Home | History | Annotate | Download | only in smp
      1 /******************************************************************************
      2  *
      3  *  Copyright (C) 1999-2012 Broadcom Corporation
      4  *
      5  *  Licensed under the Apache License, Version 2.0 (the "License");
      6  *  you may not use this file except in compliance with the License.
      7  *  You may obtain a copy of the License at:
      8  *
      9  *  http://www.apache.org/licenses/LICENSE-2.0
     10  *
     11  *  Unless required by applicable law or agreed to in writing, software
     12  *  distributed under the License is distributed on an "AS IS" BASIS,
     13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14  *  See the License for the specific language governing permissions and
     15  *  limitations under the License.
     16  *
     17  ******************************************************************************/
     18 
     19 /******************************************************************************
     20  *
     21  *  This file contains security manager protocol utility functions
     22  *
     23  ******************************************************************************/
     24 #include "bt_target.h"
     25 
     26 #if SMP_INCLUDED == TRUE
     27 #if SMP_DEBUG == TRUE
     28     #include <stdio.h>
     29 #endif
     30 #include <string.h>
     31 #include "bt_utils.h"
     32 #include "btm_ble_api.h"
     33 #include "smp_int.h"
     34 #include "btm_int.h"
     35 #include "btm_ble_int.h"
     36 #include "hcimsgs.h"
     37 #include "aes.h"
     38 #include "p_256_ecc_pp.h"
     39 #include "device/include/controller.h"
     40 
     41 #ifndef SMP_MAX_ENC_REPEAT
     42   #define SMP_MAX_ENC_REPEAT  3
     43 #endif
     44 
     45 static void smp_rand_back(tBTM_RAND_ENC *p);
     46 static void smp_generate_confirm(tSMP_CB *p_cb, tSMP_INT_DATA *p_data);
     47 static void smp_generate_ltk_cont(tSMP_CB *p_cb, tSMP_INT_DATA *p_data);
     48 static void smp_generate_y(tSMP_CB *p_cb, tSMP_INT_DATA *p);
     49 static void smp_generate_rand_vector (tSMP_CB *p_cb, tSMP_INT_DATA *p);
     50 static void smp_process_stk(tSMP_CB *p_cb, tSMP_ENC *p);
     51 static void smp_calculate_comfirm_cont(tSMP_CB *p_cb, tSMP_ENC *p);
     52 static void smp_process_confirm(tSMP_CB *p_cb, tSMP_ENC *p);
     53 static void smp_process_compare(tSMP_CB *p_cb, tSMP_ENC *p);
     54 static void smp_process_ediv(tSMP_CB *p_cb, tSMP_ENC *p);
     55 static BOOLEAN smp_calculate_legacy_short_term_key(tSMP_CB *p_cb, tSMP_ENC *output);
     56 static void smp_continue_private_key_creation(tSMP_CB *p_cb, tBTM_RAND_ENC *p);
     57 static void smp_process_private_key(tSMP_CB *p_cb);
     58 static void smp_finish_nonce_generation(tSMP_CB *p_cb);
     59 static void smp_process_new_nonce(tSMP_CB *p_cb);
     60 
     61 #define SMP_PASSKEY_MASK    0xfff00000
     62 
     63 void smp_debug_print_nbyte_little_endian(UINT8 *p, const UINT8 *key_name, UINT8 len)
     64 {
     65 #if SMP_DEBUG == TRUE
     66     int     ind, x;
     67     int     col_count = 32;
     68     int     row_count;
     69     UINT8   p_buf[512];
     70 
     71     SMP_TRACE_WARNING("%s(LSB ~ MSB):", key_name);
     72     memset(p_buf, 0, sizeof(p_buf));
     73     row_count = len % col_count ? len / col_count + 1: len / col_count;
     74 
     75     ind = 0;
     76     for (int row = 0; row <  row_count; row++)
     77     {
     78         for (int column = 0, x = 0; (ind < len) && (column < col_count); column++, ind++)
     79         {
     80             x += sprintf((char *)&p_buf[x], "%02x ", p[ind]);
     81         }
     82         SMP_TRACE_WARNING("  [%03d]: %s", row * col_count, p_buf);
     83     }
     84 #endif
     85 }
     86 
     87 void smp_debug_print_nbyte_big_endian (UINT8 *p, const UINT8 *key_name, UINT8 len)
     88 {
     89 #if SMP_DEBUG == TRUE
     90     UINT8  p_buf[512];
     91 
     92     SMP_TRACE_WARNING("%s(MSB ~ LSB):", key_name);
     93     memset(p_buf, 0, sizeof(p_buf));
     94 
     95     int ind = 0;
     96     int  ncols = 32; /* num entries in one line */
     97     int  nrows;      /* num lines */
     98     int  x;
     99 
    100     nrows = len % ncols ? len / ncols + 1: len / ncols;
    101     for (int row = 0; row <  nrows; row++)
    102     {
    103         for (int col = 0, x = 0; (ind < len) && (col < ncols); col++, ind++)
    104         {
    105             x += sprintf ((char *)&p_buf[len-x-1], "%02x ", p[ind]);
    106         }
    107         SMP_TRACE_WARNING("[%03d]: %s", row * ncols, p_buf);
    108     }
    109 #endif
    110 }
    111 
    112 /*******************************************************************************
    113 **
    114 ** Function         smp_encrypt_data
    115 **
    116 ** Description      This function is called to encrypt data.
    117 **                  It uses AES-128 encryption algorithm.
    118 **                  Plain_text is encrypted using key, the result is at p_out.
    119 **
    120 ** Returns          void
    121 **
    122 *******************************************************************************/
    123 BOOLEAN smp_encrypt_data (UINT8 *key, UINT8 key_len,
    124                           UINT8 *plain_text, UINT8 pt_len,
    125                           tSMP_ENC *p_out)
    126 {
    127     aes_context ctx;
    128     UINT8 *p_start = NULL;
    129     UINT8 *p = NULL;
    130     UINT8 *p_rev_data = NULL;    /* input data in big endilan format */
    131     UINT8 *p_rev_key = NULL;     /* input key in big endilan format */
    132     UINT8 *p_rev_output = NULL;  /* encrypted output in big endilan format */
    133 
    134     SMP_TRACE_DEBUG ("%s", __func__);
    135     if ( (p_out == NULL ) || (key_len != SMP_ENCRYT_KEY_SIZE) )
    136     {
    137         SMP_TRACE_ERROR ("%s failed", __func__);
    138         return FALSE;
    139     }
    140 
    141     p_start = (UINT8 *)osi_calloc(SMP_ENCRYT_DATA_SIZE * 4);
    142 
    143     if (pt_len > SMP_ENCRYT_DATA_SIZE)
    144         pt_len = SMP_ENCRYT_DATA_SIZE;
    145 
    146     p = p_start;
    147     ARRAY_TO_STREAM (p, plain_text, pt_len); /* byte 0 to byte 15 */
    148     p_rev_data = p = p_start + SMP_ENCRYT_DATA_SIZE; /* start at byte 16 */
    149     REVERSE_ARRAY_TO_STREAM (p, p_start, SMP_ENCRYT_DATA_SIZE);  /* byte 16 to byte 31 */
    150     p_rev_key = p; /* start at byte 32 */
    151     REVERSE_ARRAY_TO_STREAM (p, key, SMP_ENCRYT_KEY_SIZE); /* byte 32 to byte 47 */
    152 
    153 #if SMP_DEBUG == TRUE && SMP_DEBUG_VERBOSE == TRUE
    154     smp_debug_print_nbyte_little_endian(key, (const UINT8 *)"Key", SMP_ENCRYT_KEY_SIZE);
    155     smp_debug_print_nbyte_little_endian(p_start, (const UINT8 *)"Plain text", SMP_ENCRYT_DATA_SIZE);
    156 #endif
    157     p_rev_output = p;
    158     aes_set_key(p_rev_key, SMP_ENCRYT_KEY_SIZE, &ctx);
    159     aes_encrypt(p_rev_data, p, &ctx);  /* outputs in byte 48 to byte 63 */
    160 
    161     p = p_out->param_buf;
    162     REVERSE_ARRAY_TO_STREAM (p, p_rev_output, SMP_ENCRYT_DATA_SIZE);
    163 #if SMP_DEBUG == TRUE && SMP_DEBUG_VERBOSE == TRUE
    164     smp_debug_print_nbyte_little_endian(p_out->param_buf, (const UINT8 *)"Encrypted text", SMP_ENCRYT_KEY_SIZE);
    165 #endif
    166 
    167     p_out->param_len = SMP_ENCRYT_KEY_SIZE;
    168     p_out->status = HCI_SUCCESS;
    169     p_out->opcode =  HCI_BLE_ENCRYPT;
    170 
    171     osi_free(p_start);
    172 
    173     return TRUE;
    174 }
    175 
    176 /*******************************************************************************
    177 **
    178 ** Function         smp_generate_passkey
    179 **
    180 ** Description      This function is called to generate passkey.
    181 **
    182 ** Returns          void
    183 **
    184 *******************************************************************************/
    185 void smp_generate_passkey(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    186 {
    187     UNUSED(p_data);
    188 
    189     SMP_TRACE_DEBUG ("%s", __func__);
    190     p_cb->rand_enc_proc_state = SMP_GEN_TK;
    191 
    192     /* generate MRand or SRand */
    193     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
    194         smp_rand_back(NULL);
    195 }
    196 
    197 /*******************************************************************************
    198 **
    199 ** Function         smp_proc_passkey
    200 **
    201 ** Description      This function is called to process a passkey.
    202 **
    203 ** Returns          void
    204 **
    205 *******************************************************************************/
    206 void smp_proc_passkey(tSMP_CB *p_cb , tBTM_RAND_ENC *p)
    207 {
    208     UINT8   *tt = p_cb->tk;
    209     tSMP_KEY    key;
    210     UINT32  passkey; /* 19655 test number; */
    211     UINT8 *pp = p->param_buf;
    212 
    213     SMP_TRACE_DEBUG ("%s", __func__);
    214     STREAM_TO_UINT32(passkey, pp);
    215     passkey &= ~SMP_PASSKEY_MASK;
    216 
    217     /* truncate by maximum value */
    218     while (passkey > BTM_MAX_PASSKEY_VAL)
    219         passkey >>= 1;
    220 
    221     /* save the TK */
    222     memset(p_cb->tk, 0, BT_OCTET16_LEN);
    223     UINT32_TO_STREAM(tt, passkey);
    224 
    225     key.key_type = SMP_KEY_TYPE_TK;
    226     key.p_data  = p_cb->tk;
    227 
    228     if (p_cb->p_callback)
    229     {
    230         (*p_cb->p_callback)(SMP_PASSKEY_NOTIF_EVT, p_cb->pairing_bda, (tSMP_EVT_DATA *)&passkey);
    231     }
    232 
    233     if (p_cb->selected_association_model == SMP_MODEL_SEC_CONN_PASSKEY_DISP)
    234     {
    235         smp_sm_event(&smp_cb, SMP_KEY_READY_EVT, &passkey);
    236     }
    237     else
    238     {
    239         smp_sm_event(p_cb, SMP_KEY_READY_EVT, (tSMP_INT_DATA *)&key);
    240     }
    241 }
    242 
    243 /*******************************************************************************
    244 **
    245 ** Function         smp_generate_stk
    246 **
    247 ** Description      This function is called to generate STK calculated by running
    248 **                  AES with the TK value as key and a concatenation of the random
    249 **                  values.
