|   /external/opencv3/modules/java/src/ | 
| ml+StatModel.java  | 10 // C++: class StatModel 11 //javadoc: StatModel 12 public class StatModel extends Algorithm { 14     protected StatModel(long addr) { super(addr); } 28     //javadoc: StatModel::getVarCount() 42     //javadoc: StatModel::empty() 56     //javadoc: StatModel::isTrained() 70     //javadoc: StatModel::isClassifier() 91     //javadoc: StatModel::train(samples, layout, responses) 112     //javadoc: StatModel::predict(samples, results, flags     [all...] | 
| ml+NormalBayesClassifier.java  | 11 public class NormalBayesClassifier extends StatModel {
  | 
| ml+KNearest.java  | 11 public class KNearest extends StatModel {
  | 
| ml+DTrees.java  | 11 public class DTrees extends StatModel {
  | 
| ml+LogisticRegression.java  | 12 public class LogisticRegression extends StatModel {
  | 
| ml+ANN_MLP.java  | 12 public class ANN_MLP extends StatModel {
  | 
| ml+EM.java  | 12 public class EM extends StatModel {
  | 
| ml+SVM.java  | 12 public class SVM extends StatModel {
  | 
| ml.cpp  |     [all...] | 
|   /external/opencv3/modules/ml/src/ | 
| inner_functions.cpp  | 53 bool StatModel::empty() const { return !isTrained(); } 55 int StatModel::getVarCount() const { return 0; } 57 bool StatModel::train( const Ptr<TrainData>&, int ) 63 bool StatModel::train( InputArray samples, int layout, InputArray responses ) 68 float StatModel::calcError( const Ptr<TrainData>& data, bool testerr, OutputArray _resp ) const
  | 
|   /external/opencv3/modules/ml/test/ | 
| test_precomp.hpp  | 31 using cv::ml::StatModel; 65     Ptr<StatModel> model;
  | 
| test_save_load.cpp  | 191         Ptr<StatModel> model; 217             model->predict(input, output, StatModel::RAW_OUTPUT | (isTree ? DTrees::PREDICT_SUM : 0));
  | 
| test_mltests2.cpp  | 131 float ann_calc_error( Ptr<StatModel> ann, Ptr<TrainData> _data, map<int, int>& cls_map, int type, vector<float> *resp_labels )
  | 
|   /external/opencv3/modules/ml/include/opencv2/ | 
| ml.hpp  | 66   ground is defined by the class cv::ml::StatModel that all the other ML classes are derived from. 102 /** @brief The structure represents the logarithmic grid range of statmodel parameters. 104 It is used for optimizing statmodel accuracy by varying model parameters, the accuracy estimate 115     double minVal; //!< Minimum value of the statmodel parameter. Default value is 0. 116     double maxVal; //!< Maximum value of the statmodel parameter. Default value is 0. 117     /** @brief Logarithmic step for iterating the statmodel parameter. 119     The grid determines the following iteration sequence of the statmodel parameter values: 133 of this class into StatModel::train. 290 class CV_EXPORTS_W StatModel : public Algorithm 338     The method uses StatModel::predict to compute the error. For regression models the error i     [all...] | 
|   /external/opencv3/samples/python2/ | 
| digits.py  | 68 class StatModel(object): 74 class KNearest(StatModel): 87 class SVM(StatModel):
  | 
|   /external/opencv3/samples/cpp/ | 
| points_classifier.cpp  | 85 static void predict_and_paint(const Ptr<StatModel>& model, Mat& dst) 105     Ptr<NormalBayesClassifier> normalBayesClassifier = StatModel::train<NormalBayesClassifier>(prepare_train_data()); 191     Ptr<GBTrees> gbtrees = StatModel::train<GBTrees>(prepare_train_data(), params);
  | 
| tree_engine.cpp  | 21 static void train_and_print_errs(Ptr<StatModel> model, const Ptr<TrainData>& data)
  | 
| logistic_regression.cpp  | 167     Ptr<LogisticRegression> lr2 = StatModel::load<LogisticRegression>(saveFilename);
  | 
| letter_recog.cpp  | 88     Ptr<T> model = StatModel::load<T>( filename_to_load ); 118 static void test_and_save_classifier(const Ptr<StatModel>& model, 314             float s = model->predict( temp_sample, noArray(), StatModel::RAW_OUTPUT );
  | 
| train_HOG.cpp  | 365     svm = StatModel::load<SVM>( "my_people_detector.yml" );
  | 
|   /cts/apps/CtsVerifier/libs/ | 
| opencv3-android.jar  |  | 
|   /external/opencv3/apps/traincascade/ | 
| old_ml.hpp  | 89 /* A structure, representing the lattice range of statmodel parameters. 90    It is used for optimizing statmodel parameters by cross-validation method. 158 /* The structure, representing the grid range of statmodel parameters. 159    It is used for optimizing statmodel accuracy by varying model parameters,     [all...] |