Home | History | Annotate | Download | only in vpx_dsp
      1 /*
      2  *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include "vpx_dsp/fwd_txfm.h"
     12 
     13 void vpx_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) {
     14   // The 2D transform is done with two passes which are actually pretty
     15   // similar. In the first one, we transform the columns and transpose
     16   // the results. In the second one, we transform the rows. To achieve that,
     17   // as the first pass results are transposed, we transpose the columns (that
     18   // is the transposed rows) and transpose the results (so that it goes back
     19   // in normal/row positions).
     20   int pass;
     21   // We need an intermediate buffer between passes.
     22   tran_low_t intermediate[4 * 4];
     23   const int16_t *in_pass0 = input;
     24   const tran_low_t *in = NULL;
     25   tran_low_t *out = intermediate;
     26   // Do the two transform/transpose passes
     27   for (pass = 0; pass < 2; ++pass) {
     28     tran_high_t input[4];      // canbe16
     29     tran_high_t step[4];       // canbe16
     30     tran_high_t temp1, temp2;  // needs32
     31     int i;
     32     for (i = 0; i < 4; ++i) {
     33       // Load inputs.
     34       if (0 == pass) {
     35         input[0] = in_pass0[0 * stride] * 16;
     36         input[1] = in_pass0[1 * stride] * 16;
     37         input[2] = in_pass0[2 * stride] * 16;
     38         input[3] = in_pass0[3 * stride] * 16;
     39         if (i == 0 && input[0]) {
     40           input[0] += 1;
     41         }
     42       } else {
     43         input[0] = in[0 * 4];
     44         input[1] = in[1 * 4];
     45         input[2] = in[2 * 4];
     46         input[3] = in[3 * 4];
     47       }
     48       // Transform.
     49       step[0] = input[0] + input[3];
     50       step[1] = input[1] + input[2];
     51       step[2] = input[1] - input[2];
     52       step[3] = input[0] - input[3];
     53       temp1 = (step[0] + step[1]) * cospi_16_64;
     54       temp2 = (step[0] - step[1]) * cospi_16_64;
     55       out[0] = (tran_low_t)fdct_round_shift(temp1);
     56       out[2] = (tran_low_t)fdct_round_shift(temp2);
     57       temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
     58       temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
     59       out[1] = (tran_low_t)fdct_round_shift(temp1);
     60       out[3] = (tran_low_t)fdct_round_shift(temp2);
     61       // Do next column (which is a transposed row in second/horizontal pass)
     62       in_pass0++;
     63       in++;
     64       out += 4;
     65     }
     66     // Setup in/out for next pass.
     67     in = intermediate;
     68     out = output;
     69   }
     70 
     71   {
     72     int i, j;
     73     for (i = 0; i < 4; ++i) {
     74       for (j = 0; j < 4; ++j)
     75         output[j + i * 4] = (output[j + i * 4] + 1) >> 2;
     76     }
     77   }
     78 }
     79 
     80 void vpx_fdct4x4_1_c(const int16_t *input, tran_low_t *output, int stride) {
     81   int r, c;
     82   tran_low_t sum = 0;
     83   for (r = 0; r < 4; ++r)
     84     for (c = 0; c < 4; ++c)
     85       sum += input[r * stride + c];
     86 
     87   output[0] = sum << 1;
     88   output[1] = 0;
     89 }
     90 
     91 void vpx_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) {
     92   int i, j;
     93   tran_low_t intermediate[64];
     94   int pass;
     95   tran_low_t *output = intermediate;
     96   const tran_low_t *in = NULL;
     97 
     98   // Transform columns
     99   for (pass = 0; pass < 2; ++pass) {
    100     tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;  // canbe16
    101     tran_high_t t0, t1, t2, t3;                  // needs32
    102     tran_high_t x0, x1, x2, x3;                  // canbe16
    103 
    104     int i;
    105     for (i = 0; i < 8; i++) {
    106       // stage 1
    107       if (pass == 0) {
    108         s0 = (input[0 * stride] + input[7 * stride]) * 4;
    109         s1 = (input[1 * stride] + input[6 * stride]) * 4;
