1 /* 2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #ifndef VP9_COMMON_VP9_ONYXC_INT_H_ 12 #define VP9_COMMON_VP9_ONYXC_INT_H_ 13 14 #include "./vpx_config.h" 15 #include "vpx/internal/vpx_codec_internal.h" 16 #include "vpx_util/vpx_thread.h" 17 #include "./vp9_rtcd.h" 18 #include "vp9/common/vp9_alloccommon.h" 19 #include "vp9/common/vp9_loopfilter.h" 20 #include "vp9/common/vp9_entropymv.h" 21 #include "vp9/common/vp9_entropy.h" 22 #include "vp9/common/vp9_entropymode.h" 23 #include "vp9/common/vp9_frame_buffers.h" 24 #include "vp9/common/vp9_quant_common.h" 25 #include "vp9/common/vp9_tile_common.h" 26 27 #if CONFIG_VP9_POSTPROC 28 #include "vp9/common/vp9_postproc.h" 29 #endif 30 31 #ifdef __cplusplus 32 extern "C" { 33 #endif 34 35 #define REFS_PER_FRAME 3 36 37 #define REF_FRAMES_LOG2 3 38 #define REF_FRAMES (1 << REF_FRAMES_LOG2) 39 40 // 4 scratch frames for the new frames to support a maximum of 4 cores decoding 41 // in parallel, 3 for scaled references on the encoder. 42 // TODO(hkuang): Add ondemand frame buffers instead of hardcoding the number 43 // of framebuffers. 44 // TODO(jkoleszar): These 3 extra references could probably come from the 45 // normal reference pool. 46 #define FRAME_BUFFERS (REF_FRAMES + 7) 47 48 #define FRAME_CONTEXTS_LOG2 2 49 #define FRAME_CONTEXTS (1 << FRAME_CONTEXTS_LOG2) 50 51 #define NUM_PING_PONG_BUFFERS 2 52 53 extern const struct { 54 PARTITION_CONTEXT above; 55 PARTITION_CONTEXT left; 56 } partition_context_lookup[BLOCK_SIZES]; 57 58 59 typedef enum { 60 SINGLE_REFERENCE = 0, 61 COMPOUND_REFERENCE = 1, 62 REFERENCE_MODE_SELECT = 2, 63 REFERENCE_MODES = 3, 64 } REFERENCE_MODE; 65 66 typedef struct { 67 int_mv mv[2]; 68 MV_REFERENCE_FRAME ref_frame[2]; 69 } MV_REF; 70 71 typedef struct { 72 int ref_count; 73 MV_REF *mvs; 74 int mi_rows; 75 int mi_cols; 76 vpx_codec_frame_buffer_t raw_frame_buffer; 77 YV12_BUFFER_CONFIG buf; 78 79 // The Following variables will only be used in frame parallel decode. 80 81 // frame_worker_owner indicates which FrameWorker owns this buffer. NULL means 82 // that no FrameWorker owns, or is decoding, this buffer. 83 VPxWorker *frame_worker_owner; 84 85 // row and col indicate which position frame has been decoded to in real 86 // pixel unit. They are reset to -1 when decoding begins and set to INT_MAX 87 // when the frame is fully decoded. 88 int row; 89 int col; 90 } RefCntBuffer; 91 92 typedef struct BufferPool { 93 // Protect BufferPool from being accessed by several FrameWorkers at 94 // the same time during frame parallel decode. 95 // TODO(hkuang): Try to use atomic variable instead of locking the whole pool. 96 #if CONFIG_MULTITHREAD 97 pthread_mutex_t pool_mutex; 98 #endif 99 100 // Private data associated with the frame buffer callbacks. 101 void *cb_priv; 102 103 vpx_get_frame_buffer_cb_fn_t get_fb_cb; 104 vpx_release_frame_buffer_cb_fn_t release_fb_cb; 105 106 RefCntBuffer frame_bufs[FRAME_BUFFERS]; 107 108 // Frame buffers allocated internally by the codec. 109 InternalFrameBufferList int_frame_buffers; 110 } BufferPool; 111 112 typedef struct VP9Common { 113 struct vpx_internal_error_info error; 114 vpx_color_space_t color_space; 115 vpx_color_range_t color_range; 116 int width; 117 int height; 118 int render_width; 119 int render_height; 120 int last_width; 121 int last_height; 122 123 // TODO(jkoleszar): this implies chroma ss right now, but could vary per 124 // plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to 125 // support additional planes. 126 int subsampling_x; 127 int subsampling_y; 128 129 #if CONFIG_VP9_HIGHBITDEPTH 130 int use_highbitdepth; // Marks if we need to use 16bit frame buffers. 