {}
    859   inline Scalar operator() (const Scalar& a) const { return m_other / a; }
    860   template<typename Packet>
    861   inline const Packet packetOp(const Packet& a) const
    862   { return internal::pdiv(pset1<Packet>(m_other),a); }
    863   Scalar m_other;
    864 };
    865 
    866 /** \internal
    867   * \brief Template functor to compute the inverse of a scalar
    868   * \sa class CwiseUnaryOp, Cwise::inverse()
    869   */
    870 template<typename Scalar>
    871 struct scalar_inverse_op {
    872   EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op)
    873   inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
    874   template<typename Packet>
    875   inline const Packet packetOp(const Packet& a) const
    876   { return internal::pdiv(pset1<Packet>(Scalar(1)),a); }
    877 };
    878 template<typename Scalar>
    879 struct functor_traits<scalar_inverse_op<Scalar> >
    880 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
    881 
    882 /** \internal
    883   * \brief Template functor to compute the square of a scalar
    884   * \sa class CwiseUnaryOp, Cwise::square()
    885   */
    886 template<typename Scalar>
    887 struct scalar_square_op {
    888   EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op)
    889   inline Scalar operator() (const Scalar& a) const { return a*a; }
    890   template<typename Packet>
    891   inline const Packet packetOp(const Packet& a) const
    892   { return internal::pmul(a,a); }
    893 };
    894 template<typename Scalar>
    895 struct functor_traits<scalar_square_op<Scalar> >
    896 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
    897 
    898 /** \internal
    899   * \brief Template functor to compute the cube of a scalar
    900   * \sa class CwiseUnaryOp, Cwise::cube()
    901   */
    902 template<typename Scalar>
    903 struct scalar_cube_op {
    904   EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op)
    905   inline Scalar operator() (const Scalar& a) const { return a*a*a; }
    906   template<typename Packet>
    907   inline const Packet packetOp(const Packet& a) const
    908   { return internal::pmul(a,pmul(a,a)); }
    909 };
    910 template<typename Scalar>
    911 struct functor_traits<scalar_cube_op<Scalar> >
    912 { enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
    913 
    914 // default functor traits for STL functors:
    915 
    916 template<typename T>
    917 struct functor_traits<std::multiplies<T> >
    918 { enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
    919 
    920 template<typename T>
    921 struct functor_traits<std::divides<T> >
    922 { enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
    923 
    924 template<typename T>
    925 struct functor_traits<std::plus<T> >
    926 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
    927 
    928 template<typename T>
    929 struct functor_traits<std::minus<T> >
    930 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
    931 
    932 template<typename T>
    933 struct functor_traits<std::negate<T> >
    934 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
    935 
    936 template<typename T>
    937 struct functor_traits<std::logical_or<T> >
    938 { enum { Cost = 1, PacketAccess = false }; };
    939 
    940 template<typename T>
    941 struct functor_traits<std::logical_and<T> >
    942 { enum { Cost = 1, PacketAccess = false }; };
    943 
    944 template<typename T>
    945 struct functor_traits<std::logical_not<T> >
    946 { enum { Cost = 1, PacketAccess = false }; };
    947 
    948 template<typename T>
    949 struct functor_traits<std::greater<T> >
    950 { enum { Cost = 1, PacketAccess = false }; };
    951 
    952 template<typename T>
    953 struct functor_traits<std::less<T> >
    954 { enum { Cost = 1, PacketAccess = false }; };
    955 
    956 template<typename T>
    957 struct functor_traits<std::greater_equal<T> >
    958 { enum { Cost = 1, PacketAccess = false }; };
    959 
    960 template<typename T>
    961 struct functor_traits<std::less_equal<T> >
    962 { enum { Cost = 1, PacketAccess = false }; };
    963 
    964 template<typename T>
    965 struct functor_traits<std::equal_to<T> >
    966 { enum { Cost = 1, PacketAccess = false }; };
    967 
    968 template<typename T>
    969 struct functor_traits<std::not_equal_to<T> >
    970 { enum { Cost = 1, PacketAccess = false }; };
    971 
    972 template<typename T>
    973 struct functor_traits<std::binder2nd<T> >
    974 { enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
    975 
    976 template<typename T>
    977 struct functor_traits<std::binder1st<T> >
    978 { enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
    979 
    980 template<typename T>
    981 struct functor_traits<std::unary_negate<T> >
    982 { enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
    983 
    984 template<typename T>
    985 struct functor_traits<std::binary_negate<T> >
    986 { enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
    987 
    988 #ifdef EIGEN_STDEXT_SUPPORT
    989 
    990 template<typename T0,typename T1>
    991 struct functor_traits<std::project1st<T0,T1> >
    992 { enum { Cost = 0, PacketAccess = false }; };
    993 
    994 template<typename T0,typename T1>
    995 struct functor_traits<std::project2nd<T0,T1> >
    996 { enum { Cost = 0, PacketAccess = false }; };
    997 
    998 template<typename T0,typename T1>
    999 struct functor_traits<std::select2nd<std::pair<T0,T1> > >
   1000 { enum { Cost = 0, PacketAccess = false }; };
   1001 
   1002 template<typename T0,typename T1>
   1003 struct functor_traits<std::select1st<std::pair<T0,T1> > >
   1004 { enum { Cost = 0, PacketAccess = false }; };
   1005 
   1006 template<typename T0,typename T1>
   1007 struct functor_traits<std::unary_compose<T0,T1> >
   1008 { enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost, PacketAccess = false }; };
   1009 
   1010 template<typename T0,typename T1,typename T2>
   1011 struct functor_traits<std::binary_compose<T0,T1,T2> >
   1012 { enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost + functor_traits<T2>::Cost, PacketAccess = false }; };
   1013 
   1014 #endif // EIGEN_STDEXT_SUPPORT
   1015 
   1016 // allow to add new functors and specializations of functor_traits from outside Eigen.
   1017 // this macro is really needed because functor_traits must be specialized after it is declared but before it is used...
   1018 #ifdef EIGEN_FUNCTORS_PLUGIN
   1019 #include EIGEN_FUNCTORS_PLUGIN
   1020 #endif
   1021 
   1022 } // end namespace internal
   1023 
   1024 } // end namespace Eigen
   1025 
   1026 #endif // EIGEN_FUNCTORS_H
   1027