    250 **
    251 ** Returns          void
    252 **
    253 *******************************************************************************/
    254 void smp_generate_stk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    255 {
    256     UNUSED(p_data);
    257 
    258     tSMP_ENC output;
    259     tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;
    260 
    261     SMP_TRACE_DEBUG ("%s", __func__);
    262 
    263     if (p_cb->le_secure_connections_mode_is_used)
    264     {
    265         SMP_TRACE_WARNING ("FOR LE SC LTK IS USED INSTEAD OF STK");
    266         output.param_len = SMP_ENCRYT_KEY_SIZE;
    267         output.status = HCI_SUCCESS;
    268         output.opcode =  HCI_BLE_ENCRYPT;
    269         memcpy(output.param_buf, p_cb->ltk, SMP_ENCRYT_DATA_SIZE);
    270     }
    271     else if (!smp_calculate_legacy_short_term_key(p_cb, &output))
    272     {
    273         SMP_TRACE_ERROR("%s failed", __func__);
    274         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
    275         return;
    276     }
    277 
    278     smp_process_stk(p_cb, &output);
    279 }
    280 
    281 /*******************************************************************************
    282 **
    283 ** Function         smp_generate_srand_mrand_confirm
    284 **
    285 ** Description      This function is called to start the second pairing phase by
    286 **                  start generating random number.
    287 **
    288 **
    289 ** Returns          void
    290 **
    291 *******************************************************************************/
    292 void smp_generate_srand_mrand_confirm(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    293 {
    294     UNUSED(p_data);
    295 
    296     SMP_TRACE_DEBUG ("%s", __func__);
    297     p_cb->rand_enc_proc_state = SMP_GEN_SRAND_MRAND;
    298     /* generate MRand or SRand */
    299     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
    300         smp_rand_back(NULL);
    301 }
    302 
    303 /*******************************************************************************
    304 **
    305 ** Function         smp_generate_rand_cont
    306 **
    307 ** Description      This function is called to generate another 64 bits random for
    308 **                  MRand or Srand.
    309 **
    310 ** Returns          void
    311 **
    312 *******************************************************************************/
    313 void smp_generate_rand_cont(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    314 {
    315     UNUSED(p_data);
    316 
    317     SMP_TRACE_DEBUG ("%s", __func__);
    318     p_cb->rand_enc_proc_state = SMP_GEN_SRAND_MRAND_CONT;
    319     /* generate 64 MSB of MRand or SRand */
    320     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
    321         smp_rand_back(NULL);
    322 }
    323 
    324 /*******************************************************************************
    325 **
    326 ** Function         smp_generate_ltk
    327 **
    328 ** Description      This function is called:
    329 **                  - in legacy pairing - to calculate LTK, starting with DIV
    330 **                    generation;
    331 **                  - in LE Secure Connections pairing over LE transport - to process LTK
    332 **                    already generated to encrypt LE link;
    333 **                  - in LE Secure Connections pairing over BR/EDR transport - to start
    334 **                    BR/EDR Link Key processing.
    335 **
    336 ** Returns          void
    337 **
    338 *******************************************************************************/
    339 void smp_generate_ltk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    340 {
    341     UNUSED(p_data);
    342 
    343     BOOLEAN div_status;
    344     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
    345     if (smp_get_br_state() == SMP_BR_STATE_BOND_PENDING)
    346     {
    347         smp_br_process_link_key(p_cb, NULL);
    348         return;
    349     }
    350     else if (p_cb->le_secure_connections_mode_is_used)
    351     {
    352         smp_process_secure_connection_long_term_key();
    353         return;
    354     }
    355 
    356     div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div);
    357 
    358     if (div_status)
    359     {
    360         smp_generate_ltk_cont(p_cb, NULL);
    361     }
    362     else
    363     {
    364         SMP_TRACE_DEBUG ("Generate DIV for LTK");
    365         p_cb->rand_enc_proc_state = SMP_GEN_DIV_LTK;
    366         /* generate MRand or SRand */
    367         if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
    368             smp_rand_back(NULL);
    369     }
    370 }
    371 
    372 /*******************************************************************************
    373 **
    374 ** Function         smp_compute_csrk
    375 **
    376 ** Description      This function is called to calculate CSRK
    377 **
    378 **
    379 ** Returns          void
    380 **
    381 *******************************************************************************/
    382 void smp_compute_csrk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    383 {
    384     UNUSED(p_data);
    385 
    386     BT_OCTET16  er;
    387     UINT8       buffer[4]; /* for (r || DIV)  r=1*/
    388     UINT16      r=1;
    389     UINT8       *p=buffer;
    390     tSMP_ENC    output;
    391     tSMP_STATUS   status = SMP_PAIR_FAIL_UNKNOWN;
    392 
    393     SMP_TRACE_DEBUG ("smp_compute_csrk div=%x", p_cb->div);
    394     BTM_GetDeviceEncRoot(er);
    395     /* CSRK = d1(ER, DIV, 1) */
    396     UINT16_TO_STREAM(p, p_cb->div);
    397     UINT16_TO_STREAM(p, r);
    398 
    399     if (!SMP_Encrypt(er, BT_OCTET16_LEN, buffer, 4, &output))
    400     {
    401         SMP_TRACE_ERROR("smp_generate_csrk failed");
    402         if (p_cb->smp_over_br)
    403         {
    404             smp_br_state_machine_event(p_cb, SMP_BR_AUTH_CMPL_EVT, &status);
    405         }
    406         else
    407         {
    408             smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
    409         }
    410     }
    411     else
    412     {
    413         memcpy((void *)p_cb->csrk, output.param_buf, BT_OCTET16_LEN);
    414         smp_send_csrk_info(p_cb, NULL);
    415     }
    416 }
    417 
    418 /*******************************************************************************
    419 **
    420 ** Function         smp_generate_csrk
    421 **
    422 ** Description      This function is called to calculate CSRK, starting with DIV
    423 **                  generation.
    424 **
    425 **
    426 ** Returns          void
    427 **
    428 *******************************************************************************/
    429 void smp_generate_csrk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    430 {
    431     UNUSED(p_data);
    432 
    433     BOOLEAN     div_status;
    434 
    435     SMP_TRACE_DEBUG ("smp_generate_csrk");
    436 
    437     div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div);
    438     if (div_status)
    439     {
    440         smp_compute_csrk(p_cb, NULL);
    441     }
    442     else
    443     {
    444         SMP_TRACE_DEBUG ("Generate DIV for CSRK");
    445         p_cb->rand_enc_proc_state = SMP_GEN_DIV_CSRK;
    446         if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
    447             smp_rand_back(NULL);
    448     }
    449 }
    450 
    451 /*******************************************************************************
    452 ** Function         smp_concatenate_peer
    453 **                  add pairing command sent from local device into p1.
    454 *******************************************************************************/
    455 void smp_concatenate_local( tSMP_CB *p_cb, UINT8 **p_data, UINT8 op_code)
    456 {
    457     UINT8   *p = *p_data;
    458 
    459     SMP_TRACE_DEBUG ("%s", __func__);
    460     UINT8_TO_STREAM(p, op_code);
    461     UINT8_TO_STREAM(p, p_cb->local_io_capability);
    462     UINT8_TO_STREAM(p, p_cb->loc_oob_flag);
    463     UINT8_TO_STREAM(p, p_cb->loc_auth_req);
    464     UINT8_TO_STREAM(p, p_cb->loc_enc_size);
    465     UINT8_TO_STREAM(p, p_cb->local_i_key);
    466     UINT8_TO_STREAM(p, p_cb->local_r_key);
    467 
    468     *p_data = p;
    469 }
    470 
    471 /*******************************************************************************
    472 ** Function         smp_concatenate_peer
    473 **                  add pairing command received from peer device into p1.
    474 *******************************************************************************/
    475 void smp_concatenate_peer( tSMP_CB *p_cb, UINT8 **p_data, UINT8 op_code)
    476 {
    477     UINT8   *p = *p_data;
    478 
    479     SMP_TRACE_DEBUG ("smp_concatenate_peer ");
    480     UINT8_TO_STREAM(p, op_code);
    481     UINT8_TO_STREAM(p, p_cb->peer_io_caps);
    482     UINT8_TO_STREAM(p, p_cb->peer_oob_flag);
    483     UINT8_TO_STREAM(p, p_cb->peer_auth_req);
    484     UINT8_TO_STREAM(p, p_cb->peer_enc_size);
    485     UINT8_TO_STREAM(p, p_cb->peer_i_key);
    486     UINT8_TO_STREAM(p, p_cb->peer_r_key);
    487 
    488     *p_data = p;
    489 }
    490 
    491 /*******************************************************************************
    492 **
    493 ** Function         smp_gen_p1_4_confirm
    494 **
    495 ** Description      Generate Confirm/Compare Step1:
    496 **                  p1 = pres || preq || rat' || iat'
    497 **
    498 ** Returns          void
    499 **
    500 *******************************************************************************/
    501 void smp_gen_p1_4_confirm( tSMP_CB *p_cb, BT_OCTET16 p1)
    502 {
    503     UINT8 *p = (UINT8 *)p1;
    504     tBLE_ADDR_TYPE    addr_type = 0;
    505     BD_ADDR           remote_bda;
    506 
    507     SMP_TRACE_DEBUG ("smp_gen_p1_4_confirm");
    508 
    509     if (!BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, remote_bda, &addr_type))
    510     {
    511         SMP_TRACE_ERROR("can not generate confirm for unknown device");
    512         return;
    513     }
    514 
    515     BTM_ReadConnectionAddr( p_cb->pairing_bda, p_cb->local_bda, &p_cb->addr_type);
    516 
    517     if (p_cb->role == HCI_ROLE_MASTER)
    518     {
    519         /* LSB : rat': initiator's(local) address type */
    520         UINT8_TO_STREAM(p, p_cb->addr_type);
    521         /* LSB : iat': responder's address type */
    522         UINT8_TO_STREAM(p, addr_type);
    523         /* concatinate preq */
    524         smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_REQ);
    525         /* concatinate pres */
    526         smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_RSP);
    527     }
    528     else
    529     {
    530         /* LSB : iat': initiator's address type */
    531         UINT8_TO_STREAM(p, addr_type);
    532         /* LSB : rat': responder's(local) address type */
    533         UINT8_TO_STREAM(p, p_cb->addr_type);
    534         /* concatinate preq */
    535         smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_REQ);
    536         /* concatinate pres */
    537         smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_RSP);
    538     }
    539 #if SMP_DEBUG == TRUE
    540     SMP_TRACE_DEBUG("p1 = pres || preq || rat' || iat'");
    541     smp_debug_print_nbyte_little_endian ((UINT8 *)p1, (const UINT8 *)"P1", 16);
    542 #endif
    543 }
    544 
    545 /*******************************************************************************
    546 **
    547 ** Function         smp_gen_p2_4_confirm
    548 **
    549 ** Description      Generate Confirm/Compare Step2:
    550 **                  p2 = padding || ia || ra
    551 **
    552 ** Returns          void
    553 **
    554 *******************************************************************************/
    555 void smp_gen_p2_4_confirm( tSMP_CB *p_cb, BT_OCTET16 p2)
    556 {
    557     UINT8       *p = (UINT8 *)p2;
    558     BD_ADDR     remote_bda;
    559     tBLE_ADDR_TYPE  addr_type = 0;
    560 
    561     if (!BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, remote_bda, &addr_type))
    562     {
    563         SMP_TRACE_ERROR("can not generate confirm p2 for unknown device");
    564         return;
    565     }
    566 
    567     SMP_TRACE_DEBUG ("smp_gen_p2_4_confirm");
    568 
    569     memset(p, 0, sizeof(BT_OCTET16));
    570 
    571     if (p_cb->role == HCI_ROLE_MASTER)
    572     {
    573         /* LSB ra */
    574         BDADDR_TO_STREAM(p, remote_bda);
    575         /* ia */
    576         BDADDR_TO_STREAM(p, p_cb->local_bda);
    577     }
    578     else
    579     {
    580         /* LSB ra */
    581         BDADDR_TO_STREAM(p, p_cb->local_bda);
    582         /* ia */
    583         BDADDR_TO_STREAM(p, remote_bda);
    584     }
    585 #if SMP_DEBUG == TRUE
    586     SMP_TRACE_DEBUG("p2 = padding || ia || ra");
    587     smp_debug_print_nbyte_little_endian(p2, (const UINT8 *)"p2", 16);
    588 #endif
    589 }
    590 
    591 /*******************************************************************************
    592 **
    593 ** Function         smp_calculate_comfirm
    594 **
    595 ** Description      This function is called to calculate Confirm value.
