HomeSort by relevance Sort by last modified time
    Searched full:polynomial (Results 101 - 125 of 408) sorted by null

1 2 3 45 6 7 8 91011>>

  /bionic/libm/upstream-freebsd/lib/msun/ld128/
k_sinl.c 30 * See ../ld80/k_cosl.c for more details about the polynomial.
  /external/e2fsprogs/e2fsck/
crc32defs.h 3 * *the* standard CRC-32 polynomial, first popularized by Ethernet.
crc32.c 256 * CRC polynomial. To check the CRC, you can either check that the
268 * A 32-bit CRC polynomial is actually 33 bits long. But since it's
282 * the divisor (the CRC polynomial) you're dividing by. Each step of the
291 * the polynomial from the remainder and we're back to where we started,
358 * but again the multiple of the polynomial to subtract depends only on
363 * generator polynomial. This is simply the CRC-32 of the given
367 * is already a multiple of a polynomial produces a larger multiple of that
368 * polynomial. To enable a CRC to detect this condition, it's common to
  /external/google-breakpad/src/common/linux/
crc32.cc 36 // CRC32 polynomial, in reversed form.
  /external/llvm/test/Transforms/LoopStrengthReduce/
quadradic-exit-value.ll 6 ; The value of %r is dependent on a polynomial iteration expression.
  /external/opencv3/3rdparty/zlib/
crc32.c 65 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
70 is just exclusive-or, and multiplying a polynomial by x is a right shift by
71 one. If we call the above polynomial p, and represent a byte as the
72 polynomial q, also with the lowest power in the most significant bit (so the
73 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
94 z_crc_t poly; /* polynomial exclusive-or pattern */
95 /* terms of polynomial defining this crc (except x^32): */
105 /* make exclusive-or pattern from polynomial (0xedb88320UL) */
370 odd[0] = 0xedb88320UL; /* CRC-32 polynomial */
  /external/pdfium/third_party/zlib_v128/
crc32.c 65 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
70 is just exclusive-or, and multiplying a polynomial by x is a right shift by
71 one. If we call the above polynomial p, and represent a byte as the
72 polynomial q, also with the lowest power in the most significant bit (so the
73 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
94 z_crc_t poly; /* polynomial exclusive-or pattern */
95 /* terms of polynomial defining this crc (except x^32): */
105 /* make exclusive-or pattern from polynomial (0xedb88320UL) */
370 odd[0] = 0xedb88320UL; /* CRC-32 polynomial */
  /external/zlib/src/
crc32.c 65 Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
70 is just exclusive-or, and multiplying a polynomial by x is a right shift by
71 one. If we call the above polynomial p, and represent a byte as the
72 polynomial q, also with the lowest power in the most significant bit (so the
73 byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
94 z_crc_t poly; /* polynomial exclusive-or pattern */
95 /* terms of polynomial defining this crc (except x^32): */
105 /* make exclusive-or pattern from polynomial (0xedb88320UL) */
370 odd[0] = 0xedb88320UL; /* CRC-32 polynomial */
  /frameworks/base/core/java/android/view/
VelocityTracker.java 220 * An estimator for the movements of a pointer based on a polynomial model.
236 * Polynomial coefficients describing motion in X.
241 * Polynomial coefficients describing motion in Y.
246 * Polynomial degree, or zero if only position information is available.
  /bionic/libm/upstream-freebsd/lib/msun/src/
k_tan.c 26 * odd polynomial is not evaluated in a way that preserves -0.
28 * 3. tan(x) is approximated by a odd polynomial of degree 27 on
  /development/perftests/panorama/feature_stab/db_vlvm/
db_utilities_poly.cpp 101 /*Cubic polynomial roots, nr of roots and coefficients*/
173 /*Cubic polynomial roots, nr of roots and coefficients*/
  /external/bouncycastle/bcprov/src/main/java/org/bouncycastle/jcajce/provider/asymmetric/util/
EC5Util.java 25 import org.bouncycastle.math.field.Polynomial;
190 Polynomial poly = ((PolynomialExtensionField)field).getMinimalPolynomial();
ECUtil.java 42 * Returns a sorted array of middle terms of the reduction polynomial.
43 * @param k The unsorted array of middle terms of the reduction polynomial
45 * @return the sorted array of middle terms of the reduction polynomial.
  /external/guava/guava/src/com/google/common/hash/
Crc32cHashFunction.java 19 * The generator polynomial for this checksum is {@code 0x11EDC6F41}.
42 // The CRC table, generated from the polynomial 0x11EDC6F41.
  /frameworks/av/media/img_utils/include/img_utils/
DngUtils.h 129 * kCoeffs - A list of coefficients for the polynomial equation representing the distortion
132 * outline of the polynomial used here.
  /packages/apps/LegacyCamera/jni/feature_stab/db_vlvm/
db_utilities_poly.cpp 101 /*Cubic polynomial roots, nr of roots and coefficients*/
173 /*Cubic polynomial roots, nr of roots and coefficients*/
  /prebuilts/gcc/darwin-x86/x86/x86_64-linux-android-4.9/lib/gcc/x86_64-linux-android/4.9/include/
ia32intrin.h 58 /* 32bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
204 /* 64bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
  /prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.11-4.8/lib/gcc/x86_64-linux/4.8/include/
ia32intrin.h 53 /* 32bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
190 /* 64bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
  /prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.15-4.8/lib/gcc/x86_64-linux/4.8/include/
ia32intrin.h 53 /* 32bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
190 /* 64bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
  /prebuilts/gcc/linux-x86/host/x86_64-w64-mingw32-4.8/lib/gcc/x86_64-w64-mingw32/4.8.3/include/
ia32intrin.h 53 /* 32bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
190 /* 64bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
  /prebuilts/gcc/linux-x86/x86/x86_64-linux-android-4.9/lib/gcc/x86_64-linux-android/4.9/include/
ia32intrin.h 58 /* 32bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
204 /* 64bit accumulate CRC32 (polynomial 0x11EDC6F41) value. */
  /prebuilts/go/darwin-x86/src/math/
log.go 38 // a polynomial of degree 14 to approximate R. The maximum error
39 // of this polynomial approximation is bounded by 2**-58.45. In
  /prebuilts/go/linux-x86/src/math/
log.go 38 // a polynomial of degree 14 to approximate R. The maximum error
39 // of this polynomial approximation is bounded by 2**-58.45. In
  /toolchain/binutils/binutils-2.25/libiberty/
random.c 102 allow a degree seven polynomial. (Note: The zeroeth word of state
108 and will have period 2^deg - 1 (where deg is the degree of the polynomial
109 being used, assuming that the polynomial is irreducible and primitive).
124 the polynomial (actually a trinomial) that the R.N.G. is based on, and
205 the type of the current generator, the degree of the current polynomial
  /external/webrtc/webrtc/modules/audio_coding/codecs/isac/main/source/
entropy_coding.h 98 * Encode LPC parameters, given as A-polynomial, of upper-band. The encoding
116 * - interpolLPCCoeff : Decoded and interpolated LPC (A-polynomial)
149 * - percepFilterParam : Decoded and interpolated LPC (A-polynomial) of

Completed in 958 milliseconds

1 2 3 45 6 7 8 91011>>