    110         s2 = (input[2 * stride] + input[5 * stride]) * 4;
    111         s3 = (input[3 * stride] + input[4 * stride]) * 4;
    112         s4 = (input[3 * stride] - input[4 * stride]) * 4;
    113         s5 = (input[2 * stride] - input[5 * stride]) * 4;
    114         s6 = (input[1 * stride] - input[6 * stride]) * 4;
    115         s7 = (input[0 * stride] - input[7 * stride]) * 4;
    116         ++input;
    117       } else {
    118         s0 = in[0 * 8] + in[7 * 8];
    119         s1 = in[1 * 8] + in[6 * 8];
    120         s2 = in[2 * 8] + in[5 * 8];
    121         s3 = in[3 * 8] + in[4 * 8];
    122         s4 = in[3 * 8] - in[4 * 8];
    123         s5 = in[2 * 8] - in[5 * 8];
    124         s6 = in[1 * 8] - in[6 * 8];
    125         s7 = in[0 * 8] - in[7 * 8];
    126         ++in;
    127       }
    128 
    129       // fdct4(step, step);
    130       x0 = s0 + s3;
    131       x1 = s1 + s2;
    132       x2 = s1 - s2;
    133       x3 = s0 - s3;
    134       t0 = (x0 + x1) * cospi_16_64;
    135       t1 = (x0 - x1) * cospi_16_64;
    136       t2 =  x2 * cospi_24_64 + x3 *  cospi_8_64;
    137       t3 = -x2 * cospi_8_64  + x3 * cospi_24_64;
    138       output[0] = (tran_low_t)fdct_round_shift(t0);
    139       output[2] = (tran_low_t)fdct_round_shift(t2);
    140       output[4] = (tran_low_t)fdct_round_shift(t1);
    141       output[6] = (tran_low_t)fdct_round_shift(t3);
    142 
    143       // Stage 2
    144       t0 = (s6 - s5) * cospi_16_64;
    145       t1 = (s6 + s5) * cospi_16_64;
    146       t2 = fdct_round_shift(t0);
    147       t3 = fdct_round_shift(t1);
    148 
    149       // Stage 3
    150       x0 = s4 + t2;
    151       x1 = s4 - t2;
    152       x2 = s7 - t3;
    153       x3 = s7 + t3;
    154 
    155       // Stage 4
    156       t0 = x0 * cospi_28_64 + x3 *   cospi_4_64;
    157       t1 = x1 * cospi_12_64 + x2 *  cospi_20_64;
    158       t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
    159       t3 = x3 * cospi_28_64 + x0 *  -cospi_4_64;
    160       output[1] = (tran_low_t)fdct_round_shift(t0);
    161       output[3] = (tran_low_t)fdct_round_shift(t2);
    162       output[5] = (tran_low_t)fdct_round_shift(t1);
    163       output[7] = (tran_low_t)fdct_round_shift(t3);
    164       output += 8;
    165     }
    166     in  = intermediate;
    167     output = final_output;
    168   }
    169 
    170   // Rows
    171   for (i = 0; i < 8; ++i) {
    172     for (j = 0; j < 8; ++j)
    173       final_output[j + i * 8] /= 2;
    174   }
    175 }
    176 
    177 void vpx_fdct8x8_1_c(const int16_t *input, tran_low_t *output, int stride) {
    178   int r, c;
    179   tran_low_t sum = 0;
    180   for (r = 0; r < 8; ++r)
    181     for (c = 0; c < 8; ++c)
    182       sum += input[r * stride + c];
    183 
    184   output[0] = sum;
    185   output[1] = 0;
    186 }
    187 
    188 void vpx_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) {
    189   // The 2D transform is done with two passes which are actually pretty
    190   // similar. In the first one, we transform the columns and transpose
    191   // the results. In the second one, we transform the rows. To achieve that,
    192   // as the first pass results are transposed, we transpose the columns (that
    193   // is the transposed rows) and transpose the results (so that it goes back
    194   // in normal/row positions).
    195   int pass;
    196   // We need an intermediate buffer between passes.
    197   tran_low_t intermediate[256];
    198   const int16_t *in_pass0 = input;
    199   const tran_low_t *in = NULL;
    200   tran_low_t *out = intermediate;
    201   // Do the two transform/transpose passes
    202   for (pass = 0; pass < 2; ++pass) {
    203     tran_high_t step1[8];      // canbe16
    204     tran_high_t step2[8];      // canbe16
    205     tran_high_t step3[8];      // canbe16
    206     tran_high_t input[8];      // canbe16
    207     tran_high_t temp1, temp2;  // needs32
    208     int i;
    209     for (i = 0; i < 16; i++) {
    210       if (0 == pass) {
    211         // Calculate input for the first 8 results.