    596 **
    597 ** Returns          void
    598 **
    599 *******************************************************************************/
    600 void smp_calculate_comfirm (tSMP_CB *p_cb, BT_OCTET16 rand, BD_ADDR bda)
    601 {
    602     UNUSED(bda);
    603 
    604     BT_OCTET16      p1;
    605     tSMP_ENC       output;
    606     tSMP_STATUS     status = SMP_PAIR_FAIL_UNKNOWN;
    607 
    608     SMP_TRACE_DEBUG ("smp_calculate_comfirm ");
    609     /* generate p1 = pres || preq || rat' || iat' */
    610     smp_gen_p1_4_confirm(p_cb, p1);
    611 
    612     /* p1 = rand XOR p1 */
    613     smp_xor_128(p1, rand);
    614 
    615     smp_debug_print_nbyte_little_endian ((UINT8 *)p1, (const UINT8 *)"P1' = r XOR p1", 16);
    616 
    617     /* calculate e(k, r XOR p1), where k = TK */
    618     if (!SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, p1, BT_OCTET16_LEN, &output))
    619     {
    620         SMP_TRACE_ERROR("smp_generate_csrk failed");
    621         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
    622     }
    623     else
    624     {
    625         smp_calculate_comfirm_cont(p_cb, &output);
    626     }
    627 }
    628 
    629 /*******************************************************************************
    630 **
    631 ** Function         smp_calculate_comfirm_cont
    632 **
    633 ** Description      This function is called when SConfirm/MConfirm is generated
    634 **                  proceed to send the Confirm request/response to peer device.
    635 **
    636 ** Returns          void
    637 **
    638 *******************************************************************************/
    639 static void smp_calculate_comfirm_cont(tSMP_CB *p_cb, tSMP_ENC *p)
    640 {
    641     BT_OCTET16    p2;
    642     tSMP_ENC      output;
    643     tSMP_STATUS     status = SMP_PAIR_FAIL_UNKNOWN;
    644 
    645     SMP_TRACE_DEBUG ("smp_calculate_comfirm_cont ");
    646 #if SMP_DEBUG == TRUE
    647     SMP_TRACE_DEBUG("Confirm step 1 p1' = e(k, r XOR p1)  Generated");
    648     smp_debug_print_nbyte_little_endian (p->param_buf, (const UINT8 *)"C1", 16);
    649 #endif
    650 
    651     smp_gen_p2_4_confirm(p_cb, p2);
    652 
    653     /* calculate p2 = (p1' XOR p2) */
    654     smp_xor_128(p2, p->param_buf);
    655     smp_debug_print_nbyte_little_endian ((UINT8 *)p2, (const UINT8 *)"p2' = C1 xor p2", 16);
    656 
    657     /* calculate: Confirm = E(k, p1' XOR p2) */
    658     if (!SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, p2, BT_OCTET16_LEN, &output))
    659     {
    660         SMP_TRACE_ERROR("smp_calculate_comfirm_cont failed");
    661         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
    662     }
    663     else
    664     {
    665         switch (p_cb->rand_enc_proc_state)
    666         {
    667             case SMP_GEN_CONFIRM:
    668                 smp_process_confirm(p_cb, &output);
    669                 break;
    670 
    671             case SMP_GEN_COMPARE:
    672                 smp_process_compare(p_cb, &output);
    673                 break;
    674         }
    675     }
    676 }
    677 
    678 /*******************************************************************************
    679 **
    680 ** Function         smp_generate_confirm
    681 **
    682 ** Description      This function is called when a 48 bits random number is generated
    683 **                  as SRand or MRand, continue to calculate Sconfirm or MConfirm.
    684 **
    685 ** Returns          void
    686 **
    687 *******************************************************************************/
    688 static void smp_generate_confirm(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    689 {
    690     UNUSED(p_data);
    691 
    692     SMP_TRACE_DEBUG ("%s", __func__);
    693     p_cb->rand_enc_proc_state = SMP_GEN_CONFIRM;
    694     smp_debug_print_nbyte_little_endian ((UINT8 *)p_cb->rand,  (const UINT8 *)"local rand", 16);
    695     smp_calculate_comfirm(p_cb, p_cb->rand, p_cb->pairing_bda);
    696 }
    697 
    698 /*******************************************************************************
    699 **
    700 ** Function         smp_generate_compare
    701 **
    702 ** Description      This function is called to generate SConfirm for Slave device,
    703 **                  or MSlave for Master device. This function can be also used for
    704 **                  generating Compare number for confirm value check.
    705 **
    706 ** Returns          void
    707 **
    708 *******************************************************************************/
    709 void smp_generate_compare (tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    710 {
    711     UNUSED(p_data);
    712 
    713     SMP_TRACE_DEBUG ("smp_generate_compare ");
    714     p_cb->rand_enc_proc_state = SMP_GEN_COMPARE;
    715     smp_debug_print_nbyte_little_endian ((UINT8 *)p_cb->rrand,  (const UINT8 *)"peer rand", 16);
    716     smp_calculate_comfirm(p_cb, p_cb->rrand, p_cb->local_bda);
    717 }
    718 
    719 /*******************************************************************************
    720 **
    721 ** Function         smp_process_confirm
    722 **
    723 ** Description      This function is called when SConfirm/MConfirm is generated
    724 **                  proceed to send the Confirm request/response to peer device.
    725 **
    726 ** Returns          void
    727 **
    728 *******************************************************************************/
    729 static void smp_process_confirm(tSMP_CB *p_cb, tSMP_ENC *p)
    730 {
    731     tSMP_KEY    key;
    732 
    733     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
    734     memcpy(p_cb->confirm, p->param_buf, BT_OCTET16_LEN);
    735 
    736 #if (SMP_DEBUG == TRUE)
    737     SMP_TRACE_DEBUG("Confirm  Generated");
    738     smp_debug_print_nbyte_little_endian ((UINT8 *)p_cb->confirm,  (const UINT8 *)"Confirm", 16);
    739 #endif
    740 
    741     key.key_type = SMP_KEY_TYPE_CFM;
    742     key.p_data = p->param_buf;
    743     smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
    744 }
    745 
    746 /*******************************************************************************
    747 **
    748 ** Function         smp_process_compare
    749 **
    750 ** Description      This function is called when Compare is generated using the
    751 **                  RRand and local BDA, TK information.
    752 **
    753 ** Returns          void
    754 **
    755 *******************************************************************************/
    756 static void smp_process_compare(tSMP_CB *p_cb, tSMP_ENC *p)
    757 {
    758     tSMP_KEY    key;
    759 
    760     SMP_TRACE_DEBUG ("smp_process_compare ");
    761 #if (SMP_DEBUG == TRUE)
    762     SMP_TRACE_DEBUG("Compare Generated");
    763     smp_debug_print_nbyte_little_endian (p->param_buf,  (const UINT8 *)"Compare", 16);
    764 #endif
    765     key.key_type = SMP_KEY_TYPE_CMP;
    766     key.p_data   = p->param_buf;
    767 
    768     smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
    769 }
    770 
    771 /*******************************************************************************
    772 **
    773 ** Function         smp_process_stk
    774 **
    775 ** Description      This function is called when STK is generated
    776 **                  proceed to send the encrypt the link using STK.
    777 **
    778 ** Returns          void
    779 **
    780 *******************************************************************************/
    781 static void smp_process_stk(tSMP_CB *p_cb, tSMP_ENC *p)
    782 {
    783     tSMP_KEY    key;
    784 
    785     SMP_TRACE_DEBUG ("smp_process_stk ");
    786 #if (SMP_DEBUG == TRUE)
    787     SMP_TRACE_ERROR("STK Generated");
    788 #endif
    789     smp_mask_enc_key(p_cb->loc_enc_size, p->param_buf);
    790 
    791     key.key_type = SMP_KEY_TYPE_STK;
    792     key.p_data   = p->param_buf;
    793 
    794     smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
    795 }
    796 
    797 /*******************************************************************************
    798 **
    799 ** Function         smp_generate_ltk_cont
    800 **
    801 ** Description      This function is to calculate LTK = d1(ER, DIV, 0)= e(ER, DIV)
    802 **
    803 ** Returns          void
    804 **
    805 *******************************************************************************/
    806 static void smp_generate_ltk_cont(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    807 {
    808     UNUSED(p_data);
    809 
    810     BT_OCTET16  er;
    811     tSMP_ENC    output;
    812     tSMP_STATUS     status = SMP_PAIR_FAIL_UNKNOWN;
    813 
    814     SMP_TRACE_DEBUG ("%s", __func__);
    815     BTM_GetDeviceEncRoot(er);
    816 
    817     /* LTK = d1(ER, DIV, 0)= e(ER, DIV)*/
    818     if (!SMP_Encrypt(er, BT_OCTET16_LEN, (UINT8 *)&p_cb->div,
    819                      sizeof(UINT16), &output))
    820     {
    821         SMP_TRACE_ERROR("%s failed", __func__);
    822         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
    823     }
    824     else
    825     {
    826         /* mask the LTK */
    827         smp_mask_enc_key(p_cb->loc_enc_size, output.param_buf);
    828         memcpy((void *)p_cb->ltk, output.param_buf, BT_OCTET16_LEN);
    829         smp_generate_rand_vector(p_cb, NULL);
    830     }
    831 }
    832 
    833 /*******************************************************************************
    834 **
    835 ** Function         smp_generate_y
    836 **
    837 ** Description      This function is to proceed generate Y = E(DHK, Rand)
    838 **
    839 ** Returns          void
    840 **
    841 *******************************************************************************/
    842 static void smp_generate_y(tSMP_CB *p_cb, tSMP_INT_DATA *p)
    843 {
    844     UNUSED(p);
    845 
    846     BT_OCTET16  dhk;
    847     tSMP_ENC   output;
    848     tSMP_STATUS     status = SMP_PAIR_FAIL_UNKNOWN;
    849 
    850 
    851     SMP_TRACE_DEBUG ("smp_generate_y ");
    852     BTM_GetDeviceDHK(dhk);
    853 
    854     if (!SMP_Encrypt(dhk, BT_OCTET16_LEN, p_cb->enc_rand,
    855                      BT_OCTET8_LEN, &output))
    856     {
    857         SMP_TRACE_ERROR("smp_generate_y failed");
    858         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
    859     }
    860     else
    861     {
    862         smp_process_ediv(p_cb, &output);
    863     }
    864 }
    865 
    866 /*******************************************************************************
    867 **
    868 ** Function         smp_generate_rand_vector
    869 **
    870 ** Description      This function is called when LTK is generated, send state machine
    871 **                  event to SMP.