131 #endif 132 133 YV12_BUFFER_CONFIG *frame_to_show; 134 RefCntBuffer *prev_frame; 135 136 // TODO(hkuang): Combine this with cur_buf in macroblockd. 137 RefCntBuffer *cur_frame; 138 139 int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */ 140 141 // Prepare ref_frame_map for the next frame. 142 // Only used in frame parallel decode. 143 int next_ref_frame_map[REF_FRAMES]; 144 145 // TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and 146 // roll new_fb_idx into it. 147 148 // Each frame can reference REFS_PER_FRAME buffers 149 RefBuffer frame_refs[REFS_PER_FRAME]; 150 151 int new_fb_idx; 152 153 #if CONFIG_VP9_POSTPROC 154 YV12_BUFFER_CONFIG post_proc_buffer; 155 YV12_BUFFER_CONFIG post_proc_buffer_int; 156 #endif 157 158 FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/ 159 FRAME_TYPE frame_type; 160 161 int show_frame; 162 int last_show_frame; 163 int show_existing_frame; 164 165 // Flag signaling that the frame is encoded using only INTRA modes. 166 uint8_t intra_only; 167 uint8_t last_intra_only; 168 169 int allow_high_precision_mv; 170 171 // Flag signaling that the frame context should be reset to default values. 172 // 0 or 1 implies don't reset, 2 reset just the context specified in the 173 // frame header, 3 reset all contexts. 174 int reset_frame_context; 175 176 // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in 177 // MODE_INFO (8-pixel) units. 178 int MBs; 179 int mb_rows, mi_rows; 180 int mb_cols, mi_cols; 181 int mi_stride; 182 183 /* profile settings */ 184 TX_MODE tx_mode; 185 186 int base_qindex; 187 int y_dc_delta_q; 188 int uv_dc_delta_q; 189 int uv_ac_delta_q; 190 int16_t y_dequant[MAX_SEGMENTS][2]; 191 int16_t uv_dequant[MAX_SEGMENTS][2]; 192 193 /* We allocate a MODE_INFO struct for each macroblock, together with 194 an extra row on top and column on the left to simplify prediction. */ 195 int mi_alloc_size; 196 MODE_INFO *mip; /* Base of allocated array */ 197 MODE_INFO *mi; /* Corresponds to upper left visible macroblock */ 198 199 // TODO(agrange): Move prev_mi into encoder structure. 200 // prev_mip and prev_mi will only be allocated in VP9 encoder. 201 MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */ 202 MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */ 203 204 // Separate mi functions between encoder and decoder. 205 int (*alloc_mi)(struct VP9Common *cm, int mi_size); 206 void (*free_mi)(struct VP9Common *cm); 207 void (*setup_mi)(struct VP9Common *cm); 208 209 // Grid of pointers to 8x8 MODE_INFO structs. Any 8x8 not in the visible 210 // area will be NULL. 211 MODE_INFO **mi_grid_base; 212 MODE_INFO **mi_grid_visible; 213 MODE_INFO **prev_mi_grid_base; 214 MODE_INFO **prev_mi_grid_visible; 215 216 // Whether to use previous frame's motion vectors for prediction. 217 int use_prev_frame_mvs; 218 219 // Persistent mb segment id map used in prediction. 220 int seg_map_idx; 221 int prev_seg_map_idx; 222 223 uint8_t *seg_map_array[NUM_PING_PONG_BUFFERS]; 224 uint8_t *last_frame_seg_map; 225 uint8_t *current_frame_seg_map; 226 int seg_map_alloc_size; 227 228 INTERP_FILTER interp_filter; 229 230 loop_filter_info_n lf_info; 231 232 int refresh_frame_context; /* Two state 0 = NO, 1 = YES */ 233 234 int ref_frame_sign_bias[MAX_REF_FRAMES]; /* Two state 0, 1 */ 235 236 struct loopfilter lf; 237 struct segmentation seg; 238 239 // TODO(hkuang): Remove this as it is the same as frame_parallel_decode 240 // in pbi. 241 int frame_parallel_decode; // frame-based threading. 