    212         input[0] = (in_pass0[0 * stride] + in_pass0[15 * stride]) * 4;
    213         input[1] = (in_pass0[1 * stride] + in_pass0[14 * stride]) * 4;
    214         input[2] = (in_pass0[2 * stride] + in_pass0[13 * stride]) * 4;
    215         input[3] = (in_pass0[3 * stride] + in_pass0[12 * stride]) * 4;
    216         input[4] = (in_pass0[4 * stride] + in_pass0[11 * stride]) * 4;
    217         input[5] = (in_pass0[5 * stride] + in_pass0[10 * stride]) * 4;
    218         input[6] = (in_pass0[6 * stride] + in_pass0[ 9 * stride]) * 4;
    219         input[7] = (in_pass0[7 * stride] + in_pass0[ 8 * stride]) * 4;
    220         // Calculate input for the next 8 results.
    221         step1[0] = (in_pass0[7 * stride] - in_pass0[ 8 * stride]) * 4;
    222         step1[1] = (in_pass0[6 * stride] - in_pass0[ 9 * stride]) * 4;
    223         step1[2] = (in_pass0[5 * stride] - in_pass0[10 * stride]) * 4;
    224         step1[3] = (in_pass0[4 * stride] - in_pass0[11 * stride]) * 4;
    225         step1[4] = (in_pass0[3 * stride] - in_pass0[12 * stride]) * 4;
    226         step1[5] = (in_pass0[2 * stride] - in_pass0[13 * stride]) * 4;
    227         step1[6] = (in_pass0[1 * stride] - in_pass0[14 * stride]) * 4;
    228         step1[7] = (in_pass0[0 * stride] - in_pass0[15 * stride]) * 4;
    229       } else {
    230         // Calculate input for the first 8 results.
    231         input[0] = ((in[0 * 16] + 1) >> 2) + ((in[15 * 16] + 1) >> 2);
    232         input[1] = ((in[1 * 16] + 1) >> 2) + ((in[14 * 16] + 1) >> 2);
    233         input[2] = ((in[2 * 16] + 1) >> 2) + ((in[13 * 16] + 1) >> 2);
    234         input[3] = ((in[3 * 16] + 1) >> 2) + ((in[12 * 16] + 1) >> 2);
    235         input[4] = ((in[4 * 16] + 1) >> 2) + ((in[11 * 16] + 1) >> 2);
    236         input[5] = ((in[5 * 16] + 1) >> 2) + ((in[10 * 16] + 1) >> 2);
    237         input[6] = ((in[6 * 16] + 1) >> 2) + ((in[ 9 * 16] + 1) >> 2);
    238         input[7] = ((in[7 * 16] + 1) >> 2) + ((in[ 8 * 16] + 1) >> 2);
    239         // Calculate input for the next 8 results.
    240         step1[0] = ((in[7 * 16] + 1) >> 2) - ((in[ 8 * 16] + 1) >> 2);
    241         step1[1] = ((in[6 * 16] + 1) >> 2) - ((in[ 9 * 16] + 1) >> 2);
    242         step1[2] = ((in[5 * 16] + 1) >> 2) - ((in[10 * 16] + 1) >> 2);
    243         step1[3] = ((in[4 * 16] + 1) >> 2) - ((in[11 * 16] + 1) >> 2);
    244         step1[4] = ((in[3 * 16] + 1) >> 2) - ((in[12 * 16] + 1) >> 2);
    245         step1[5] = ((in[2 * 16] + 1) >> 2) - ((in[13 * 16] + 1) >> 2);
    246         step1[6] = ((in[1 * 16] + 1) >> 2) - ((in[14 * 16] + 1) >> 2);
    247         step1[7] = ((in[0 * 16] + 1) >> 2) - ((in[15 * 16] + 1) >> 2);
    248       }
    249       // Work on the first eight values; fdct8(input, even_results);
    250       {
    251         tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;  // canbe16
    252         tran_high_t t0, t1, t2, t3;                  // needs32
    253         tran_high_t x0, x1, x2, x3;                  // canbe16
    254 
    255         // stage 1
    256         s0 = input[0] + input[7];
    257         s1 = input[1] + input[6];
    258         s2 = input[2] + input[5];
    259         s3 = input[3] + input[4];
    260         s4 = input[3] - input[4];
    261         s5 = input[2] - input[5];
    262         s6 = input[1] - input[6];
    263         s7 = input[0] - input[7];
    264 
    265         // fdct4(step, step);
    266         x0 = s0 + s3;
    267         x1 = s1 + s2;
    268         x2 = s1 - s2;
    269         x3 = s0 - s3;
    270         t0 = (x0 + x1) * cospi_16_64;
    271         t1 = (x0 - x1) * cospi_16_64;
    272         t2 = x3 * cospi_8_64  + x2 * cospi_24_64;
    273         t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
    274         out[0] = (tran_low_t)fdct_round_shift(t0);
    275         out[4] = (tran_low_t)fdct_round_shift(t2);
    276         out[8] = (tran_low_t)fdct_round_shift(t1);
    277         out[12] = (tran_low_t)fdct_round_shift(t3);
    278 
    279         // Stage 2