    872 **
    873 ** Returns          void
    874 **
    875 *******************************************************************************/
    876 static void smp_generate_rand_vector (tSMP_CB *p_cb, tSMP_INT_DATA *p)
    877 {
    878     UNUSED(p);
    879 
    880     /* generate EDIV and rand now */
    881     /* generate random vector */
    882     SMP_TRACE_DEBUG ("smp_generate_rand_vector ");
    883     p_cb->rand_enc_proc_state = SMP_GEN_RAND_V;
    884     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
    885         smp_rand_back(NULL);
    886 }
    887 
    888 /*******************************************************************************
    889 **
    890 ** Function         smp_process_ediv
    891 **
    892 ** Description      This function is to calculate EDIV = Y xor DIV
    893 **
    894 ** Returns          void
    895 **
    896 *******************************************************************************/
    897 static void smp_process_ediv(tSMP_CB *p_cb, tSMP_ENC *p)
    898 {
    899     tSMP_KEY    key;
    900     UINT8 *pp= p->param_buf;
    901     UINT16  y;
    902 
    903     SMP_TRACE_DEBUG ("smp_process_ediv ");
    904     STREAM_TO_UINT16(y, pp);
    905 
    906     /* EDIV = Y xor DIV */
    907     p_cb->ediv = p_cb->div ^ y;
    908     /* send LTK ready */
    909     SMP_TRACE_ERROR("LTK ready");
    910     key.key_type = SMP_KEY_TYPE_LTK;
    911     key.p_data   = p->param_buf;
    912 
    913     smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
    914 }
    915 
    916 /*******************************************************************************
    917 **
    918 ** Function         smp_calculate_legacy_short_term_key
    919 **
    920 ** Description      The function calculates legacy STK.
    921 **
    922 ** Returns          FALSE if out of resources, TRUE in other cases.
    923 **
    924 *******************************************************************************/
    925 BOOLEAN smp_calculate_legacy_short_term_key(tSMP_CB *p_cb, tSMP_ENC *output)
    926 {
    927     BT_OCTET16 ptext;
    928     UINT8 *p = ptext;
    929 
    930     SMP_TRACE_DEBUG ("%s", __func__);
    931     memset(p, 0, BT_OCTET16_LEN);
    932     if (p_cb->role == HCI_ROLE_MASTER)
    933     {
    934         memcpy(p, p_cb->rand, BT_OCTET8_LEN);
    935         memcpy(&p[BT_OCTET8_LEN], p_cb->rrand, BT_OCTET8_LEN);
    936     }
    937     else
    938     {
    939         memcpy(p, p_cb->rrand, BT_OCTET8_LEN);
    940         memcpy(&p[BT_OCTET8_LEN], p_cb->rand, BT_OCTET8_LEN);
    941     }
    942 
    943     BOOLEAN encrypted;
    944     /* generate STK = Etk(rand|rrand)*/
    945     encrypted = SMP_Encrypt( p_cb->tk, BT_OCTET16_LEN, ptext, BT_OCTET16_LEN, output);
    946     if (!encrypted)
    947     {
    948         SMP_TRACE_ERROR("%s failed", __func__);
    949     }
    950     return encrypted;
    951 }
    952 
    953 /*******************************************************************************
    954 **
    955 ** Function         smp_create_private_key
    956 **
    957 ** Description      This function is called to create private key used to
    958 **                  calculate public key and DHKey.
    959 **                  The function starts private key creation requesting controller
    960 **                  to generate [0-7] octets of private key.
    961 **
    962 ** Returns          void
    963 **
    964 *******************************************************************************/
    965 void smp_create_private_key(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    966 {
    967     SMP_TRACE_DEBUG ("%s",__FUNCTION__);
    968     p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_0_7;
    969     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
    970         smp_rand_back(NULL);
    971 }
    972 
    973 /*******************************************************************************
    974 **
    975 ** Function         smp_use_oob_private_key
    976 **
    977 ** Description      This function is called
    978 **                  - to save the secret key used to calculate the public key used
    979 **                    in calculations of commitment sent OOB to a peer
    980 **                  - to use this secret key to recalculate the public key and
    981 **                    start the process of sending this public key to the peer
    982 **                  if secret/public keys have to be reused.
    983 **                  If the keys aren't supposed to be reused, continue from the
    984 **                  point from which request for OOB data was issued.
    985 **
    986 ** Returns          void
    987 **
    988 *******************************************************************************/
    989 void smp_use_oob_private_key(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
    990 {
    991     SMP_TRACE_DEBUG ("%s req_oob_type: %d, role: %d",
    992                       __func__, p_cb->req_oob_type, p_cb->role);
    993 
    994     switch (p_cb->req_oob_type)
    995     {
    996         case SMP_OOB_BOTH:
    997         case SMP_OOB_LOCAL:
    998             SMP_TRACE_DEBUG("%s restore secret key", __func__)
    999             memcpy(p_cb->private_key, p_cb->sc_oob_data.loc_oob_data.private_key_used, BT_OCTET32_LEN);
   1000             smp_process_private_key(p_cb);
   1001             break;
   1002         default:
   1003             SMP_TRACE_DEBUG("%s create secret key anew", __func__);
   1004             smp_set_state(SMP_STATE_PAIR_REQ_RSP);
   1005             smp_decide_association_model(p_cb, NULL);
   1006             break;
   1007     }
   1008 }
   1009 
   1010 /*******************************************************************************
   1011 **
   1012 ** Function         smp_continue_private_key_creation
   1013 **
   1014 ** Description      This function is used to continue private key creation.
   1015 **
   1016 ** Returns          void
   1017 **
   1018 *******************************************************************************/
   1019 void smp_continue_private_key_creation (tSMP_CB *p_cb, tBTM_RAND_ENC *p)
   1020 {
   1021     UINT8   state = p_cb->rand_enc_proc_state & ~0x80;
   1022     SMP_TRACE_DEBUG ("%s state=0x%x", __func__, state);
   1023 
   1024     switch (state)
   1025     {
   1026         case SMP_GENERATE_PRIVATE_KEY_0_7:
   1027             memcpy((void *)p_cb->private_key, p->param_buf, p->param_len);
   1028             p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_8_15;
   1029             if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
   1030                 smp_rand_back(NULL);
   1031             break;
   1032 
   1033         case SMP_GENERATE_PRIVATE_KEY_8_15:
   1034             memcpy((void *)&p_cb->private_key[8], p->param_buf, p->param_len);
   1035             p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_16_23;
   1036             if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
   1037                 smp_rand_back(NULL);
   1038             break;
   1039 
   1040         case SMP_GENERATE_PRIVATE_KEY_16_23:
   1041             memcpy((void *)&p_cb->private_key[16], p->param_buf, p->param_len);
   1042             p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_24_31;
   1043             if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
   1044                 smp_rand_back(NULL);
   1045             break;
   1046 
   1047         case SMP_GENERATE_PRIVATE_KEY_24_31:
   1048             memcpy((void *)&p_cb->private_key[24], p->param_buf, p->param_len);
   1049             smp_process_private_key (p_cb);
   1050             break;
   1051 
   1052         default:
   1053             break;
   1054     }
   1055 
   1056     return;
   1057 }
   1058 
   1059 /*******************************************************************************
   1060 **
   1061 ** Function         smp_process_private_key
   1062 **
   1063 ** Description      This function processes private key.
   1064 **                  It calculates public key and notifies SM that private key /
   1065 **                  public key pair is created.
   1066 **
   1067 ** Returns          void
   1068 **
   1069 *******************************************************************************/
   1070 void smp_process_private_key(tSMP_CB *p_cb)
   1071 {
   1072     Point       public_key;
   1073     BT_OCTET32  private_key;
   1074 
   1075     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1076 
   1077     memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN);
   1078     ECC_PointMult(&public_key, &(curve_p256.G), (DWORD*) private_key, KEY_LENGTH_DWORDS_P256);
   1079     memcpy(p_cb->loc_publ_key.x, public_key.x, BT_OCTET32_LEN);
   1080     memcpy(p_cb->loc_publ_key.y, public_key.y, BT_OCTET32_LEN);
   1081 
   1082     smp_debug_print_nbyte_little_endian (p_cb->private_key, (const UINT8 *)"private",
   1083                                          BT_OCTET32_LEN);
   1084     smp_debug_print_nbyte_little_endian (p_cb->loc_publ_key.x, (const UINT8 *)"local public(x)",
   1085                                          BT_OCTET32_LEN);
   1086     smp_debug_print_nbyte_little_endian (p_cb->loc_publ_key.y, (const UINT8 *)"local public(y)",
   1087                                          BT_OCTET32_LEN);
   1088     p_cb->flags |= SMP_PAIR_FLAG_HAVE_LOCAL_PUBL_KEY;
   1089     smp_sm_event(p_cb, SMP_LOC_PUBL_KEY_CRTD_EVT, NULL);
   1090 }
   1091 
   1092 /*******************************************************************************
   1093 **
   1094 ** Function         smp_compute_dhkey
   1095 **
   1096 ** Description      The function:
   1097 **                  - calculates a new public key using as input local private
   1098 **                    key and peer public key;
   1099 **                  - saves the new public key x-coordinate as DHKey.
   1100 **
   1101 ** Returns          void
   1102 **
   1103 *******************************************************************************/
   1104 void smp_compute_dhkey (tSMP_CB *p_cb)
   1105 {
   1106     Point       peer_publ_key, new_publ_key;
   1107     BT_OCTET32  private_key;
   1108 
   1109     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1110 
   1111     memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN);
   1112     memcpy(peer_publ_key.x, p_cb->peer_publ_key.x, BT_OCTET32_LEN);
   1113     memcpy(peer_publ_key.y, p_cb->peer_publ_key.y, BT_OCTET32_LEN);
   1114 
   1115     ECC_PointMult(&new_publ_key, &peer_publ_key, (DWORD*) private_key, KEY_LENGTH_DWORDS_P256);
   1116 
   1117     memcpy(p_cb->dhkey, new_publ_key.x, BT_OCTET32_LEN);
   1118 
   1119     smp_debug_print_nbyte_little_endian (p_cb->dhkey, (const UINT8 *)"Old DHKey",
   1120                                          BT_OCTET32_LEN);
   1121 
   1122     smp_debug_print_nbyte_little_endian (p_cb->private_key, (const UINT8 *)"private",
   1123                                          BT_OCTET32_LEN);
   1124     smp_debug_print_nbyte_little_endian (p_cb->peer_publ_key.x, (const UINT8 *)"rem public(x)",
   1125                                          BT_OCTET32_LEN);
   1126     smp_debug_print_nbyte_little_endian (p_cb->peer_publ_key.y, (const UINT8 *)"rem public(y)",
   1127                                          BT_OCTET32_LEN);
   1128     smp_debug_print_nbyte_little_endian (p_cb->dhkey, (const UINT8 *)"Reverted DHKey",
   1129                                          BT_OCTET32_LEN);
   1130 }
   1131 
   1132 /*******************************************************************************
   1133 **
   1134 ** Function         smp_calculate_local_commitment
   1135 **
   1136 ** Description      The function calculates and saves local commmitment in CB.
   1137 **
   1138 ** Returns          void
   1139 **
   1140 *******************************************************************************/
   1141 void smp_calculate_local_commitment(tSMP_CB *p_cb)
   1142 {
   1143     UINT8 random_input;
   1144 
   1145     SMP_TRACE_DEBUG("%s", __FUNCTION__);
   1146 
   1147     switch (p_cb->selected_association_model)
   1148     {
   1149         case SMP_MODEL_SEC_CONN_JUSTWORKS:
   1150         case SMP_MODEL_SEC_CONN_NUM_COMP:
   1151             if (p_cb->role  == HCI_ROLE_MASTER)
   1152                 SMP_TRACE_WARNING ("local commitment calc on master is not expected \
   1153                                     for Just Works/Numeric Comparison models");
   1154             smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, 0,
   1155                              p_cb->commitment);
   1156             break;
   1157         case SMP_MODEL_SEC_CONN_PASSKEY_ENT:
   1158         case SMP_MODEL_SEC_CONN_PASSKEY_DISP:
   1159             random_input = smp_calculate_random_input(p_cb->local_random, p_cb->round);
   1160             smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand,
   1161                              random_input, p_cb->commitment);
   1162             break;
   1163         case SMP_MODEL_SEC_CONN_OOB:
   1164             SMP_TRACE_WARNING ("local commitment calc is expected for OOB model BEFORE pairing");
   1165             smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->loc_publ_key.x, p_cb->local_random, 0,
   1166                              p_cb->commitment);
   1167             break;
   1168         default:
   1169             SMP_TRACE_ERROR("Association Model = %d is not used in LE SC",
   1170                              p_cb->selected_association_model);
   1171             return;
   1172     }
   1173 
   1174     SMP_TRACE_EVENT ("local commitment calculation is completed");
   1175 }
   1176 
   1177 /*******************************************************************************
   1178 **
   1179 ** Function         smp_calculate_peer_commitment
   1180 **
   1181 ** Description      The function calculates and saves peer commmitment at the
   1182 **                  provided output buffer.