242 243 // Context probabilities for reference frame prediction 244 MV_REFERENCE_FRAME comp_fixed_ref; 245 MV_REFERENCE_FRAME comp_var_ref[2]; 246 REFERENCE_MODE reference_mode; 247 248 FRAME_CONTEXT *fc; /* this frame entropy */ 249 FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS 250 unsigned int frame_context_idx; /* Context to use/update */ 251 FRAME_COUNTS counts; 252 253 unsigned int current_video_frame; 254 BITSTREAM_PROFILE profile; 255 256 // VPX_BITS_8 in profile 0 or 1, VPX_BITS_10 or VPX_BITS_12 in profile 2 or 3. 257 vpx_bit_depth_t bit_depth; 258 vpx_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer 259 260 #if CONFIG_VP9_POSTPROC 261 struct postproc_state postproc_state; 262 #endif 263 264 int error_resilient_mode; 265 int frame_parallel_decoding_mode; 266 267 int log2_tile_cols, log2_tile_rows; 268 int byte_alignment; 269 int skip_loop_filter; 270 271 // Private data associated with the frame buffer callbacks. 272 void *cb_priv; 273 vpx_get_frame_buffer_cb_fn_t get_fb_cb; 274 vpx_release_frame_buffer_cb_fn_t release_fb_cb; 275 276 // Handles memory for the codec. 277 InternalFrameBufferList int_frame_buffers; 278 279 // External BufferPool passed from outside. 280 BufferPool *buffer_pool; 281 282 PARTITION_CONTEXT *above_seg_context; 283 ENTROPY_CONTEXT *above_context; 284 int above_context_alloc_cols; 285 } VP9_COMMON; 286 287 // TODO(hkuang): Don't need to lock the whole pool after implementing atomic 288 // frame reference count. 289 void lock_buffer_pool(BufferPool *const pool); 290 void unlock_buffer_pool(BufferPool *const pool); 291 292 static INLINE YV12_BUFFER_CONFIG *get_ref_frame(VP9_COMMON *cm, int index) { 293 if (index < 0 || index >= REF_FRAMES) 294 return NULL; 295 if (cm->ref_frame_map[index] < 0) 296 return NULL; 297 assert(cm->ref_frame_map[index] < FRAME_BUFFERS); 298 return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf; 299 } 300 301 static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer(VP9_COMMON *cm) { 302 return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf; 303 } 304 305 static INLINE int get_free_fb(VP9_COMMON *cm) { 306 RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; 307 int i; 308 309 lock_buffer_pool(cm->buffer_pool); 310 for (i = 0; i < FRAME_BUFFERS; ++i) 311 if (frame_bufs[i].ref_count == 0) 312 break; 313 314 if (i != FRAME_BUFFERS) { 315 frame_bufs[i].ref_count = 1; 316 } else { 317 // Reset i to be INVALID_IDX to indicate no free buffer found. 318 i = INVALID_IDX; 319 } 320 321 unlock_buffer_pool(cm->buffer_pool); 322 return i; 323 } 324 325 static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) { 326 const int ref_index = *idx; 327 328 if (ref_index >= 0 && bufs[ref_index].ref_count > 0) 329 bufs[ref_index].ref_count--; 330 331 *idx = new_idx; 332 333 bufs[new_idx].ref_count++; 334 } 335 336 static INLINE int mi_cols_aligned_to_sb(int n_mis) { 337 return ALIGN_POWER_OF_TWO(n_mis, MI_BLOCK_SIZE_LOG2); 338 } 339 340 static INLINE int frame_is_intra_only(const VP9_COMMON *const cm) { 341 return cm->frame_type == KEY_FRAME || cm->intra_only; 342 } 343 344 static INLINE void set_partition_probs(const VP9_COMMON *const cm, 345 MACROBLOCKD *const xd) { 346 xd->partition_probs = 347 frame_is_intra_only(cm) ? 