    280         t0 = (s6 - s5) * cospi_16_64;
    281         t1 = (s6 + s5) * cospi_16_64;
    282         t2 = fdct_round_shift(t0);
    283         t3 = fdct_round_shift(t1);
    284 
    285         // Stage 3
    286         x0 = s4 + t2;
    287         x1 = s4 - t2;
    288         x2 = s7 - t3;
    289         x3 = s7 + t3;
    290 
    291         // Stage 4
    292         t0 = x0 * cospi_28_64 + x3 *   cospi_4_64;
    293         t1 = x1 * cospi_12_64 + x2 *  cospi_20_64;
    294         t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
    295         t3 = x3 * cospi_28_64 + x0 *  -cospi_4_64;
    296         out[2] = (tran_low_t)fdct_round_shift(t0);
    297         out[6] = (tran_low_t)fdct_round_shift(t2);
    298         out[10] = (tran_low_t)fdct_round_shift(t1);
    299         out[14] = (tran_low_t)fdct_round_shift(t3);
    300       }
    301       // Work on the next eight values; step1 -> odd_results
    302       {
    303         // step 2
    304         temp1 = (step1[5] - step1[2]) * cospi_16_64;
    305         temp2 = (step1[4] - step1[3]) * cospi_16_64;
    306         step2[2] = fdct_round_shift(temp1);
    307         step2[3] = fdct_round_shift(temp2);
    308         temp1 = (step1[4] + step1[3]) * cospi_16_64;
    309         temp2 = (step1[5] + step1[2]) * cospi_16_64;
    310         step2[4] = fdct_round_shift(temp1);
    311         step2[5] = fdct_round_shift(temp2);
    312         // step 3
    313         step3[0] = step1[0] + step2[3];
    314         step3[1] = step1[1] + step2[2];
    315         step3[2] = step1[1] - step2[2];
    316         step3[3] = step1[0] - step2[3];
    317         step3[4] = step1[7] - step2[4];
    318         step3[5] = step1[6] - step2[5];
    319         step3[6] = step1[6] + step2[5];
    320         step3[7] = step1[7] + step2[4];
    321         // step 4
    322         temp1 = step3[1] *  -cospi_8_64 + step3[6] * cospi_24_64;
    323         temp2 = step3[2] * cospi_24_64 + step3[5] *  cospi_8_64;
    324         step2[1] = fdct_round_shift(temp1);
    325         step2[2] = fdct_round_shift(temp2);
    326         temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64;
    327         temp2 = step3[1] * cospi_24_64 + step3[6] *  cospi_8_64;
    328         step2[5] = fdct_round_shift(temp1);
    329         step2[6] = fdct_round_shift(temp2);
    330         // step 5
    331         step1[0] = step3[0] + step2[1];
    332         step1[1] = step3[0] - step2[1];
    333         step1[2] = step3[3] + step2[2];
    334         step1[3] = step3[3] - step2[2];
    335         step1[4] = step3[4] - step2[5];
    336         step1[5] = step3[4] + step2[5];
    337         step1[6] = step3[7] - step2[6];
    338         step1[7] = step3[7] + step2[6];
    339         // step 6
    340         temp1 = step1[0] * cospi_30_64 + step1[7] *  cospi_2_64;
    341         temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
    342         out[1] = (tran_low_t)fdct_round_shift(temp1);
    343         out[9] = (tran_low_t)fdct_round_shift(temp2);
    344         temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
    345         temp2 = step1[3] *  cospi_6_64 + step1[4] * cospi_26_64;
    346         out[5] = (tran_low_t)fdct_round_shift(temp1);
    347         out[13] = (tran_low_t)fdct_round_shift(temp2);
    348         temp1 = step1[3] * -cospi_26_64 + step1[4] *  cospi_6_64;
    349         temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
    350         out[3] = (tran_low_t)fdct_round_shift(temp1);
    351         out[11] = (tran_low_t)fdct_round_shift(temp2);
    352         temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
    353         temp2 = step1[0] *  -cospi_2_64 + step1[7] * cospi_30_64;
    354         out[7] = (tran_low_t)fdct_round_shift(temp1);
    355         out[15] = (tran_low_t)fdct_round_shift(temp2);
    356       }
    357       // Do next column (which is a transposed row in second/horizontal pass)
    358       in++;
    359       in_pass0++;
    360       out += 16;
    361     }
    362     // Setup in/out for next pass.