   1183 **
   1184 ** Returns          void
   1185 **
   1186 *******************************************************************************/
   1187 void smp_calculate_peer_commitment(tSMP_CB *p_cb, BT_OCTET16 output_buf)
   1188 {
   1189     UINT8 ri;
   1190 
   1191     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1192 
   1193     switch (p_cb->selected_association_model)
   1194     {
   1195         case SMP_MODEL_SEC_CONN_JUSTWORKS:
   1196         case SMP_MODEL_SEC_CONN_NUM_COMP:
   1197             if (p_cb->role  == HCI_ROLE_SLAVE)
   1198                 SMP_TRACE_WARNING ("peer commitment calc on slave is not expected \
   1199                 for Just Works/Numeric Comparison models");
   1200             smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, 0,
   1201                              output_buf);
   1202             break;
   1203         case SMP_MODEL_SEC_CONN_PASSKEY_ENT:
   1204         case SMP_MODEL_SEC_CONN_PASSKEY_DISP:
   1205             ri = smp_calculate_random_input(p_cb->peer_random, p_cb->round);
   1206             smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, ri,
   1207                              output_buf);
   1208             break;
   1209         case SMP_MODEL_SEC_CONN_OOB:
   1210             smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->peer_publ_key.x, p_cb->peer_random, 0,
   1211                              output_buf);
   1212             break;
   1213         default:
   1214             SMP_TRACE_ERROR("Association Model = %d is not used in LE SC",
   1215                              p_cb->selected_association_model);
   1216             return;
   1217     }
   1218 
   1219     SMP_TRACE_EVENT ("peer commitment calculation is completed");
   1220 }
   1221 
   1222 /*******************************************************************************
   1223 **
   1224 ** Function         smp_calculate_f4
   1225 **
   1226 ** Description      The function calculates
   1227 **                  C = f4(U, V, X, Z) = AES-CMAC (U||V||Z)
   1228 **                                               X
   1229 **                  where
   1230 **                  input:  U is 256 bit,
   1231 **                          V is 256 bit,
   1232 **                          X is 128 bit,
   1233 **                          Z is 8 bit,
   1234 **                  output: C is 128 bit.
   1235 **
   1236 ** Returns          void
   1237 **
   1238 ** Note             The LSB is the first octet, the MSB is the last octet of
   1239 **                  the AES-CMAC input/output stream.
   1240 **
   1241 *******************************************************************************/
   1242 void smp_calculate_f4(UINT8 *u, UINT8 *v, UINT8 *x, UINT8 z, UINT8 *c)
   1243 {
   1244     UINT8   msg_len = BT_OCTET32_LEN /* U size */ + BT_OCTET32_LEN /* V size */ + 1 /* Z size */;
   1245     UINT8   msg[BT_OCTET32_LEN + BT_OCTET32_LEN + 1];
   1246     UINT8   key[BT_OCTET16_LEN];
   1247     UINT8   cmac[BT_OCTET16_LEN];
   1248     UINT8   *p = NULL;
   1249 #if SMP_DEBUG == TRUE
   1250     UINT8   *p_prnt = NULL;
   1251 #endif
   1252 
   1253     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1254 
   1255 #if SMP_DEBUG == TRUE
   1256     p_prnt = u;
   1257     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"U", BT_OCTET32_LEN);
   1258     p_prnt = v;
   1259     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"V", BT_OCTET32_LEN);
   1260     p_prnt = x;
   1261     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"X", BT_OCTET16_LEN);
   1262     p_prnt = &z;
   1263     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Z", 1);
   1264 #endif
   1265 
   1266     p = msg;
   1267     UINT8_TO_STREAM(p, z);
   1268     ARRAY_TO_STREAM(p, v, BT_OCTET32_LEN);
   1269     ARRAY_TO_STREAM(p, u, BT_OCTET32_LEN);
   1270 #if SMP_DEBUG == TRUE
   1271     p_prnt = msg;
   1272     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"M", msg_len);
   1273 #endif
   1274 
   1275     p = key;
   1276     ARRAY_TO_STREAM(p, x, BT_OCTET16_LEN);
   1277 #if SMP_DEBUG == TRUE
   1278     p_prnt = key;
   1279     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
   1280 #endif
   1281 
   1282     aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac);
   1283 #if SMP_DEBUG == TRUE
   1284     p_prnt = cmac;
   1285     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES_CMAC", BT_OCTET16_LEN);
   1286 #endif
   1287 
   1288     p = c;
   1289     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
   1290 }
   1291 
   1292 /*******************************************************************************
   1293 **
   1294 ** Function         smp_calculate_numeric_comparison_display_number
   1295 **
   1296 ** Description      The function calculates and saves number to display in numeric
   1297 **                  comparison association mode.
   1298 **
   1299 ** Returns          void
   1300 **
   1301 *******************************************************************************/
   1302 void smp_calculate_numeric_comparison_display_number(tSMP_CB *p_cb,
   1303                                                      tSMP_INT_DATA *p_data)
   1304 {
   1305     SMP_TRACE_DEBUG ("%s", __func__);
   1306 
   1307     if (p_cb->role == HCI_ROLE_MASTER)
   1308     {
   1309         p_cb->number_to_display =
   1310             smp_calculate_g2(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand,
   1311                              p_cb->rrand);
   1312     }
   1313     else
   1314     {
   1315         p_cb->number_to_display =
   1316             smp_calculate_g2(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand,
   1317                              p_cb->rand);
   1318     }
   1319 
   1320     if (p_cb->number_to_display >= (BTM_MAX_PASSKEY_VAL + 1))
   1321     {
   1322         UINT8 reason;
   1323         reason = p_cb->failure = SMP_PAIR_FAIL_UNKNOWN;
   1324         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &reason);
   1325         return;
   1326     }
   1327 
   1328     SMP_TRACE_EVENT("Number to display in numeric comparison = %d", p_cb->number_to_display);
   1329     p_cb->cb_evt = SMP_NC_REQ_EVT;
   1330     smp_sm_event(p_cb, SMP_SC_DSPL_NC_EVT, &p_cb->number_to_display);
   1331     return;
   1332 }
   1333 
   1334 /*******************************************************************************
   1335 **
   1336 ** Function         smp_calculate_g2
   1337 **
   1338 ** Description      The function calculates
   1339 **                  g2(U, V, X, Y) = AES-CMAC (U||V||Y) mod 2**32 mod 10**6
   1340 **                                           X
   1341 **                  and
   1342 **                  Vres = g2(U, V, X, Y) mod 10**6
   1343 **                  where
   1344 **                  input:  U     is 256 bit,
   1345 **                          V     is 256 bit,
   1346 **                          X     is 128 bit,
   1347 **                          Y     is 128 bit,
   1348 **
   1349 ** Returns          Vres.
   1350 **                  Expected value has to be in the range [0 - 999999] i.e. [0 - 0xF423F].
   1351 **                  Vres = 1000000 means that the calculation fails.
   1352 **
   1353 ** Note             The LSB is the first octet, the MSB is the last octet of
   1354 **                  the AES-CMAC input/output stream.
   1355 **
   1356 *******************************************************************************/
   1357 UINT32 smp_calculate_g2(UINT8 *u, UINT8 *v, UINT8 *x, UINT8 *y)
   1358 {
   1359     UINT8   msg_len = BT_OCTET32_LEN /* U size */ + BT_OCTET32_LEN /* V size */
   1360                       + BT_OCTET16_LEN /* Y size */;
   1361     UINT8   msg[BT_OCTET32_LEN + BT_OCTET32_LEN + BT_OCTET16_LEN];
   1362     UINT8   key[BT_OCTET16_LEN];
   1363     UINT8   cmac[BT_OCTET16_LEN];
   1364     UINT8   *p = NULL;
   1365     UINT32  vres;
   1366 #if SMP_DEBUG == TRUE
   1367     UINT8   *p_prnt = NULL;
   1368 #endif
   1369 
   1370     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1371 
   1372     p = msg;
   1373     ARRAY_TO_STREAM(p, y, BT_OCTET16_LEN);
   1374     ARRAY_TO_STREAM(p, v, BT_OCTET32_LEN);
   1375     ARRAY_TO_STREAM(p, u, BT_OCTET32_LEN);
   1376 #if SMP_DEBUG == TRUE
   1377     p_prnt = u;
   1378     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"U", BT_OCTET32_LEN);
   1379     p_prnt = v;
   1380     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"V", BT_OCTET32_LEN);
   1381     p_prnt = x;
   1382     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"X", BT_OCTET16_LEN);
   1383     p_prnt = y;
   1384     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Y", BT_OCTET16_LEN);
   1385 #endif
   1386 
   1387     p = key;
   1388     ARRAY_TO_STREAM(p, x, BT_OCTET16_LEN);
   1389 #if SMP_DEBUG == TRUE
   1390     p_prnt = key;
   1391     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
   1392 #endif
   1393 
   1394     if(!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac))
   1395     {
   1396         SMP_TRACE_ERROR("%s failed",__FUNCTION__);
   1397         return (BTM_MAX_PASSKEY_VAL + 1);
   1398     }
   1399 
   1400 #if SMP_DEBUG == TRUE
   1401     p_prnt = cmac;
   1402     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
   1403 #endif
   1404 
   1405     /* vres = cmac mod 2**32 mod 10**6 */
   1406     p = &cmac[0];
   1407     STREAM_TO_UINT32(vres, p);
   1408 #if SMP_DEBUG == TRUE
   1409     p_prnt = (UINT8 *) &vres;
   1410     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"cmac mod 2**32", 4);
   1411 #endif
   1412 
   1413     while (vres > BTM_MAX_PASSKEY_VAL)
   1414         vres -= (BTM_MAX_PASSKEY_VAL + 1);
   1415 #if SMP_DEBUG == TRUE
   1416     p_prnt = (UINT8 *) &vres;
   1417     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"cmac mod 2**32 mod 10**6", 4);
   1418 #endif
   1419 
   1420     SMP_TRACE_ERROR("Value for numeric comparison = %d", vres);
   1421     return vres;
   1422 }
   1423 
   1424 /*******************************************************************************
   1425 **
   1426 ** Function         smp_calculate_f5
   1427 **
   1428 ** Description      The function provides two AES-CMAC that are supposed to be used as
   1429 **                  - MacKey (MacKey is used in pairing DHKey check calculation);
   1430 **                  - LTK (LTK is used to ecrypt the link after completion of Phase 2
   1431 **                    and on reconnection, to derive BR/EDR LK).
   1432 **                  The function inputs are W, N1, N2, A1, A2.
   1433 **                  F5 rules:
   1434 **                  - the value used as key in MacKey/LTK (T) is calculated
   1435 **                    (function smp_calculate_f5_key(...));
   1436 **                    The formula is:
   1437 **                          T = AES-CMAC    (W)
   1438 **                                      salt
   1439 **                    where salt is internal parameter of smp_calculate_f5_key(...).
