HomeSort by relevance Sort by last modified time
    Searched full:numpy (Results 51 - 75 of 238) sorted by null

1 23 4 5 6 7 8 910

  /external/opencv3/samples/cpp/tutorial_code/core/mat_the_basic_image_container/
mat_the_basic_image_container.cpp 16 << "Shows how output can be formated to OpenCV, python, numpy, csv and C styles." << endl
80 //! [out-numpy]
81 cout << "R (numpy) = " << endl << format(R, Formatter::FMT_NUMPY ) << endl << endl;
82 //! [out-numpy]
  /external/opencv3/samples/python2/
color_histogram.py 3 import numpy as np
distrans.py 15 import numpy as np
inpaint.py 18 import numpy as np
kmeans.py 13 import numpy as np
mser.py 17 import numpy as np
texture_flow.py 13 import numpy as np
browse.py 15 import numpy as np
calibrate.py 3 import numpy as np
floodfill.py 17 import numpy as np
  /external/opencv3/doc/py_tutorials/py_imgproc/py_histograms/py_histogram_equalization/
py_histogram_equalization.markdown 26 after reading that. Instead, here we will see its Numpy implementation. After that, we will see
30 import numpy as np
53 as given in wiki page. But I have used here, the masked array concept array from Numpy. For masked
54 array, all operations are performed on non-masked elements. You can read more about it from Numpy
124 import numpy as np
143 2. [Masked Arrays in Numpy](http://docs.scipy.org/doc/numpy/reference/maskedarray.html)
  /external/autotest/server/brillo/feedback/
closed_loop_audio_client.py 8 import numpy namespace
383 fft_golden = numpy.fft.rfft(golden_data)
384 fft_rec = numpy.fft.rfft(rec_data)
385 fft_freqs_golden = numpy.fft.rfftfreq(
387 fft_freqs_rec = numpy.fft.rfftfreq(len(rec_data),
391 freq_golden = fft_freqs_golden[numpy.argmax(numpy.abs(fft_golden))]
392 abs_fft_rec = numpy.abs(fft_rec)
393 freq_rec = fft_freqs_rec[numpy.argmax(abs_fft_rec)]
403 fft_rec_peak_val = numpy.max(abs_fft_rec
    [all...]
  /cts/apps/CameraITS/tests/scene3/
test_reprocess_edge_enhancement.py 23 import numpy namespace
77 ret["sharpness"] = numpy.mean(sharpness_list)
168 assert(numpy.isclose(sharpness_regular[3], sharpness_regular[0],
185 assert(numpy.isclose(sharpnesses_reprocess[reprocess_format][3],
201 assert(numpy.isclose(sharpnesses_reprocess[reprocess_format][2] /
  /external/opencv3/doc/py_tutorials/py_imgproc/py_histograms/py_2d_histogram/
py_2d_histogram.markdown 39 import numpy as np
48 2D Histogram in Numpy
51 Numpy also provides a specific function for this : **np.histogram2d()**. (Remember, for 1D histogram
55 import numpy as np
89 import numpy as np
  /external/v8/tools/ignition/
bytecode_dispatches_report.py 13 import numpy namespace
122 counters_matrix = numpy.empty([len(labels), len(labels)], dtype=int)
131 counters_matrix = numpy.flipud(counters_matrix)
149 ticks=numpy.arange(0.5, len(xlabels)),
157 ticks=numpy.arange(0.5, len(ylabels)),
  /cts/apps/CameraITS/tests/inprog/
test_burst_sameness_auto.py 20 import numpy namespace
63 imgs = numpy.empty([FRAMES,h,w,3])
  /cts/apps/CameraITS/tests/scene1/
test_burst_sameness_manual.py 21 import numpy namespace
56 imgs = numpy.empty([FRAMES,h,w,3])
test_ev_compensation_advanced.py 23 import numpy namespace
93 avg_diff = abs(numpy.array(luma_diffs)).mean()
test_capture_result.py 20 import numpy namespace
101 xs = numpy.array([range(w_map)] * h_map).reshape(h_map, w_map)
102 ys = numpy.array([[i]*w_map for i in range(h_map)]).reshape(
104 zs = numpy.array(lsc_map[ch::4]).reshape(h_map, w_map)
  /external/autotest/client/cros/
http_speed.py 9 import numpy.random namespace
40 data = numpy.random.bytes(size)
  /external/autotest/client/site_tests/power_CameraSuspend/
power_CameraSuspend.py 6 import numpy namespace
79 if last_image is not None and numpy.array_equal(image, last_image):
  /cts/suite/audio_quality/test_description/processing/
playback_thd.py 18 import numpy as np
  /external/chromium-trace/catapult/experimental/statistical_analysis/
results_stats_unittest.py 14 import numpy as np
128 raise ImportError('This function requires Numpy.')
138 self.skipTest("Numpy is not installed.")
173 self.skipTest("Numpy is not installed.")
  /external/chromium-trace/catapult/telemetry/telemetry/internal/util/
external_modules.py 11 'numpy': (version.StrictVersion('1.6.1'), None),
  /external/opencv3/doc/py_tutorials/py_ml/py_knn/py_knn_opencv/
py_knn_opencv.markdown 22 import numpy as np
32 # Make it into a Numpy array. It size will be (50,100,20,20)
59 read this data from a file and start classification. You can do it with the help of some Numpy
91 import numpy as np

Completed in 263 milliseconds

1 23 4 5 6 7 8 910