    363     in = intermediate;
    364     out = output;
    365   }
    366 }
    367 
    368 void vpx_fdct16x16_1_c(const int16_t *input, tran_low_t *output, int stride) {
    369   int r, c;
    370   tran_low_t sum = 0;
    371   for (r = 0; r < 16; ++r)
    372     for (c = 0; c < 16; ++c)
    373       sum += input[r * stride + c];
    374 
    375   output[0] = sum >> 1;
    376   output[1] = 0;
    377 }
    378 
    379 static INLINE tran_high_t dct_32_round(tran_high_t input) {
    380   tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
    381   // TODO(debargha, peter.derivaz): Find new bounds for this assert,
    382   // and make the bounds consts.
    383   // assert(-131072 <= rv && rv <= 131071);
    384   return rv;
    385 }
    386 
    387 static INLINE tran_high_t half_round_shift(tran_high_t input) {
    388   tran_high_t rv = (input + 1 + (input < 0)) >> 2;
    389   return rv;
    390 }
    391 
    392 void vpx_fdct32(const tran_high_t *input, tran_high_t *output, int round) {
    393   tran_high_t step[32];
    394   // Stage 1
    395   step[0] = input[0] + input[(32 - 1)];
    396   step[1] = input[1] + input[(32 - 2)];
    397   step[2] = input[2] + input[(32 - 3)];
    398   step[3] = input[3] + input[(32 - 4)];
    399   step[4] = input[4] + input[(32 - 5)];
    400   step[5] = input[5] + input[(32 - 6)];
    401   step[6] = input[6] + input[(32 - 7)];
    402   step[7] = input[7] + input[(32 - 8)];
    403   step[8] = input[8] + input[(32 - 9)];
    404   step[9] = input[9] + input[(32 - 10)];
    405   step[10] = input[10] + input[(32 - 11)];
    406   step[11] = input[11] + input[(32 - 12)];
    407   step[12] = input[12] + input[(32 - 13)];
    408   step[13] = input[13] + input[(32 - 14)];
    409   step[14] = input[14] + input[(32 - 15)];
    410   step[15] = input[15] + input[(32 - 16)];
    411   step[16] = -input[16] + input[(32 - 17)];
    412   step[17] = -input[17] + input[(32 - 18)];
    413   step[18] = -input[18] + input[(32 - 19)];
    414   step[19] = -input[19] + input[(32 - 20)];
    415   step[20] = -input[20] + input[(32 - 21)];
    416   step[21] = -input[21] + input[(32 - 22)];
    417   step[22] = -input[22] + input[(32 - 23)];
    418   step[23] = -input[23] + input[(32 - 24)];
    419   step[24] = -input[24] + input[(32 - 25)];
    420   step[25] = -input[25] + input[(32 - 26)];
    421   step[26] = -input[26] + input[(32 - 27)];
    422   step[27] = -input[27] + input[(32 - 28)];
    423   step[28] = -input[28] + input[(32 - 29)];
    424   step[29] = -input[29] + input[(32 - 30)];
    425   step[30] = -input[30] + input[(32 - 31)];
    426   step[31] = -input[31] + input[(32 - 32)];
    427 
    428   // Stage 2
    429   output[0] = step[0] + step[16 - 1];
    430   output[1] = step[1] + step[16 - 2];
    431   output[2] = step[2] + step[16 - 3];
    432   output[3] = step[3] + step[16 - 4];
    433   output[4] = step[4] + step[16 - 5];
    434   output[5] = step[5] + step[16 - 6];
    435   output[6] = step[6] + step[16 - 7];
    436   output[7] = step[7] + step[16 - 8];
    437   output[8] = -step[8] + step[16 - 9];
    438   output[9] = -step[9] + step[16 - 10];
    439   output[10] = -step[10] + step[16 - 11];
    440   output[11] = -step[11] + step[16 - 12];
    441   output[12] = -step[12] + step[16 - 13];
    442   output[13] = -step[13] + step[16 - 14];
    443   output[14] = -step[14] + step[16 - 15];
    444   output[15] = -step[15] + step[16 - 16];
    445 
    446   output[16] = step[16];
    447   output[17] = step[17];
    448   output[18] = step[18];
    449   output[19] = step[19];
    450 
    451   output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64);
    452   output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64);
    453   output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64);
    454   output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64);
    455 
    456   output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64);
    457   output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64);
    458   output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64);
    459   output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64);
    460 
    461   output[28] = step[28];
    462   output[29] = step[29];
    463   output[30] = step[30];
    464   output[31] = step[31];
    465 
    466   // dump the magnitude by 4, hence the intermediate values are within
    467   // the range of 16 bits.
