/external/opencv3/samples/cpp/tutorial_code/core/mat_the_basic_image_container/ |
mat_the_basic_image_container.cpp | 16 << "Shows how output can be formated to OpenCV, python, numpy, csv and C styles." << endl 80 //! [out-numpy] 81 cout << "R (numpy) = " << endl << format(R, Formatter::FMT_NUMPY ) << endl << endl; 82 //! [out-numpy]
|
/external/opencv3/samples/python2/ |
color_histogram.py | 3 import numpy as np
|
distrans.py | 15 import numpy as np
|
inpaint.py | 18 import numpy as np
|
kmeans.py | 13 import numpy as np
|
mser.py | 17 import numpy as np
|
texture_flow.py | 13 import numpy as np
|
browse.py | 15 import numpy as np
|
calibrate.py | 3 import numpy as np
|
floodfill.py | 17 import numpy as np
|
/external/opencv3/doc/py_tutorials/py_imgproc/py_histograms/py_histogram_equalization/ |
py_histogram_equalization.markdown | 26 after reading that. Instead, here we will see its Numpy implementation. After that, we will see 30 import numpy as np 53 as given in wiki page. But I have used here, the masked array concept array from Numpy. For masked 54 array, all operations are performed on non-masked elements. You can read more about it from Numpy 124 import numpy as np 143 2. [Masked Arrays in Numpy](http://docs.scipy.org/doc/numpy/reference/maskedarray.html)
|
/external/autotest/server/brillo/feedback/ |
closed_loop_audio_client.py | 8 import numpy namespace 383 fft_golden = numpy.fft.rfft(golden_data) 384 fft_rec = numpy.fft.rfft(rec_data) 385 fft_freqs_golden = numpy.fft.rfftfreq( 387 fft_freqs_rec = numpy.fft.rfftfreq(len(rec_data), 391 freq_golden = fft_freqs_golden[numpy.argmax(numpy.abs(fft_golden))] 392 abs_fft_rec = numpy.abs(fft_rec) 393 freq_rec = fft_freqs_rec[numpy.argmax(abs_fft_rec)] 403 fft_rec_peak_val = numpy.max(abs_fft_rec [all...] |
/cts/apps/CameraITS/tests/scene3/ |
test_reprocess_edge_enhancement.py | 23 import numpy namespace 77 ret["sharpness"] = numpy.mean(sharpness_list) 168 assert(numpy.isclose(sharpness_regular[3], sharpness_regular[0], 185 assert(numpy.isclose(sharpnesses_reprocess[reprocess_format][3], 201 assert(numpy.isclose(sharpnesses_reprocess[reprocess_format][2] /
|
/external/opencv3/doc/py_tutorials/py_imgproc/py_histograms/py_2d_histogram/ |
py_2d_histogram.markdown | 39 import numpy as np 48 2D Histogram in Numpy 51 Numpy also provides a specific function for this : **np.histogram2d()**. (Remember, for 1D histogram 55 import numpy as np 89 import numpy as np
|
/external/v8/tools/ignition/ |
bytecode_dispatches_report.py | 13 import numpy namespace 122 counters_matrix = numpy.empty([len(labels), len(labels)], dtype=int) 131 counters_matrix = numpy.flipud(counters_matrix) 149 ticks=numpy.arange(0.5, len(xlabels)), 157 ticks=numpy.arange(0.5, len(ylabels)),
|
/cts/apps/CameraITS/tests/inprog/ |
test_burst_sameness_auto.py | 20 import numpy namespace 63 imgs = numpy.empty([FRAMES,h,w,3])
|
/cts/apps/CameraITS/tests/scene1/ |
test_burst_sameness_manual.py | 21 import numpy namespace 56 imgs = numpy.empty([FRAMES,h,w,3])
|
test_ev_compensation_advanced.py | 23 import numpy namespace 93 avg_diff = abs(numpy.array(luma_diffs)).mean()
|
test_capture_result.py | 20 import numpy namespace 101 xs = numpy.array([range(w_map)] * h_map).reshape(h_map, w_map) 102 ys = numpy.array([[i]*w_map for i in range(h_map)]).reshape( 104 zs = numpy.array(lsc_map[ch::4]).reshape(h_map, w_map)
|
/external/autotest/client/cros/ |
http_speed.py | 9 import numpy.random namespace 40 data = numpy.random.bytes(size)
|
/external/autotest/client/site_tests/power_CameraSuspend/ |
power_CameraSuspend.py | 6 import numpy namespace 79 if last_image is not None and numpy.array_equal(image, last_image):
|
/cts/suite/audio_quality/test_description/processing/ |
playback_thd.py | 18 import numpy as np
|
/external/chromium-trace/catapult/experimental/statistical_analysis/ |
results_stats_unittest.py | 14 import numpy as np 128 raise ImportError('This function requires Numpy.') 138 self.skipTest("Numpy is not installed.") 173 self.skipTest("Numpy is not installed.")
|
/external/chromium-trace/catapult/telemetry/telemetry/internal/util/ |
external_modules.py | 11 'numpy': (version.StrictVersion('1.6.1'), None),
|
/external/opencv3/doc/py_tutorials/py_ml/py_knn/py_knn_opencv/ |
py_knn_opencv.markdown | 22 import numpy as np 32 # Make it into a Numpy array. It size will be (50,100,20,20) 59 read this data from a file and start classification. You can do it with the help of some Numpy 91 import numpy as np
|