   1440 **                  - MacKey and LTK are calculated as AES-MAC values received with the
   1441 **                    key T calculated in the previous step and the plaintext message
   1442 **                    built from the external parameters N1, N2, A1, A2 and the internal
   1443 **                    parameters counter, keyID, length.
   1444 **                    The function smp_calculate_f5_mackey_or_long_term_key(...) is used in the
   1445 **                    calculations.
   1446 **                    The same formula is used in calculation of MacKey and LTK and the
   1447 **                    same parameter values except the value of the internal parameter
   1448 **                    counter:
   1449 **                    - in MacKey calculations the value is 0;
   1450 **                    - in LTK calculations the value is 1.
   1451 **                      MacKey  = AES-CMAC (Counter=0||keyID||N1||N2||A1||A2||Length=256)
   1452 **                                        T
   1453 **                      LTK     = AES-CMAC (Counter=1||keyID||N1||N2||A1||A2||Length=256)
   1454 **                                        T
   1455 **                  The parameters are
   1456 **                  input:
   1457 **                          W       is 256 bits,
   1458 **                          N1      is 128 bits,
   1459 **                          N2      is 128 bits,
   1460 **                          A1 is 56 bit,
   1461 **                          A2 is 56 bit.
   1462 **                  internal:
   1463 **                          Counter is 8 bits,  its value is 0 for MacKey,
   1464 **                                                          1 for LTK;
   1465 **                          KeyId   is 32 bits, its value is
   1466 **                                              0x62746c65 (MSB~LSB);
   1467 **                          Length  is 16 bits, its value is 0x0100
   1468 **                                              (MSB~LSB).
   1469 **                  output:
   1470 **                          MacKey  is 128 bits;
   1471 **                          LTK     is 128 bits
   1472 **
   1473 ** Returns          FALSE if out of resources, TRUE in other cases.
   1474 **
   1475 ** Note             The LSB is the first octet, the MSB is the last octet of
   1476 **                  the AES-CMAC input/output stream.
   1477 **
   1478 *******************************************************************************/
   1479 BOOLEAN smp_calculate_f5(UINT8 *w, UINT8 *n1, UINT8 *n2, UINT8 *a1, UINT8 *a2,
   1480                          UINT8 *mac_key, UINT8 *ltk)
   1481 {
   1482     BT_OCTET16  t;    /* AES-CMAC output in smp_calculate_f5_key(...), key in */
   1483                       /* smp_calculate_f5_mackey_or_long_term_key(...) */
   1484 #if SMP_DEBUG == TRUE
   1485     UINT8   *p_prnt = NULL;
   1486 #endif
   1487     /* internal parameters: */
   1488 
   1489     /*
   1490         counter is 0 for MacKey,
   1491                 is 1 for LTK
   1492     */
   1493     UINT8   counter_mac_key[1]  = {0};
   1494     UINT8   counter_ltk[1]      = {1};
   1495     /*
   1496         keyID   62746c65
   1497     */
   1498     UINT8   key_id[4] = {0x65, 0x6c, 0x74, 0x62};
   1499     /*
   1500         length  0100
   1501     */
   1502     UINT8   length[2] = {0x00, 0x01};
   1503 
   1504     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1505 #if SMP_DEBUG == TRUE
   1506     p_prnt = w;
   1507     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"W", BT_OCTET32_LEN);
   1508     p_prnt = n1;
   1509     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N1", BT_OCTET16_LEN);
   1510     p_prnt = n2;
   1511     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N2", BT_OCTET16_LEN);
   1512     p_prnt = a1;
   1513     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"A1", 7);
   1514     p_prnt = a2;
   1515     smp_debug_print_nbyte_little_endian (p_prnt,(const UINT8 *) "A2", 7);
   1516 #endif
   1517 
   1518     if (!smp_calculate_f5_key(w, t))
   1519     {
   1520         SMP_TRACE_ERROR("%s failed to calc T",__FUNCTION__);
   1521         return FALSE;
   1522     }
   1523 #if SMP_DEBUG == TRUE
   1524     p_prnt = t;
   1525     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"T", BT_OCTET16_LEN);
   1526 #endif
   1527 
   1528     if (!smp_calculate_f5_mackey_or_long_term_key(t, counter_mac_key, key_id, n1, n2, a1, a2,
   1529                                                   length, mac_key))
   1530     {
   1531         SMP_TRACE_ERROR("%s failed to calc MacKey", __FUNCTION__);
   1532         return FALSE;
   1533     }
   1534 #if SMP_DEBUG == TRUE
   1535     p_prnt = mac_key;
   1536     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"MacKey", BT_OCTET16_LEN);
   1537 #endif
   1538 
   1539     if (!smp_calculate_f5_mackey_or_long_term_key(t, counter_ltk, key_id, n1, n2, a1, a2,
   1540                                                   length, ltk))
   1541     {
   1542         SMP_TRACE_ERROR("%s failed to calc LTK",__FUNCTION__);
   1543         return FALSE;
   1544     }
   1545 #if SMP_DEBUG == TRUE
   1546     p_prnt = ltk;
   1547     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"LTK", BT_OCTET16_LEN);
   1548 #endif
   1549 
   1550     return TRUE;
   1551 }
   1552 
   1553 /*******************************************************************************
   1554 **
   1555 ** Function         smp_calculate_f5_mackey_or_long_term_key
   1556 **
   1557 ** Description      The function calculates the value of MacKey or LTK by the rules
   1558 **                  defined for f5 function.
   1559 **                  At the moment exactly the same formula is used to calculate
   1560 **                  LTK and MacKey.
   1561 **                  The difference is the value of input parameter Counter:
   1562 **                  - in MacKey calculations the value is 0;
   1563 **                  - in LTK calculations the value is 1.
   1564 **                  The formula:
   1565 **                  mac = AES-CMAC (Counter||keyID||N1||N2||A1||A2||Length)
   1566 **                                T
   1567 **                  where
   1568 **                  input:      T       is 256 bits;
   1569 **                              Counter is 8 bits, its value is 0 for MacKey,
   1570 **                                                              1 for LTK;
   1571 **                              keyID   is 32 bits, its value is 0x62746c65;
   1572 **                              N1      is 128 bits;
   1573 **                              N2      is 128 bits;
   1574 **                              A1      is 56 bits;
   1575 **                              A2      is 56 bits;
   1576 **                              Length  is 16 bits, its value is 0x0100
   1577 **                  output:     LTK     is 128 bit.
   1578 **
   1579 ** Returns          FALSE if out of resources, TRUE in other cases.
   1580 **
   1581 ** Note             The LSB is the first octet, the MSB is the last octet of
   1582 **                  the AES-CMAC input/output stream.
   1583 **
   1584 *******************************************************************************/
   1585 BOOLEAN smp_calculate_f5_mackey_or_long_term_key(UINT8 *t, UINT8 *counter,
   1586                                   UINT8 *key_id, UINT8 *n1, UINT8 *n2, UINT8 *a1, UINT8 *a2,
   1587                                   UINT8 *length, UINT8 *mac)
   1588 {
   1589     UINT8   *p = NULL;
   1590     UINT8   cmac[BT_OCTET16_LEN];
   1591     UINT8   key[BT_OCTET16_LEN];
   1592     UINT8   msg_len = 1 /* Counter size */ + 4 /* keyID size */ +
   1593             BT_OCTET16_LEN /* N1 size */ + BT_OCTET16_LEN /* N2 size */ +
   1594             7 /* A1 size*/ + 7 /* A2 size*/ + 2 /* Length size */;
   1595     UINT8   msg[1 + 4 + BT_OCTET16_LEN + BT_OCTET16_LEN + 7 + 7 + 2];
   1596     BOOLEAN ret = TRUE;
   1597 #if SMP_DEBUG == TRUE
   1598     UINT8   *p_prnt = NULL;
   1599 #endif
   1600 
   1601     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1602 #if SMP_DEBUG == TRUE
   1603     p_prnt = t;
   1604     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"T", BT_OCTET16_LEN);
   1605     p_prnt = counter;
   1606     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Counter", 1);
   1607     p_prnt = key_id;
   1608     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"KeyID", 4);
   1609     p_prnt = n1;
   1610     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N1", BT_OCTET16_LEN);
   1611     p_prnt = n2;
   1612     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N2", BT_OCTET16_LEN);
   1613     p_prnt = a1;
   1614     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"A1", 7);
   1615     p_prnt = a2;
   1616     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"A2", 7);
   1617     p_prnt = length;
   1618     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Length", 2);
   1619 #endif
   1620 
   1621     p = key;
   1622     ARRAY_TO_STREAM(p, t, BT_OCTET16_LEN);
   1623 #if SMP_DEBUG == TRUE
   1624     p_prnt = key;
   1625     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
   1626 #endif
   1627     p = msg;
   1628     ARRAY_TO_STREAM(p, length, 2);
   1629     ARRAY_TO_STREAM(p, a2, 7);
   1630     ARRAY_TO_STREAM(p, a1, 7);
   1631     ARRAY_TO_STREAM(p, n2, BT_OCTET16_LEN);
   1632     ARRAY_TO_STREAM(p, n1, BT_OCTET16_LEN);
   1633     ARRAY_TO_STREAM(p, key_id, 4);
   1634     ARRAY_TO_STREAM(p, counter, 1);
   1635 #if SMP_DEBUG == TRUE
   1636     p_prnt = msg;
   1637     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"M", msg_len);
   1638 #endif
   1639 
   1640     if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac))
   1641     {
   1642         SMP_TRACE_ERROR("%s failed", __FUNCTION__);
   1643         ret = FALSE;
   1644     }
   1645 
   1646 #if SMP_DEBUG == TRUE
   1647     p_prnt = cmac;
   1648     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
   1649 #endif
   1650 
   1651     p = mac;
   1652     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
   1653     return ret;
   1654 }
   1655 
   1656 /*******************************************************************************
   1657 **
   1658 ** Function         smp_calculate_f5_key
   1659 **
   1660 ** Description      The function calculates key T used in calculation of
   1661 **                  MacKey and LTK (f5 output is defined as MacKey || LTK).
   1662 **                  T = AES-CMAC    (W)
   1663 **                              salt
   1664 **                  where
   1665 **                  Internal:   salt    is 128 bit.
   1666 **                  input:      W       is 256 bit.
   1667 **                  Output:     T       is 128 bit.
   1668 **
   1669 ** Returns          FALSE if out of resources, TRUE in other cases.
   1670 **
   1671 ** Note             The LSB is the first octet, the MSB is the last octet of
   1672 **                  the AES-CMAC input/output stream.
   1673 **
   1674 *******************************************************************************/
   1675 BOOLEAN smp_calculate_f5_key(UINT8 *w, UINT8 *t)
   1676 {
   1677     UINT8 *p = NULL;
   1678     /* Please see 2.2.7 LE Secure Connections Key Generation Function f5 */
   1679     /*
   1680         salt:   6C88 8391 AAF5 A538 6037 0BDB 5A60 83BE
   1681     */
   1682     BT_OCTET16  salt = {
   1683         0xBE, 0x83, 0x60, 0x5A, 0xDB, 0x0B, 0x37, 0x60,
   1684         0x38, 0xA5, 0xF5, 0xAA, 0x91, 0x83, 0x88, 0x6C
   1685     };
   1686 #if SMP_DEBUG == TRUE
   1687     UINT8   *p_prnt = NULL;
   1688 #endif
   1689 
   1690     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1691 #if SMP_DEBUG == TRUE
   1692     p_prnt = salt;
   1693     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"salt", BT_OCTET16_LEN);
   1694     p_prnt = w;
   1695     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"W", BT_OCTET32_LEN);
   1696 #endif
   1697 
   1698     BT_OCTET16 key;
   1699     BT_OCTET32 msg;
   1700 
   1701     p = key;
   1702     ARRAY_TO_STREAM(p, salt, BT_OCTET16_LEN);
   1703     p = msg;
   1704     ARRAY_TO_STREAM(p, w, BT_OCTET32_LEN);
   1705 #if SMP_DEBUG == TRUE
   1706     p_prnt = key;
   1707     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
   1708     p_prnt = msg;
   1709     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"M", BT_OCTET32_LEN);
   1710 #endif
   1711 
   1712     BT_OCTET16 cmac;
   1713     BOOLEAN ret = TRUE;
   1714     if (!aes_cipher_msg_auth_code(key, msg, BT_OCTET32_LEN, BT_OCTET16_LEN, cmac))
   1715     {
   1716         SMP_TRACE_ERROR("%s failed", __FUNCTION__);
   1717         ret = FALSE;
   1718     }
   1719 
   1720 #if SMP_DEBUG == TRUE
   1721     p_prnt = cmac;
   1722     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
   1723 #endif
   1724 
   1725     p = t;
   1726     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
   1727     return ret;
   1728 }
   1729 
   1730 /*******************************************************************************
   1731 **
   1732 ** Function         smp_calculate_local_dhkey_check
   1733 **
   1734 ** Description      The function calculates and saves local device DHKey check
   1735 **                  value in CB.
