HomeSort by relevance Sort by last modified time
    Searched full:polynomial (Results 51 - 75 of 408) sorted by null

1 23 4 5 6 7 8 91011>>

  /external/apache-commons-math/src/main/java/org/apache/commons/math/analysis/interpolation/
SmoothingPolynomialBicubicSplineInterpolator.java 30 * polynomial fitting.
52 * @param degree Degree of the polynomial fitting functions.
59 * @param xDegree Degree of the polynomial fitting functions along the
61 * @param yDegree Degree of the polynomial fitting functions along the
97 // For each line y[j] (0 <= j < yLen), construct a polynomial, with
119 // For each line x[i] (0 <= i < xLen), construct a polynomial, with
  /frameworks/ml/bordeaux/learning/stochastic_linear_ranker/native/
stochastic_linear_ranker.h 97 // polynomial kernel, it implies the degree of the polynomial. In case of
140 // polynomial kernel, it implies the degree of the polynomial. In case of
215 // kernel-specific. In case of polynomial kernel, it is the degree of the
216 // polynomial.
  /external/apache-commons-math/src/main/java/org/apache/commons/math/analysis/solvers/
LaguerreSolver.java 43 /** polynomial function to solve.
53 * @throws IllegalArgumentException if function is not polynomial
80 * Returns a copy of the polynomial function.
82 * @return a fresh copy of the polynomial function
109 * @param f function to solve (must be polynomial)
133 * @param f function to solve (must be polynomial)
273 * Find all complex roots for the polynomial with the given coefficients,
276 * @param coefficients the polynomial coefficients array
298 * Find all complex roots for the polynomial with the given coefficients,
301 * @param coefficients the polynomial coefficients arra
    [all...]
  /external/llvm/test/CodeGen/X86/
scev-interchange.ll 8 %"struct.PolynomialSpace<1>" = type { %"struct.std::vector<Polynomials::Polynomial<double>,std::allocator<Polynomials::Polynomial<double> > >", i32, %"struct.std::vector<int,std::allocator<int> >", %"struct.std::vector<int,std::allocator<int> >" }
9 %"struct.Polynomials::Polynomial<double>" = type { %struct.Subscriptor, %"struct.std::vector<double,std::allocator<double> >" }
17 %"struct.std::_Vector_base<Polynomials::Polynomial<double>,std::allocator<Polynomials::Polynomial<double> > >" = type { %"struct.std::_Vector_base<Polynomials::Polynomial<double>,std::allocator<Polynomials::Polynomial<double> > >::_Vector_impl" }
18 %"struct.std::_Vector_base<Polynomials::Polynomial<double>,std::allocator<Polynomials::Polynomial<double> > >::_Vector_impl" = type { %"struct.Polynomials::Polynomial<double>"*, %"struct.Polynomials::Polynomial<double>"*, %"struct.Polynomials::Polynomial<double>"*
    [all...]
  /external/fec/
decode_rs.h 8 * NROOTS - the number of roots in the RS code generator polynomial,
14 * elements in index (log) form to polynomial form. Read only.
16 * elements in polynomial form to index (log) form. Read only.
19 * Reed-Solomon generator polynomial. Integer variable or literal.
113 /* Init lambda to be the erasure locator polynomial */
125 /* Test code that verifies the erasure locator polynomial just constructed
128 /* find roots of the erasure location polynomial */
165 * locator polynomial
215 /* Find roots of the error+erasure locator polynomial by Chien search */
rs.3 71 polynomial form, \fInot\fR the dual-basis specified in
98 \fBgfpoly\fR gives the extended Galois field generator polynomial coefficients,
99 with the 0th coefficient in the low order bit. The polynomial
104 Reed Solomon code generator polynomial.
107 used to generate the Reed Solomon code generator polynomial.
110 generator polynomial. This equals the number of parity symbols
encode_rs_av.c 10 * These are the low half of the coefficients. Since the generator polynomial is
25 /* The PowerPC is big-endian, so the low-order byte of each vector contains the highest order term in the polynomial */
  /external/srtp/test/
lfsr.c 36 printf("polynomial: %s\t", v32_bit_string(mask));
167 * code generated by the polynomial poly
266 printf("polynomial: %s\tperiod: %d\n",
279 printf("polynomial: %s\tperiod: %d\n",
296 printf("polynomial: %s\tweight: %d\tperiod: %d\n",
  /frameworks/av/media/libeffects/lvm/lib/Common/src/
LVM_FO_HPF.c 40 /* polynomial expansion using a 9th order polynomial. It uses the */
41 /* following table of 32-bit integer polynomial coefficients: */
LVM_FO_LPF.c 40 /* polynomial expansion using a 9th order polynomial. It uses the */
41 /* following table of 32-bit integer polynomial coefficients: */
LVM_Power10.c 29 /* This function calculates 10X using an 11th order polynomial. It uses */
30 /* the following table of 32-bit integer polynomial coefficients: */