    468   if (round) {
    469     output[0] = half_round_shift(output[0]);
    470     output[1] = half_round_shift(output[1]);
    471     output[2] = half_round_shift(output[2]);
    472     output[3] = half_round_shift(output[3]);
    473     output[4] = half_round_shift(output[4]);
    474     output[5] = half_round_shift(output[5]);
    475     output[6] = half_round_shift(output[6]);
    476     output[7] = half_round_shift(output[7]);
    477     output[8] = half_round_shift(output[8]);
    478     output[9] = half_round_shift(output[9]);
    479     output[10] = half_round_shift(output[10]);
    480     output[11] = half_round_shift(output[11]);
    481     output[12] = half_round_shift(output[12]);
    482     output[13] = half_round_shift(output[13]);
    483     output[14] = half_round_shift(output[14]);
    484     output[15] = half_round_shift(output[15]);
    485 
    486     output[16] = half_round_shift(output[16]);
    487     output[17] = half_round_shift(output[17]);
    488     output[18] = half_round_shift(output[18]);
    489     output[19] = half_round_shift(output[19]);
    490     output[20] = half_round_shift(output[20]);
    491     output[21] = half_round_shift(output[21]);
    492     output[22] = half_round_shift(output[22]);
    493     output[23] = half_round_shift(output[23]);
    494     output[24] = half_round_shift(output[24]);
    495     output[25] = half_round_shift(output[25]);
    496     output[26] = half_round_shift(output[26]);
    497     output[27] = half_round_shift(output[27]);
    498     output[28] = half_round_shift(output[28]);
    499     output[29] = half_round_shift(output[29]);
    500     output[30] = half_round_shift(output[30]);
    501     output[31] = half_round_shift(output[31]);
    502   }
    503 
    504   // Stage 3
    505   step[0] = output[0] + output[(8 - 1)];
    506   step[1] = output[1] + output[(8 - 2)];
    507   step[2] = output[2] + output[(8 - 3)];
    508   step[3] = output[3] + output[(8 - 4)];
    509   step[4] = -output[4] + output[(8 - 5)];
    510   step[5] = -output[5] + output[(8 - 6)];
    511   step[6] = -output[6] + output[(8 - 7)];
    512   step[7] = -output[7] + output[(8 - 8)];
    513   step[8] = output[8];
    514   step[9] = output[9];
    515   step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64);
    516   step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64);
    517   step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64);
    518   step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64);
    519   step[14] = output[14];
    520   step[15] = output[15];
    521 
    522   step[16] = output[16] + output[23];
    523   step[17] = output[17] + output[22];
    524   step[18] = output[18] + output[21];
    525   step[19] = output[19] + output[20];
    526   step[20] = -output[20] + output[19];
    527   step[21] = -output[21] + output[18];
    528   step[22] = -output[22] + output[17];
    529   step[23] = -output[23] + output[16];
    530   step[24] = -output[24] + output[31];
    531   step[25] = -output[25] + output[30];
    532   step[26] = -output[26] + output[29];
    533   step[27] = -output[27] + output[28];
    534   step[28] = output[28] + output[27];
    535   step[29] = output[29] + output[26];
    536   step[30] = output[30] + output[25];
    537   step[31] = output[31] + output[24];
    538 
    539   // Stage 4
    540   output[0] = step[0] + step[3];
    541   output[1] = step[1] + step[2];
    542   output[2] = -step[2] + step[1];
    543   output[3] = -step[3] + step[0];
    544   output[4] = step[4];
    545   output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64);
    546   output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64);
    547   output[7] = step[7];
    548   output[8] = step[8] + step[11];
    549   output[9] = step[9] + step[10];
    550   output[10] = -step[10] + step[9];
    551   output[11] = -step[11] + step[8];
    552   output[12] = -step[12] + step[15];
    553   output[13] = -step[13] + step[14];
    554   output[14] = step[14] + step[13];
    555   output[15] = step[15] + step[12];
    556 
    557   output[16] = step[16];
    558   output[17] = step[17];
    559   output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64);
    560   output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64);
    561   output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64);
    562   output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64);
    563   output[22] = step[22];
    564   output[23] = step[23];
    565   output[24] = step[24];
    566   output[25] = step[25];
    567   output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64);
    568   output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64);
    569   output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64);
    570   output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64);
    571   output[30] = step[30];
    572   output[31] = step[31];