   1736 **                  Before doing this it calls smp_calculate_f5_mackey_and_long_term_key(...).
   1737 **                  to calculate MacKey and LTK.
   1738 **                  MacKey is used in dhkey calculation.
   1739 **
   1740 ** Returns          void
   1741 **
   1742 *******************************************************************************/
   1743 void smp_calculate_local_dhkey_check(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
   1744 {
   1745     UINT8   iocap[3], a[7], b[7];
   1746 
   1747     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1748 
   1749     smp_calculate_f5_mackey_and_long_term_key(p_cb);
   1750 
   1751     smp_collect_local_io_capabilities(iocap, p_cb);
   1752 
   1753     smp_collect_local_ble_address(a, p_cb);
   1754     smp_collect_peer_ble_address(b, p_cb);
   1755     smp_calculate_f6(p_cb->mac_key, p_cb->rand, p_cb->rrand, p_cb->peer_random, iocap, a, b,
   1756                      p_cb->dhkey_check);
   1757 
   1758     SMP_TRACE_EVENT ("local DHKey check calculation is completed");
   1759 }
   1760 
   1761 /*******************************************************************************
   1762 **
   1763 ** Function         smp_calculate_peer_dhkey_check
   1764 **
   1765 ** Description      The function calculates peer device DHKey check value.
   1766 **
   1767 ** Returns          void
   1768 **
   1769 *******************************************************************************/
   1770 void smp_calculate_peer_dhkey_check(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
   1771 {
   1772     UINT8       iocap[3], a[7], b[7];
   1773     BT_OCTET16  param_buf;
   1774     BOOLEAN     ret;
   1775     tSMP_KEY    key;
   1776     tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;
   1777 
   1778     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1779 
   1780     smp_collect_peer_io_capabilities(iocap, p_cb);
   1781 
   1782     smp_collect_local_ble_address(a, p_cb);
   1783     smp_collect_peer_ble_address(b, p_cb);
   1784     ret = smp_calculate_f6(p_cb->mac_key, p_cb->rrand, p_cb->rand, p_cb->local_random, iocap,
   1785                            b, a, param_buf);
   1786 
   1787     if (ret)
   1788     {
   1789         SMP_TRACE_EVENT ("peer DHKey check calculation is completed");
   1790 #if (SMP_DEBUG == TRUE)
   1791         smp_debug_print_nbyte_little_endian (param_buf, (const UINT8 *)"peer DHKey check",
   1792                                              BT_OCTET16_LEN);
   1793 #endif
   1794         key.key_type = SMP_KEY_TYPE_PEER_DHK_CHCK;
   1795         key.p_data   = param_buf;
   1796         smp_sm_event(p_cb, SMP_SC_KEY_READY_EVT, &key);
   1797     }
   1798     else
   1799     {
   1800         SMP_TRACE_EVENT ("peer DHKey check calculation failed");
   1801         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
   1802     }
   1803 }
   1804 
   1805 /*******************************************************************************
   1806 **
   1807 ** Function         smp_calculate_f6
   1808 **
   1809 ** Description      The function calculates
   1810 **                  C = f6(W, N1, N2, R, IOcap, A1, A2) = AES-CMAC (N1||N2||R||IOcap||A1||A2)
   1811 **                                                                W
   1812 **                  where
   1813 **                  input:  W is 128 bit,
   1814 **                          N1 is 128 bit,
   1815 **                          N2 is 128 bit,
   1816 **                          R is 128 bit,
   1817 **                          IOcap is 24 bit,
   1818 **                          A1 is 56 bit,
   1819 **                          A2 is 56 bit,
   1820 **                  output: C is 128 bit.
   1821 **
   1822 ** Returns          FALSE if out of resources, TRUE in other cases.
   1823 **
   1824 ** Note             The LSB is the first octet, the MSB is the last octet of
   1825 **                  the AES-CMAC input/output stream.
   1826 **
   1827 *******************************************************************************/
   1828 BOOLEAN smp_calculate_f6(UINT8 *w, UINT8 *n1, UINT8 *n2, UINT8 *r, UINT8 *iocap, UINT8 *a1,
   1829                          UINT8 *a2, UINT8 *c)
   1830 {
   1831     UINT8   *p = NULL;
   1832     UINT8   msg_len = BT_OCTET16_LEN /* N1 size */ + BT_OCTET16_LEN /* N2 size */ +
   1833                       BT_OCTET16_LEN /* R size */ + 3 /* IOcap size */ + 7 /* A1 size*/
   1834                       + 7 /* A2 size*/;
   1835     UINT8   msg[BT_OCTET16_LEN + BT_OCTET16_LEN + BT_OCTET16_LEN + 3 + 7 + 7];
   1836 #if SMP_DEBUG == TRUE
   1837     UINT8   *p_print = NULL;
   1838 #endif
   1839 
   1840     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   1841 #if SMP_DEBUG == TRUE
   1842     p_print = w;
   1843     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"W", BT_OCTET16_LEN);
   1844     p_print = n1;
   1845     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"N1", BT_OCTET16_LEN);
   1846     p_print = n2;
   1847     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"N2", BT_OCTET16_LEN);
   1848     p_print = r;
   1849     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"R", BT_OCTET16_LEN);
   1850     p_print = iocap;
   1851     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"IOcap", 3);
   1852     p_print = a1;
   1853     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"A1", 7);
   1854     p_print = a2;
   1855     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"A2", 7);
   1856 #endif
   1857 
   1858     UINT8 cmac[BT_OCTET16_LEN];
   1859     UINT8 key[BT_OCTET16_LEN];
   1860 
   1861     p = key;
   1862     ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN);
   1863 #if SMP_DEBUG == TRUE
   1864     p_print = key;
   1865     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"K", BT_OCTET16_LEN);
   1866 #endif
   1867 
   1868     p = msg;
   1869     ARRAY_TO_STREAM(p, a2, 7);
   1870     ARRAY_TO_STREAM(p, a1, 7);
   1871     ARRAY_TO_STREAM(p, iocap, 3);
   1872     ARRAY_TO_STREAM(p, r, BT_OCTET16_LEN);
   1873     ARRAY_TO_STREAM(p, n2, BT_OCTET16_LEN);
   1874     ARRAY_TO_STREAM(p, n1, BT_OCTET16_LEN);
   1875 #if SMP_DEBUG == TRUE
   1876     p_print = msg;
   1877     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"M", msg_len);
   1878 #endif
   1879 
   1880     BOOLEAN ret = TRUE;
   1881     if(!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac))
   1882     {
   1883         SMP_TRACE_ERROR("%s failed", __FUNCTION__);
   1884         ret = FALSE;
   1885     }
   1886 
   1887 #if SMP_DEBUG == TRUE
   1888     p_print = cmac;
   1889     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
   1890 #endif
   1891 
   1892     p = c;
   1893     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
   1894     return ret;
   1895 }
   1896 
   1897 /*******************************************************************************
   1898 **
   1899 ** Function         smp_calculate_link_key_from_long_term_key
   1900 **
   1901 ** Description      The function calculates and saves BR/EDR link key derived from
   1902 **                  LE SC LTK.
   1903 **
   1904 ** Returns          FALSE if out of resources, TRUE in other cases.
   1905 **
   1906 *******************************************************************************/
   1907 BOOLEAN smp_calculate_link_key_from_long_term_key(tSMP_CB *p_cb)
   1908 {
   1909     tBTM_SEC_DEV_REC *p_dev_rec;
   1910     BD_ADDR bda_for_lk;
   1911     tBLE_ADDR_TYPE conn_addr_type;
   1912 
   1913     SMP_TRACE_DEBUG ("%s", __func__);
   1914 
   1915     if (p_cb->id_addr_rcvd && p_cb->id_addr_type == BLE_ADDR_PUBLIC)
   1916     {
   1917         SMP_TRACE_DEBUG ("Use rcvd identity address as BD_ADDR of LK rcvd identity address");
   1918         memcpy(bda_for_lk, p_cb->id_addr, BD_ADDR_LEN);
   1919     }
   1920     else if ((BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, bda_for_lk, &conn_addr_type)) &&
   1921               conn_addr_type == BLE_ADDR_PUBLIC)
   1922     {
   1923         SMP_TRACE_DEBUG ("Use rcvd connection address as BD_ADDR of LK");
   1924     }
   1925     else
   1926     {
   1927         SMP_TRACE_WARNING ("Don't have peer public address to associate with LK");
   1928         return FALSE;
   1929     }
   1930 
   1931     if ((p_dev_rec = btm_find_dev (p_cb->pairing_bda)) == NULL)
   1932     {
   1933         SMP_TRACE_ERROR("%s failed to find Security Record", __func__);
   1934         return FALSE;
   1935     }
   1936 
   1937     BT_OCTET16 intermediate_link_key;
   1938     BOOLEAN ret = TRUE;
   1939 
   1940     ret = smp_calculate_h6(p_cb->ltk, (UINT8 *)"1pmt" /* reversed "tmp1" */,intermediate_link_key);
   1941     if (!ret)
   1942     {
   1943         SMP_TRACE_ERROR("%s failed to derive intermediate_link_key", __func__);
   1944         return ret;
   1945     }
   1946 
   1947     BT_OCTET16 link_key;
   1948     ret = smp_calculate_h6(intermediate_link_key, (UINT8 *) "rbel" /* reversed "lebr" */, link_key);
   1949     if (!ret)
   1950     {
   1951         SMP_TRACE_ERROR("%s failed", __func__);
   1952     }
   1953     else
   1954     {
   1955         UINT8 link_key_type;
   1956         if (btm_cb.security_mode == BTM_SEC_MODE_SC)
   1957         {
   1958             /* Secure Connections Only Mode */
   1959             link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256;
   1960         }
   1961         else if (controller_get_interface()->supports_secure_connections())
   1962         {
   1963             /* both transports are SC capable */
   1964             if (p_cb->sec_level == SMP_SEC_AUTHENTICATED)
   1965                 link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256;
   1966             else
   1967                 link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB_P_256;
   1968         }
   1969         else if (btm_cb.security_mode == BTM_SEC_MODE_SP)
   1970         {
   1971             /* BR/EDR transport is SSP capable */
   1972             if (p_cb->sec_level == SMP_SEC_AUTHENTICATED)
   1973                 link_key_type = BTM_LKEY_TYPE_AUTH_COMB;
   1974             else
   1975                 link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB;
   1976         }
   1977         else
   1978         {
   1979             SMP_TRACE_ERROR ("%s failed to update link_key. Sec Mode = %d, sm4 = 0x%02x",
   1980                  __func__, btm_cb.security_mode, p_dev_rec->sm4);
   1981             return FALSE;
   1982         }
   1983 
   1984         link_key_type += BTM_LTK_DERIVED_LKEY_OFFSET;
   1985 
   1986         UINT8 *p;
   1987         BT_OCTET16 notif_link_key;
   1988         p = notif_link_key;
   1989         ARRAY16_TO_STREAM(p, link_key);
   1990 
   1991         btm_sec_link_key_notification (bda_for_lk, notif_link_key, link_key_type);
   1992 
   1993         SMP_TRACE_EVENT ("%s is completed", __func__);
   1994     }
   1995 
   1996     return ret;
   1997 }
   1998 
   1999 /*******************************************************************************
   2000 **
   2001 ** Function         smp_calculate_long_term_key_from_link_key
   2002 **
   2003 ** Description      The function calculates and saves SC LTK derived from BR/EDR
   2004 **                  link key.