348 &vp9_kf_partition_probs[0] : 349 (const vpx_prob (*)[PARTITION_TYPES - 1])cm->fc->partition_prob; 350 } 351 352 static INLINE void vp9_init_macroblockd(VP9_COMMON *cm, MACROBLOCKD *xd, 353 tran_low_t *dqcoeff) { 354 int i; 355 356 for (i = 0; i < MAX_MB_PLANE; ++i) { 357 xd->plane[i].dqcoeff = dqcoeff; 358 xd->above_context[i] = cm->above_context + 359 i * sizeof(*cm->above_context) * 2 * mi_cols_aligned_to_sb(cm->mi_cols); 360 361 if (get_plane_type(i) == PLANE_TYPE_Y) { 362 memcpy(xd->plane[i].seg_dequant, cm->y_dequant, sizeof(cm->y_dequant)); 363 } else { 364 memcpy(xd->plane[i].seg_dequant, cm->uv_dequant, sizeof(cm->uv_dequant)); 365 } 366 xd->fc = cm->fc; 367 } 368 369 xd->above_seg_context = cm->above_seg_context; 370 xd->mi_stride = cm->mi_stride; 371 xd->error_info = &cm->error; 372 373 set_partition_probs(cm, xd); 374 } 375 376 static INLINE const vpx_prob* get_partition_probs(const MACROBLOCKD *xd, 377 int ctx) { 378 return xd->partition_probs[ctx]; 379 } 380 381 static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col) { 382 const int above_idx = mi_col * 2; 383 const int left_idx = (mi_row * 2) & 15; 384 int i; 385 for (i = 0; i < MAX_MB_PLANE; ++i) { 386 struct macroblockd_plane *const pd = &xd->plane[i]; 387 pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x]; 388 pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y]; 389 } 390 } 391 392 static INLINE int calc_mi_size(int len) { 393 // len is in mi units. 394 return len + MI_BLOCK_SIZE; 395 } 396 397 static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile, 398 int mi_row, int bh, 399 int mi_col, int bw, 400 int mi_rows, int mi_cols) { 401 xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); 402 xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8; 403 xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); 404 xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8; 405 406 // Are edges available for intra prediction? 407 xd->up_available = (mi_row != 0); 408 xd->left_available = (mi_col > tile->mi_col_start); 409 if (xd->up_available) { 410 xd->above_mi = xd->mi[-xd->mi_stride]; 411 // above_mi may be NULL in VP9 encoder's first pass. 412 xd->above_mbmi = xd->above_mi ? &xd->above_mi->mbmi : NULL; 413 } else { 414 xd->above_mi = NULL; 415 xd->above_mbmi = NULL; 416 } 417 418 if (xd->left_available) { 419 xd->left_mi = xd->mi[-1]; 420 // left_mi may be NULL in VP9 encoder's first pass. 421 xd->left_mbmi = xd->left_mi ? &xd->left_mi->mbmi : NULL; 422 } else { 423 xd->left_mi = NULL; 424 xd->left_mbmi = NULL; 425 } 426 } 427 428 static INLINE void update_partition_context(MACROBLOCKD *xd, 429 int mi_row, int mi_col, 430 BLOCK_SIZE subsize, 431 BLOCK_SIZE bsize) { 432 PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col; 433 PARTITION_CONTEXT *const left_ctx = xd->left_seg_context + (mi_row & MI_MASK); 434 435 // num_4x4_blocks_wide_lookup[bsize] / 2 436 const int bs = num_8x8_blocks_wide_lookup[bsize]; 437 438 // update the partition context at the end notes. set partition bits 439 // of block sizes larger than the current one to be one, and partition 440 // bits of smaller block sizes to be zero. 441 memset(above_ctx, partition_context_lookup[subsize].above, bs); 442 memset(left_ctx, partition_context_lookup[subsize].left, bs); 443 } 444 445 static INLINE int partition_plane_context(const MACROBLOCKD *xd, 446 int mi_row, int mi_col, 447 BLOCK_SIZE bsize) { 448 const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col; 449 const PARTITION_CONTEXT *left_ctx = xd->left_seg_context + (mi_row & MI_MASK); 450 const int bsl = mi_width_log2_lookup[bsize]; 451 int above = (*above_ctx >> bsl) & 1 , left = (*left_ctx >> bsl) & 1; 452 453 assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]); 454 assert(bsl >= 0); 455 456 return (left * 2 + above) + bsl * PARTITION_PLOFFSET; 457 } 458 459 #ifdef __cplusplus 460 } // extern "C" 461 #endif 462 463 #endif // VP9_COMMON_VP9_ONYXC_INT_H_ 464