  /external/bouncycastle/bcprov/src/main/java/org/bouncycastle/jce/spec/
ECNamedCurveSpec.java 13 import org.bouncycastle.math.field.Polynomial;
43 Polynomial poly = ((PolynomialExtensionField)field).getMinimalPolynomial();
  /external/ceres-solver/internal/ceres/
dogleg_strategy.cc 39 #include "ceres/polynomial.h"
299 // polynomial in y, which can be solved using e.g. the companion matrix.
322 LOG(WARNING) << "Failed to compute polynomial roots. "
367 // Build the polynomial that defines the optimal Lagrange multipliers.
408 // So (7) is a polynomial in y of degree four.
426 Vector polynomial(5);
427 polynomial(0) = r2;
428 polynomial(1) = 2.0 * r2 * trB;
429 polynomial(2) = r2 * (trB * trB + 2.0 * detB) - subspace_g_.squaredNorm();
430 polynomial(3) = -2.0 * (subspace_g_.transpose() * B_adj * subspace_g
478 const Vector polynomial = MakePolynomialForBoundaryConstrainedProblem(); local
    [all...]
  /external/flac/libFLAC/include/private/
crc.h 39 ** polynomial = x^8 + x^2 + x^1 + x^0
49 ** polynomial = x^16 + x^15 + x^2 + x^0
  /external/opencv3/3rdparty/include/ffmpeg_/libavutil/
crc.h 49 * exponent of the corresponding polynomial (both for poly and
56 * @param poly generator polynomial without the x**bits coefficient, in the
  /frameworks/av/media/libeffects/lvm/lib/Reverb/src/
LVREV_Tables.c 54 size parameters. These polynomial coefficients are calculated experimentally.
66 first values is used to get polynomial set for given room size,
  /external/chromium-trace/catapult/third_party/gsutil/third_party/crcmod/docs/source/
make_predefined_table.py 10 [ "Polynomial", 'poly', 22, ],
  /external/clang/test/CodeGenCXX/
poly-unsigned.cpp 7 // Polynomial types really should be universally unsigned, otherwise casting
  /external/lzma/xz-embedded/
xz_crc32.c 2 * CRC32 using the polynomial from IEEE-802.3
xz_crc64.c 2 * CRC64 using the polynomial from ECMA-182
  /external/webrtc/webrtc/base/
crc32.cc 19 // CRC32 polynomial, in reversed form.
  /external/chromium-trace/catapult/third_party/gsutil/third_party/crcmod/python2/crcmod/
crcmod.py 24 Redundancy Check. Any 8, 16, 24, 32, or 64 bit polynomial can be used.
33 polynomial and initial value. This provides a much simpler interface if
54 '''Compute a Cyclic Redundancy Check (CRC) using the specified polynomial.
60 The string representation of a Crc instance identifies the polynomial,
70 poly -- The generator polynomial to use in calculating the CRC. The value
72 are the coefficients of the polynomial. The only polynomials allowed are
234 poly = 'polynomial: 0x%X' % self.poly
269 '''Return a function that computes the CRC using the specified polynomial.
271 poly -- integer representation of the generator polynomial
291 # Check the polynomial to make sure that it is acceptable and return the numbe
    [all...]
  /external/chromium-trace/catapult/third_party/gsutil/third_party/crcmod/python3/crcmod/
crcmod.py 24 Redundancy Check. Any 8, 16, 24, 32, or 64 bit polynomial can be used.
34 polynomial and initial value. This provides a much simpler interface if
55 '''Compute a Cyclic Redundancy Check (CRC) using the specified polynomial.
61 The string representation of a Crc instance identifies the polynomial,
71 poly -- The generator polynomial to use in calculating the CRC. The value
73 coefficients of the polynomial. The only polynomials allowed are those
235 poly = 'polynomial: 0x%X' % self.poly
270 '''Return a function that computes the CRC using the specified polynomial.
272 poly -- integer representation of the generator polynomial
292 # Check the polynomial to make sure that it is acceptable and return the numbe
    [all...]
  /external/chromium-trace/catapult/third_party/gsutil/third_party/crcmod_osx/crcmod/
crcmod.py 24 Redundancy Check. Any 8, 16, 24, 32, or 64 bit polynomial can be used.
33 polynomial and initial value. This provides a much simpler interface if
54 '''Compute a Cyclic Redundancy Check (CRC) using the specified polynomial.
60 The string representation of a Crc instance identifies the polynomial,
70 poly -- The generator polynomial to use in calculating the CRC. The value
72 are the coefficients of the polynomial. The only polynomials allowed are
234 poly = 'polynomial: 0x%X' % self.poly
269 '''Return a function that computes the CRC using the specified polynomial.
271 poly -- integer representation of the generator polynomial
291 # Check the polynomial to make sure that it is acceptable and return the numbe
    [all...]
  /bionic/libm/upstream-freebsd/lib/msun/src/
k_sin.c 26 * odd polynomial is not evaluated in a way that preserves -0.
28 * 3. sin(x) is approximated by a polynomial of degree 13 on

Completed in 1802 milliseconds

1 23 4 5 6 7 8 91011>>