   2005 **
   2006 ** Returns          FALSE if out of resources, TRUE in other cases.
   2007 **
   2008 *******************************************************************************/
   2009 BOOLEAN smp_calculate_long_term_key_from_link_key(tSMP_CB *p_cb)
   2010 {
   2011     BOOLEAN ret = TRUE;
   2012     tBTM_SEC_DEV_REC *p_dev_rec;
   2013     UINT8 rev_link_key[16];
   2014 
   2015     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
   2016 
   2017     if ((p_dev_rec = btm_find_dev (p_cb->pairing_bda)) == NULL)
   2018     {
   2019         SMP_TRACE_ERROR("%s failed to find Security Record",__FUNCTION__);
   2020         return FALSE;
   2021     }
   2022 
   2023     UINT8 br_link_key_type;
   2024     if ((br_link_key_type = BTM_SecGetDeviceLinkKeyType (p_cb->pairing_bda))
   2025         == BTM_LKEY_TYPE_IGNORE)
   2026     {
   2027         SMP_TRACE_ERROR("%s failed to retrieve BR link type",__FUNCTION__);
   2028         return FALSE;
   2029     }
   2030 
   2031     if ((br_link_key_type != BTM_LKEY_TYPE_AUTH_COMB_P_256) &&
   2032         (br_link_key_type != BTM_LKEY_TYPE_UNAUTH_COMB_P_256))
   2033     {
   2034         SMP_TRACE_ERROR("%s LE SC LTK can't be derived from LK %d",
   2035                          __FUNCTION__, br_link_key_type);
   2036         return FALSE;
   2037     }
   2038 
   2039     UINT8 *p1;
   2040     UINT8 *p2;
   2041     p1 = rev_link_key;
   2042     p2 = p_dev_rec->link_key;
   2043     REVERSE_ARRAY_TO_STREAM(p1, p2, 16);
   2044 
   2045     BT_OCTET16 intermediate_long_term_key;
   2046     /* "tmp2" obtained from the spec */
   2047     ret = smp_calculate_h6(rev_link_key, (UINT8 *) "2pmt" /* reversed "tmp2" */,
   2048                            intermediate_long_term_key);
   2049 
   2050     if (!ret)
   2051     {
   2052         SMP_TRACE_ERROR("%s failed to derive intermediate_long_term_key",__FUNCTION__);
   2053         return ret;
   2054     }
   2055 
   2056     /* "brle" obtained from the spec */
   2057     ret = smp_calculate_h6(intermediate_long_term_key, (UINT8 *) "elrb" /* reversed "brle" */,
   2058                            p_cb->ltk);
   2059 
   2060     if (!ret)
   2061     {
   2062         SMP_TRACE_ERROR("%s failed",__FUNCTION__);
   2063     }
   2064     else
   2065     {
   2066         p_cb->sec_level = (br_link_key_type == BTM_LKEY_TYPE_AUTH_COMB_P_256)
   2067                            ? SMP_SEC_AUTHENTICATED : SMP_SEC_UNAUTHENTICATE;
   2068         SMP_TRACE_EVENT ("%s is completed",__FUNCTION__);
   2069     }
   2070 
   2071     return ret;
   2072 }
   2073 
   2074 /*******************************************************************************
   2075 **
   2076 ** Function         smp_calculate_h6
   2077 **
   2078 ** Description      The function calculates
   2079 **                  C = h6(W, KeyID) = AES-CMAC (KeyID)
   2080 **                                             W
   2081 **                  where
   2082 **                  input:  W is 128 bit,
   2083 **                          KeyId is 32 bit,
   2084 **                  output: C is 128 bit.
   2085 **
   2086 ** Returns          FALSE if out of resources, TRUE in other cases.
   2087 **
   2088 ** Note             The LSB is the first octet, the MSB is the last octet of
   2089 **                  the AES-CMAC input/output stream.
   2090 **
   2091 *******************************************************************************/
   2092 BOOLEAN smp_calculate_h6(UINT8 *w, UINT8 *keyid, UINT8 *c)
   2093 {
   2094 #if SMP_DEBUG == TRUE
   2095     UINT8   *p_print = NULL;
   2096 #endif
   2097 
   2098     SMP_TRACE_DEBUG ("%s",__FUNCTION__);
   2099 #if SMP_DEBUG == TRUE
   2100     p_print = w;
   2101     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"W", BT_OCTET16_LEN);
   2102     p_print = keyid;
   2103     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"keyID", 4);
   2104 #endif
   2105 
   2106     UINT8 *p = NULL;
   2107     UINT8 key[BT_OCTET16_LEN];
   2108 
   2109     p = key;
   2110     ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN);
   2111 
   2112 #if SMP_DEBUG == TRUE
   2113     p_print = key;
   2114     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"K", BT_OCTET16_LEN);
   2115 #endif
   2116 
   2117     UINT8 msg_len = 4 /* KeyID size */;
   2118     UINT8 msg[4];
   2119 
   2120     p = msg;
   2121     ARRAY_TO_STREAM(p, keyid, 4);
   2122 
   2123 #if SMP_DEBUG == TRUE
   2124     p_print = msg;
   2125     smp_debug_print_nbyte_little_endian (p_print,(const UINT8 *) "M", msg_len);
   2126 #endif
   2127 
   2128     BOOLEAN ret = TRUE;
   2129     UINT8 cmac[BT_OCTET16_LEN];
   2130     if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac))
   2131     {
   2132         SMP_TRACE_ERROR("%s failed",__FUNCTION__);
   2133         ret = FALSE;
   2134     }
   2135 
   2136 #if SMP_DEBUG == TRUE
   2137     p_print = cmac;
   2138     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
   2139 #endif
   2140 
   2141     p = c;
   2142     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
   2143     return ret;
   2144 }
   2145 
   2146 /*******************************************************************************
   2147 **
   2148 ** Function         smp_start_nonce_generation
   2149 **
   2150 ** Description      This function starts nonce generation.
   2151 **
   2152 ** Returns          void
   2153 **
   2154 *******************************************************************************/
   2155 void smp_start_nonce_generation(tSMP_CB *p_cb)
   2156 {
   2157     SMP_TRACE_DEBUG("%s", __FUNCTION__);
   2158     p_cb->rand_enc_proc_state = SMP_GEN_NONCE_0_7;
   2159     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
   2160         smp_rand_back(NULL);
   2161 }
   2162 
   2163 /*******************************************************************************
   2164 **
   2165 ** Function         smp_finish_nonce_generation
   2166 **
   2167 ** Description      This function finishes nonce generation.
   2168 **
   2169 ** Returns          void
   2170 **
   2171 *******************************************************************************/
   2172 void smp_finish_nonce_generation(tSMP_CB *p_cb)
   2173 {
   2174     SMP_TRACE_DEBUG("%s", __FUNCTION__);
   2175     p_cb->rand_enc_proc_state = SMP_GEN_NONCE_8_15;
   2176     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
   2177         smp_rand_back(NULL);
   2178 }
   2179 
   2180 /*******************************************************************************
   2181 **
   2182 ** Function         smp_process_new_nonce
   2183 **
   2184 ** Description      This function notifies SM that it has new nonce.
   2185 **
   2186 ** Returns          void
   2187 **
   2188 *******************************************************************************/
   2189 void smp_process_new_nonce(tSMP_CB *p_cb)
   2190 {
   2191     SMP_TRACE_DEBUG ("%s round %d", __FUNCTION__, p_cb->round);
   2192     smp_sm_event(p_cb, SMP_HAVE_LOC_NONCE_EVT, NULL);
   2193 }
   2194 
   2195 /*******************************************************************************
   2196 **
   2197 ** Function         smp_rand_back
   2198 **
   2199 ** Description      This function is to process the rand command finished,
   2200 **                  process the random/encrypted number for further action.
   2201 **
   2202 ** Returns          void
   2203 **
   2204 *******************************************************************************/
   2205 static void smp_rand_back(tBTM_RAND_ENC *p)
   2206 {
   2207     tSMP_CB *p_cb = &smp_cb;
   2208     UINT8   *pp = p->param_buf;
   2209     UINT8   failure = SMP_PAIR_FAIL_UNKNOWN;
   2210     UINT8   state = p_cb->rand_enc_proc_state & ~0x80;
   2211 
   2212     SMP_TRACE_DEBUG ("%s state=0x%x", __FUNCTION__, state);
   2213     if (p && p->status == HCI_SUCCESS)
   2214     {
   2215         switch (state)
   2216         {
   2217             case SMP_GEN_SRAND_MRAND:
   2218                 memcpy((void *)p_cb->rand, p->param_buf, p->param_len);
   2219                 smp_generate_rand_cont(p_cb, NULL);
   2220                 break;
   2221 
   2222             case SMP_GEN_SRAND_MRAND_CONT:
   2223                 memcpy((void *)&p_cb->rand[8], p->param_buf, p->param_len);
   2224                 smp_generate_confirm(p_cb, NULL);
   2225                 break;
   2226 
   2227             case SMP_GEN_DIV_LTK:
   2228                 STREAM_TO_UINT16(p_cb->div, pp);
   2229                 smp_generate_ltk_cont(p_cb, NULL);
   2230                 break;
   2231 
   2232             case SMP_GEN_DIV_CSRK:
   2233                 STREAM_TO_UINT16(p_cb->div, pp);
   2234                 smp_compute_csrk(p_cb, NULL);
   2235                 break;
   2236 
   2237             case SMP_GEN_TK:
   2238                 smp_proc_passkey(p_cb, p);
   2239                 break;
   2240 
   2241             case SMP_GEN_RAND_V:
   2242                 memcpy(p_cb->enc_rand, p->param_buf, BT_OCTET8_LEN);
   2243                 smp_generate_y(p_cb, NULL);
   2244                 break;
   2245 
   2246             case SMP_GENERATE_PRIVATE_KEY_0_7:
   2247             case SMP_GENERATE_PRIVATE_KEY_8_15:
   2248             case SMP_GENERATE_PRIVATE_KEY_16_23:
   2249             case SMP_GENERATE_PRIVATE_KEY_24_31:
   2250                 smp_continue_private_key_creation(p_cb, p);
   2251                 break;
   2252 
   2253             case SMP_GEN_NONCE_0_7:
   2254                 memcpy((void *)p_cb->rand, p->param_buf, p->param_len);
   2255                 smp_finish_nonce_generation(p_cb);
   2256                 break;
   2257 
   2258             case SMP_GEN_NONCE_8_15:
   2259                 memcpy((void *)&p_cb->rand[8], p->param_buf, p->param_len);
   2260                 smp_process_new_nonce(p_cb);
   2261                 break;
   2262         }
   2263 
   2264         return;
   2265     }
   2266 
   2267     SMP_TRACE_ERROR("%s key generation failed: (%d)", __FUNCTION__, p_cb->rand_enc_proc_state);
   2268     smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &failure);
   2269 }
   2270 
   2271 #endif
   2272 
   2273