    573 
    574   // Stage 5
    575   step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64);
    576   step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64);
    577   step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64);
    578   step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64);
    579   step[4] = output[4] + output[5];
    580   step[5] = -output[5] + output[4];
    581   step[6] = -output[6] + output[7];
    582   step[7] = output[7] + output[6];
    583   step[8] = output[8];
    584   step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64);
    585   step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64);
    586   step[11] = output[11];
    587   step[12] = output[12];
    588   step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64);
    589   step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64);
    590   step[15] = output[15];
    591 
    592   step[16] = output[16] + output[19];
    593   step[17] = output[17] + output[18];
    594   step[18] = -output[18] + output[17];
    595   step[19] = -output[19] + output[16];
    596   step[20] = -output[20] + output[23];
    597   step[21] = -output[21] + output[22];
    598   step[22] = output[22] + output[21];
    599   step[23] = output[23] + output[20];
    600   step[24] = output[24] + output[27];
    601   step[25] = output[25] + output[26];
    602   step[26] = -output[26] + output[25];
    603   step[27] = -output[27] + output[24];
    604   step[28] = -output[28] + output[31];
    605   step[29] = -output[29] + output[30];
    606   step[30] = output[30] + output[29];
    607   step[31] = output[31] + output[28];
    608 
    609   // Stage 6
    610   output[0] = step[0];
    611   output[1] = step[1];
    612   output[2] = step[2];
    613   output[3] = step[3];
    614   output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64);
    615   output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64);
    616   output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64);
    617   output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64);
    618   output[8] = step[8] + step[9];
    619   output[9] = -step[9] + step[8];
    620   output[10] = -step[10] + step[11];
    621   output[11] = step[11] + step[10];
    622   output[12] = step[12] + step[13];
    623   output[13] = -step[13] + step[12];
    624   output[14] = -step[14] + step[15];
    625   output[15] = step[15] + step[14];
    626 
    627   output[16] = step[16];
    628   output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64);
    629   output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64);
    630   output[19] = step[19];
    631   output[20] = step[20];
    632   output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64);
    633   output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64);
    634   output[23] = step[23];
    635   output[24] = step[24];
    636   output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64);
    637   output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64);
    638   output[27] = step[27];
    639   output[28] = step[28];
    640   output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64);
    641   output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64);
    642   output[31] = step[31];
    643 
    644   // Stage 7
    645   step[0] = output[0];
    646   step[1] = output[1];
    647   step[2] = output[2];
    648   step[3] = output[3];
    649   step[4] = output[4];
    650   step[5] = output[5];
    651   step[6] = output[6];
    652   step[7] = output[7];
    653   step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64);
    654   step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64);
    655   step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64);
    656   step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64);
    657   step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64);
    658   step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64);
    659   step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64);
    660   step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64);
    661 
    662   step[16] = output[16] + output[17];
    663   step[17] = -output[17] + output[16];
    664   step[18] = -output[18] + output[19];
    665   step[19] = output[19] + output[18];
    666   step[20] = output[20] + output[21];
    667   step[21] = -output[21] + output[20];
    668   step[22] = -output[22] + output[23];
    669   step[23] = output[23] + output[22];
    670   step[24] = output[24] + output[25];
    671   step[25] = -output[25] + output[24];
    672   step[26] = -output[26] + output[27];
    673   step[27] = output[27] + output[26];
    674   step[28] = output[28] + output[29];
    675   step[29] = -output[29] + output[28];
    676   step[30] = -output[30] + output[31];
    677   step[31] = output[31] + output[30];
    678 
    679   // Final stage --- outputs indices are bit-reversed.
    680   output[0]  = step[0];
    681   output[16] = step[1];
    682   output[8]  = step[2];
    683   output[24] = step[3];
    684   output[4]  = step[4];
    685   output[20] = step[5];
    686   output[12] = step[6];
    687   output[28] = step[7];
    688   output[2]  = step[8];
    689   output[18] = step[9];
    690   output[10] = step[10];
    691   output[26] = step[11];
    692   output[6]  = step[12];
    693   output[22] = step[13];
    694   output[14] = step[14];
    695   output[30] = step[15];
    696 
    697   output[1]  = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64);
    698   output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64);
    699   output[9]  = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64);
    700   output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64);
    701   output[5]  = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64);
    702   output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64);
    703   output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64);
    704   output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64);
    705   output[3]  = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64);
    706   output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64);
    707   output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64);
    708   output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64);
    709   output[7]  = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64);
    710   output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64);
    711   output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64);
    712   output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64);
    713 }
    714 
    715 void vpx_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) {
    716   int i, j;
    717   tran_high_t output[32 * 32];
    718 
    719   // Columns
    720   for (i = 0; i < 32; ++i) {
    721     tran_high_t temp_in[32], temp_out[32];
    722     for (j = 0; j < 32; ++j)
    723       temp_in[j] = input[j * stride + i] * 4;
    724     vpx_fdct32(temp_in, temp_out, 0);
    725     for (j = 0; j < 32; ++j)
    726       output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
    727   }
    728 
    729   // Rows
    730   for (i = 0; i < 32; ++i) {
    731     tran_high_t temp_in[32], temp_out[32];
    732     for (j = 0; j < 32; ++j)
    733       temp_in[j] = output[j + i * 32];
    734     vpx_fdct32(temp_in, temp_out, 0);
    735     for (j = 0; j < 32; ++j)
    736       out[j + i * 32] =
    737           (tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2);
    738   }
    739 }
    740 
    741 // Note that although we use dct_32_round in dct32 computation flow,
    742 // this 2d fdct32x32 for rate-distortion optimization loop is operating
    743 // within 16 bits precision.
    744 void vpx_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, int stride) {
    745   int i, j;
    746   tran_high_t output[32 * 32];
    747 
    748   // Columns
    749   for (i = 0; i < 32; ++i) {
    750     tran_high_t temp_in[32], temp_out[32];
    751     for (j = 0; j < 32; ++j)
    752       temp_in[j] = input[j * stride + i] * 4;
    753     vpx_fdct32(temp_in, temp_out, 0);
    754     for (j = 0; j < 32; ++j)
    755       // TODO(cd): see quality impact of only doing
    756       //           output[j * 32 + i] = (temp_out[j] + 1) >> 2;
    757       //           PS: also change code in vpx_dsp/x86/vpx_dct_sse2.c
    758       output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
    759   }
    760 
    761   // Rows
    762   for (i = 0; i < 32; ++i) {
    763     tran_high_t temp_in[32], temp_out[32];
    764     for (j = 0; j < 32; ++j)
    765       temp_in[j] = output[j + i * 32];
    766     vpx_fdct32(temp_in, temp_out, 1);
    767     for (j = 0; j < 32; ++j)
    768       out[j + i * 32] = (tran_low_t)temp_out[j];
    769   }
    770 }
    771 
    772 void vpx_fdct32x32_1_c(const int16_t *input, tran_low_t *output, int stride) {
    773   int r, c;
    774   tran_low_t sum = 0;
    775   for (r = 0; r < 32; ++r)
    776     for (c = 0; c < 32; ++c)
    777       sum += input[r * stride + c];
    778 
    779   output[0] = sum >> 3;
    780   output[1] = 0;
    781 }
    782 
    783 #if CONFIG_VP9_HIGHBITDEPTH
    784 void vpx_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output,
    785                           int stride) {
    786   vpx_fdct4x4_c(input, output, stride);
    787 }
    788 
    789 void vpx_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output,
    790                           int stride) {
    791   vpx_fdct8x8_c(input, final_output, stride);
    792 }
    793 
    794 void vpx_highbd_fdct8x8_1_c(const int16_t *input, tran_low_t *final_output,
    795                             int stride) {
    796   vpx_fdct8x8_1_c(input, final_output, stride);
    797 }
    798 
    799 void vpx_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output,
    800                             int stride) {
    801   vpx_fdct16x16_c(input, output, stride);
    802 }
    803 
    804 void vpx_highbd_fdct16x16_1_c(const int16_t *input, tran_low_t *output,
    805                               int stride) {
    806   vpx_fdct16x16_1_c(input, output, stride);
    807 }
    808 
    809 void vpx_highbd_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) {
    810   vpx_fdct32x32_c(input, out, stride);
    811 }
    812 
    813 void vpx_highbd_fdct32x32_rd_c(const int16_t *input, tran_low_t *out,
    814                                int stride) {
    815   vpx_fdct32x32_rd_c(input, out, stride);
    816 }
    817 
    818 void vpx_highbd_fdct32x32_1_c(const int16_t *input, tran_low_t *out,
    819                               int stride) {
    820   vpx_fdct32x32_1_c(input, out, stride);
    821 }
    822 #endif  // CONFIG_VP9_HIGHBITDEPTH
    823